Properties

Label 700.2.g.k.251.3
Level $700$
Weight $2$
Character 700.251
Analytic conductor $5.590$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(251,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.5473632256.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 12x^{5} + 34x^{4} + 24x^{3} + 56x^{2} + 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.3
Root \(2.11137 - 2.44696i\) of defining polynomial
Character \(\chi\) \(=\) 700.251
Dual form 700.2.g.k.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207107 + 1.39897i) q^{2} -1.47363 q^{3} +(-1.91421 - 0.579471i) q^{4} +(0.305198 - 2.06155i) q^{6} +(2.51564 - 0.819496i) q^{7} +(1.20711 - 2.55791i) q^{8} -0.828427 q^{9} -2.79793i q^{11} +(2.82083 + 0.853923i) q^{12} +5.83095i q^{13} +(0.625441 + 3.68901i) q^{14} +(3.32843 + 2.21846i) q^{16} +4.12311i q^{17} +(0.171573 - 1.15894i) q^{18} -5.64167 q^{19} +(-3.70711 + 1.20763i) q^{21} +(3.91421 + 0.579471i) q^{22} +3.95687i q^{23} +(-1.77882 + 3.76940i) q^{24} +(-8.15731 - 1.20763i) q^{26} +5.64167 q^{27} +(-5.29034 + 0.110951i) q^{28} -0.242641 q^{29} -2.08402 q^{31} +(-3.79289 + 4.19690i) q^{32} +4.12311i q^{33} +(-5.76809 - 0.853923i) q^{34} +(1.58579 + 0.480049i) q^{36} -6.24264 q^{37} +(1.16843 - 7.89250i) q^{38} -8.59264i q^{39} +4.12311i q^{41} +(-0.921666 - 5.43623i) q^{42} -5.59587i q^{43} +(-1.62132 + 5.35584i) q^{44} +(-5.53553 - 0.819496i) q^{46} -6.25206 q^{47} +(-4.90486 - 3.26918i) q^{48} +(5.65685 - 4.12311i) q^{49} -6.07591i q^{51} +(3.37887 - 11.1617i) q^{52} -12.2426 q^{53} +(-1.16843 + 7.89250i) q^{54} +(0.940448 - 7.42399i) q^{56} +8.31371 q^{57} +(0.0502525 - 0.339446i) q^{58} -2.94725 q^{59} +11.6619i q^{61} +(0.431615 - 2.91548i) q^{62} +(-2.08402 + 0.678892i) q^{63} +(-5.08579 - 6.17534i) q^{64} +(-5.76809 - 0.853923i) q^{66} +7.43370i q^{67} +(2.38922 - 7.89250i) q^{68} -5.83095i q^{69} +7.23486i q^{71} +(-1.00000 + 2.11904i) q^{72} +12.3693i q^{73} +(1.29289 - 8.73324i) q^{74} +(10.7994 + 3.26918i) q^{76} +(-2.29289 - 7.03858i) q^{77} +(12.0208 + 1.77959i) q^{78} +7.91375i q^{79} -5.82843 q^{81} +(-5.76809 - 0.853923i) q^{82} -1.47363 q^{83} +(7.79598 - 0.163501i) q^{84} +(7.82843 + 1.15894i) q^{86} +0.357562 q^{87} +(-7.15685 - 3.37740i) q^{88} -12.3693i q^{89} +(4.77844 + 14.6686i) q^{91} +(2.29289 - 7.57430i) q^{92} +3.07107 q^{93} +(1.29484 - 8.74643i) q^{94} +(5.58931 - 6.18466i) q^{96} +8.24621i q^{97} +(4.59651 + 8.76767i) q^{98} +2.31788i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} + 4 q^{8} + 16 q^{9} + 12 q^{14} + 4 q^{16} + 24 q^{18} - 24 q^{21} + 20 q^{22} + 16 q^{28} + 32 q^{29} - 36 q^{32} + 24 q^{36} - 16 q^{37} - 8 q^{42} + 4 q^{44} - 16 q^{46} - 64 q^{53}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.207107 + 1.39897i −0.146447 + 0.989219i
\(3\) −1.47363 −0.850798 −0.425399 0.905006i \(-0.639866\pi\)
−0.425399 + 0.905006i \(0.639866\pi\)
\(4\) −1.91421 0.579471i −0.957107 0.289735i
\(5\) 0 0
\(6\) 0.305198 2.06155i 0.124597 0.841625i
\(7\) 2.51564 0.819496i 0.950821 0.309740i
\(8\) 1.20711 2.55791i 0.426777 0.904357i
\(9\) −0.828427 −0.276142
\(10\) 0 0
\(11\) 2.79793i 0.843608i −0.906687 0.421804i \(-0.861397\pi\)
0.906687 0.421804i \(-0.138603\pi\)
\(12\) 2.82083 + 0.853923i 0.814305 + 0.246506i
\(13\) 5.83095i 1.61722i 0.588348 + 0.808608i \(0.299778\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(14\) 0.625441 + 3.68901i 0.167156 + 0.985930i
\(15\) 0 0
\(16\) 3.32843 + 2.21846i 0.832107 + 0.554615i
\(17\) 4.12311i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0.171573 1.15894i 0.0404401 0.273165i
\(19\) −5.64167 −1.29429 −0.647144 0.762368i \(-0.724037\pi\)
−0.647144 + 0.762368i \(0.724037\pi\)
\(20\) 0 0
\(21\) −3.70711 + 1.20763i −0.808957 + 0.263526i
\(22\) 3.91421 + 0.579471i 0.834513 + 0.123544i
\(23\) 3.95687i 0.825065i 0.910943 + 0.412533i \(0.135356\pi\)
−0.910943 + 0.412533i \(0.864644\pi\)
\(24\) −1.77882 + 3.76940i −0.363101 + 0.769425i
\(25\) 0 0
\(26\) −8.15731 1.20763i −1.59978 0.236836i
\(27\) 5.64167 1.08574
\(28\) −5.29034 + 0.110951i −0.999780 + 0.0209678i
\(29\) −0.242641 −0.0450572 −0.0225286 0.999746i \(-0.507172\pi\)
−0.0225286 + 0.999746i \(0.507172\pi\)
\(30\) 0 0
\(31\) −2.08402 −0.374301 −0.187151 0.982331i \(-0.559925\pi\)
−0.187151 + 0.982331i \(0.559925\pi\)
\(32\) −3.79289 + 4.19690i −0.670495 + 0.741914i
\(33\) 4.12311i 0.717741i
\(34\) −5.76809 0.853923i −0.989219 0.146447i
\(35\) 0 0
\(36\) 1.58579 + 0.480049i 0.264298 + 0.0800082i
\(37\) −6.24264 −1.02628 −0.513142 0.858304i \(-0.671519\pi\)
−0.513142 + 0.858304i \(0.671519\pi\)
\(38\) 1.16843 7.89250i 0.189544 1.28033i
\(39\) 8.59264i 1.37592i
\(40\) 0 0
\(41\) 4.12311i 0.643921i 0.946753 + 0.321960i \(0.104342\pi\)
−0.946753 + 0.321960i \(0.895658\pi\)
\(42\) −0.921666 5.43623i −0.142216 0.838828i
\(43\) 5.59587i 0.853361i −0.904402 0.426681i \(-0.859683\pi\)
0.904402 0.426681i \(-0.140317\pi\)
\(44\) −1.62132 + 5.35584i −0.244423 + 0.807423i
\(45\) 0 0
\(46\) −5.53553 0.819496i −0.816170 0.120828i
\(47\) −6.25206 −0.911957 −0.455979 0.889991i \(-0.650711\pi\)
−0.455979 + 0.889991i \(0.650711\pi\)
\(48\) −4.90486 3.26918i −0.707955 0.471866i
\(49\) 5.65685 4.12311i 0.808122 0.589015i
\(50\) 0 0
\(51\) 6.07591i 0.850798i
\(52\) 3.37887 11.1617i 0.468564 1.54785i
\(53\) −12.2426 −1.68166 −0.840828 0.541302i \(-0.817931\pi\)
−0.840828 + 0.541302i \(0.817931\pi\)
\(54\) −1.16843 + 7.89250i −0.159003 + 1.07403i
\(55\) 0 0
\(56\) 0.940448 7.42399i 0.125673 0.992072i
\(57\) 8.31371 1.10118
\(58\) 0.0502525 0.339446i 0.00659848 0.0445715i
\(59\) −2.94725 −0.383699 −0.191850 0.981424i \(-0.561449\pi\)
−0.191850 + 0.981424i \(0.561449\pi\)
\(60\) 0 0
\(61\) 11.6619i 1.49315i 0.665299 + 0.746577i \(0.268304\pi\)
−0.665299 + 0.746577i \(0.731696\pi\)
\(62\) 0.431615 2.91548i 0.0548152 0.370266i
\(63\) −2.08402 + 0.678892i −0.262562 + 0.0855324i
\(64\) −5.08579 6.17534i −0.635723 0.771917i
\(65\) 0 0
\(66\) −5.76809 0.853923i −0.710002 0.105111i
\(67\) 7.43370i 0.908171i 0.890958 + 0.454085i \(0.150034\pi\)
−0.890958 + 0.454085i \(0.849966\pi\)
\(68\) 2.38922 7.89250i 0.289735 0.957107i
\(69\) 5.83095i 0.701964i
\(70\) 0 0
\(71\) 7.23486i 0.858619i 0.903157 + 0.429310i \(0.141243\pi\)
−0.903157 + 0.429310i \(0.858757\pi\)
\(72\) −1.00000 + 2.11904i −0.117851 + 0.249731i
\(73\) 12.3693i 1.44772i 0.689947 + 0.723860i \(0.257634\pi\)
−0.689947 + 0.723860i \(0.742366\pi\)
\(74\) 1.29289 8.73324i 0.150296 1.01522i
\(75\) 0 0
\(76\) 10.7994 + 3.26918i 1.23877 + 0.375001i
\(77\) −2.29289 7.03858i −0.261299 0.802121i
\(78\) 12.0208 + 1.77959i 1.36109 + 0.201499i
\(79\) 7.91375i 0.890366i 0.895440 + 0.445183i \(0.146861\pi\)
−0.895440 + 0.445183i \(0.853139\pi\)
\(80\) 0 0
\(81\) −5.82843 −0.647603
\(82\) −5.76809 0.853923i −0.636979 0.0943000i
\(83\) −1.47363 −0.161751 −0.0808757 0.996724i \(-0.525772\pi\)
−0.0808757 + 0.996724i \(0.525772\pi\)
\(84\) 7.79598 0.163501i 0.850611 0.0178394i
\(85\) 0 0
\(86\) 7.82843 + 1.15894i 0.844161 + 0.124972i
\(87\) 0.357562 0.0383346
\(88\) −7.15685 3.37740i −0.762923 0.360032i
\(89\) 12.3693i 1.31114i −0.755132 0.655572i \(-0.772427\pi\)
0.755132 0.655572i \(-0.227573\pi\)
\(90\) 0 0
\(91\) 4.77844 + 14.6686i 0.500916 + 1.53768i
\(92\) 2.29289 7.57430i 0.239051 0.789676i
\(93\) 3.07107 0.318455
\(94\) 1.29484 8.74643i 0.133553 0.902125i
\(95\) 0 0
\(96\) 5.58931 6.18466i 0.570456 0.631219i
\(97\) 8.24621i 0.837276i 0.908153 + 0.418638i \(0.137492\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(98\) 4.59651 + 8.76767i 0.464318 + 0.885669i
\(99\) 2.31788i 0.232956i
\(100\) 0 0
\(101\) 2.41526i 0.240327i −0.992754 0.120164i \(-0.961658\pi\)
0.992754 0.120164i \(-0.0383419\pi\)
\(102\) 8.50000 + 1.25836i 0.841625 + 0.124597i
\(103\) 7.11529 0.701091 0.350545 0.936546i \(-0.385996\pi\)
0.350545 + 0.936546i \(0.385996\pi\)
\(104\) 14.9150 + 7.03858i 1.46254 + 0.690190i
\(105\) 0 0
\(106\) 2.53553 17.1270i 0.246273 1.66353i
\(107\) 13.0296i 1.25962i −0.776751 0.629808i \(-0.783134\pi\)
0.776751 0.629808i \(-0.216866\pi\)
\(108\) −10.7994 3.26918i −1.03917 0.314577i
\(109\) 2.82843 0.270914 0.135457 0.990783i \(-0.456750\pi\)
0.135457 + 0.990783i \(0.456750\pi\)
\(110\) 0 0
\(111\) 9.19932 0.873160
\(112\) 10.1911 + 2.85321i 0.962971 + 0.269603i
\(113\) 18.3137 1.72281 0.861404 0.507920i \(-0.169585\pi\)
0.861404 + 0.507920i \(0.169585\pi\)
\(114\) −1.72183 + 11.6306i −0.161264 + 1.08931i
\(115\) 0 0
\(116\) 0.464466 + 0.140603i 0.0431246 + 0.0130547i
\(117\) 4.83052i 0.446582i
\(118\) 0.610396 4.12311i 0.0561915 0.379563i
\(119\) 3.37887 + 10.3722i 0.309740 + 0.950821i
\(120\) 0 0
\(121\) 3.17157 0.288325
\(122\) −16.3146 2.41526i −1.47706 0.218667i
\(123\) 6.07591i 0.547847i
\(124\) 3.98926 + 1.20763i 0.358246 + 0.108448i
\(125\) 0 0
\(126\) −0.518132 3.05608i −0.0461589 0.272257i
\(127\) 5.59587i 0.496553i 0.968689 + 0.248276i \(0.0798641\pi\)
−0.968689 + 0.248276i \(0.920136\pi\)
\(128\) 9.69239 5.83589i 0.856694 0.515825i
\(129\) 8.24621i 0.726038i
\(130\) 0 0
\(131\) −13.0098 −1.13667 −0.568336 0.822797i \(-0.692412\pi\)
−0.568336 + 0.822797i \(0.692412\pi\)
\(132\) 2.38922 7.89250i 0.207955 0.686954i
\(133\) −14.1924 + 4.62332i −1.23064 + 0.400893i
\(134\) −10.3995 1.53957i −0.898380 0.132999i
\(135\) 0 0
\(136\) 10.5465 + 4.97703i 0.904357 + 0.426777i
\(137\) −3.48528 −0.297768 −0.148884 0.988855i \(-0.547568\pi\)
−0.148884 + 0.988855i \(0.547568\pi\)
\(138\) 8.15731 + 1.20763i 0.694396 + 0.102800i
\(139\) 2.69442 0.228537 0.114269 0.993450i \(-0.463548\pi\)
0.114269 + 0.993450i \(0.463548\pi\)
\(140\) 0 0
\(141\) 9.21320 0.775892
\(142\) −10.1213 1.49839i −0.849362 0.125742i
\(143\) 16.3146 1.36430
\(144\) −2.75736 1.83783i −0.229780 0.153153i
\(145\) 0 0
\(146\) −17.3043 2.56177i −1.43211 0.212014i
\(147\) −8.33609 + 6.07591i −0.687549 + 0.501133i
\(148\) 11.9497 + 3.61743i 0.982263 + 0.297351i
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 1.63899i 0.133379i −0.997774 0.0666896i \(-0.978756\pi\)
0.997774 0.0666896i \(-0.0212437\pi\)
\(152\) −6.81010 + 14.4309i −0.552372 + 1.17050i
\(153\) 3.41569i 0.276142i
\(154\) 10.3216 1.74994i 0.831739 0.141014i
\(155\) 0 0
\(156\) −4.97918 + 16.4481i −0.398654 + 1.31691i
\(157\) 22.3234i 1.78160i 0.454396 + 0.890800i \(0.349855\pi\)
−0.454396 + 0.890800i \(0.650145\pi\)
\(158\) −11.0711 1.63899i −0.880767 0.130391i
\(159\) 18.0411 1.43075
\(160\) 0 0
\(161\) 3.24264 + 9.95406i 0.255556 + 0.784490i
\(162\) 1.20711 8.15377i 0.0948393 0.640621i
\(163\) 21.9034i 1.71561i 0.513977 + 0.857804i \(0.328172\pi\)
−0.513977 + 0.857804i \(0.671828\pi\)
\(164\) 2.38922 7.89250i 0.186567 0.616301i
\(165\) 0 0
\(166\) 0.305198 2.06155i 0.0236880 0.160008i
\(167\) −17.1778 −1.32926 −0.664631 0.747172i \(-0.731411\pi\)
−0.664631 + 0.747172i \(0.731411\pi\)
\(168\) −1.38587 + 10.9402i −0.106922 + 0.844053i
\(169\) −21.0000 −1.61538
\(170\) 0 0
\(171\) 4.67371 0.357408
\(172\) −3.24264 + 10.7117i −0.247249 + 0.816758i
\(173\) 14.0772i 1.07027i −0.844768 0.535133i \(-0.820261\pi\)
0.844768 0.535133i \(-0.179739\pi\)
\(174\) −0.0740534 + 0.500217i −0.00561398 + 0.0379213i
\(175\) 0 0
\(176\) 6.20711 9.31271i 0.467878 0.701972i
\(177\) 4.34315 0.326451
\(178\) 17.3043 + 2.56177i 1.29701 + 0.192013i
\(179\) 10.7117i 0.800629i −0.916378 0.400314i \(-0.868901\pi\)
0.916378 0.400314i \(-0.131099\pi\)
\(180\) 0 0
\(181\) 19.9081i 1.47976i −0.672740 0.739879i \(-0.734883\pi\)
0.672740 0.739879i \(-0.265117\pi\)
\(182\) −21.5105 + 3.64692i −1.59446 + 0.270328i
\(183\) 17.1853i 1.27037i
\(184\) 10.1213 + 4.77637i 0.746154 + 0.352119i
\(185\) 0 0
\(186\) −0.636039 + 4.29632i −0.0466366 + 0.315021i
\(187\) 11.5362 0.843608
\(188\) 11.9678 + 3.62289i 0.872841 + 0.264226i
\(189\) 14.1924 4.62332i 1.03234 0.336297i
\(190\) 0 0
\(191\) 24.7013i 1.78733i −0.448738 0.893663i \(-0.648126\pi\)
0.448738 0.893663i \(-0.351874\pi\)
\(192\) 7.49455 + 9.10013i 0.540872 + 0.656746i
\(193\) −8.31371 −0.598434 −0.299217 0.954185i \(-0.596725\pi\)
−0.299217 + 0.954185i \(0.596725\pi\)
\(194\) −11.5362 1.70785i −0.828249 0.122616i
\(195\) 0 0
\(196\) −13.2176 + 4.61452i −0.944118 + 0.329609i
\(197\) −2.48528 −0.177069 −0.0885345 0.996073i \(-0.528218\pi\)
−0.0885345 + 0.996073i \(0.528218\pi\)
\(198\) −3.24264 0.480049i −0.230444 0.0341156i
\(199\) 17.5354 1.24305 0.621526 0.783394i \(-0.286513\pi\)
0.621526 + 0.783394i \(0.286513\pi\)
\(200\) 0 0
\(201\) 10.9545i 0.772670i
\(202\) 3.37887 + 0.500217i 0.237736 + 0.0351951i
\(203\) −0.610396 + 0.198843i −0.0428414 + 0.0139560i
\(204\) −3.52082 + 11.6306i −0.246506 + 0.814305i
\(205\) 0 0
\(206\) −1.47363 + 9.95406i −0.102672 + 0.693532i
\(207\) 3.27798i 0.227835i
\(208\) −12.9357 + 19.4079i −0.896932 + 1.34570i
\(209\) 15.7850i 1.09187i
\(210\) 0 0
\(211\) 1.44015i 0.0991439i 0.998771 + 0.0495719i \(0.0157857\pi\)
−0.998771 + 0.0495719i \(0.984214\pi\)
\(212\) 23.4350 + 7.09425i 1.60952 + 0.487235i
\(213\) 10.6615i 0.730512i
\(214\) 18.2279 + 2.69851i 1.24604 + 0.184466i
\(215\) 0 0
\(216\) 6.81010 14.4309i 0.463368 0.981896i
\(217\) −5.24264 + 1.70785i −0.355894 + 0.115936i
\(218\) −0.585786 + 3.95687i −0.0396745 + 0.267993i
\(219\) 18.2277i 1.23172i
\(220\) 0 0
\(221\) −24.0416 −1.61722
\(222\) −1.90524 + 12.8695i −0.127871 + 0.863747i
\(223\) 0.863230 0.0578062 0.0289031 0.999582i \(-0.490799\pi\)
0.0289031 + 0.999582i \(0.490799\pi\)
\(224\) −6.10220 + 13.6661i −0.407720 + 0.913107i
\(225\) 0 0
\(226\) −3.79289 + 25.6203i −0.252300 + 1.70423i
\(227\) 7.11529 0.472259 0.236129 0.971722i \(-0.424121\pi\)
0.236129 + 0.971722i \(0.424121\pi\)
\(228\) −15.9142 4.81755i −1.05394 0.319050i
\(229\) 14.0772i 0.930245i 0.885246 + 0.465123i \(0.153990\pi\)
−0.885246 + 0.465123i \(0.846010\pi\)
\(230\) 0 0
\(231\) 3.37887 + 10.3722i 0.222313 + 0.682443i
\(232\) −0.292893 + 0.620653i −0.0192294 + 0.0407478i
\(233\) 15.7990 1.03503 0.517513 0.855675i \(-0.326858\pi\)
0.517513 + 0.855675i \(0.326858\pi\)
\(234\) 6.75773 + 1.00043i 0.441767 + 0.0654004i
\(235\) 0 0
\(236\) 5.64167 + 1.70785i 0.367241 + 0.111171i
\(237\) 11.6619i 0.757522i
\(238\) −15.2102 + 2.57876i −0.985930 + 0.167156i
\(239\) 16.7876i 1.08590i 0.839765 + 0.542950i \(0.182693\pi\)
−0.839765 + 0.542950i \(0.817307\pi\)
\(240\) 0 0
\(241\) 15.7850i 1.01680i −0.861120 0.508401i \(-0.830237\pi\)
0.861120 0.508401i \(-0.169763\pi\)
\(242\) −0.656854 + 4.43692i −0.0422242 + 0.285216i
\(243\) −8.33609 −0.534760
\(244\) 6.75773 22.3234i 0.432620 1.42911i
\(245\) 0 0
\(246\) 8.50000 + 1.25836i 0.541940 + 0.0802303i
\(247\) 32.8963i 2.09314i
\(248\) −2.51564 + 5.33074i −0.159743 + 0.338502i
\(249\) 2.17157 0.137618
\(250\) 0 0
\(251\) −13.9778 −0.882268 −0.441134 0.897441i \(-0.645424\pi\)
−0.441134 + 0.897441i \(0.645424\pi\)
\(252\) 4.38266 0.0919152i 0.276082 0.00579011i
\(253\) 11.0711 0.696032
\(254\) −7.82843 1.15894i −0.491199 0.0727185i
\(255\) 0 0
\(256\) 6.15685 + 14.7680i 0.384803 + 0.922999i
\(257\) 23.3238i 1.45490i −0.686161 0.727450i \(-0.740706\pi\)
0.686161 0.727450i \(-0.259294\pi\)
\(258\) −11.5362 1.70785i −0.718211 0.106326i
\(259\) −15.7042 + 5.11582i −0.975812 + 0.317881i
\(260\) 0 0
\(261\) 0.201010 0.0124422
\(262\) 2.69442 18.2003i 0.166462 1.12442i
\(263\) 27.9793i 1.72528i 0.505819 + 0.862640i \(0.331190\pi\)
−0.505819 + 0.862640i \(0.668810\pi\)
\(264\) 10.5465 + 4.97703i 0.649094 + 0.306315i
\(265\) 0 0
\(266\) −3.52853 20.8122i −0.216348 1.27608i
\(267\) 18.2277i 1.11552i
\(268\) 4.30761 14.2297i 0.263129 0.869217i
\(269\) 2.41526i 0.147261i 0.997286 + 0.0736305i \(0.0234585\pi\)
−0.997286 + 0.0736305i \(0.976541\pi\)
\(270\) 0 0
\(271\) 27.2404 1.65474 0.827368 0.561660i \(-0.189837\pi\)
0.827368 + 0.561660i \(0.189837\pi\)
\(272\) −9.14695 + 13.7235i −0.554615 + 0.832107i
\(273\) −7.04163 21.6160i −0.426179 1.30826i
\(274\) 0.721825 4.87579i 0.0436071 0.294557i
\(275\) 0 0
\(276\) −3.37887 + 11.1617i −0.203384 + 0.671855i
\(277\) −6.10051 −0.366544 −0.183272 0.983062i \(-0.558669\pi\)
−0.183272 + 0.983062i \(0.558669\pi\)
\(278\) −0.558032 + 3.76940i −0.0334685 + 0.226074i
\(279\) 1.72646 0.103360
\(280\) 0 0
\(281\) 32.9706 1.96686 0.983429 0.181291i \(-0.0580277\pi\)
0.983429 + 0.181291i \(0.0580277\pi\)
\(282\) −1.90812 + 12.8890i −0.113627 + 0.767526i
\(283\) −31.6613 −1.88207 −0.941033 0.338314i \(-0.890144\pi\)
−0.941033 + 0.338314i \(0.890144\pi\)
\(284\) 4.19239 13.8491i 0.248772 0.821791i
\(285\) 0 0
\(286\) −3.37887 + 22.8236i −0.199797 + 1.34959i
\(287\) 3.37887 + 10.3722i 0.199448 + 0.612254i
\(288\) 3.14214 3.47682i 0.185152 0.204874i
\(289\) 0 0
\(290\) 0 0
\(291\) 12.1518i 0.712353i
\(292\) 7.16766 23.6775i 0.419455 1.38562i
\(293\) 16.4924i 0.963498i −0.876309 0.481749i \(-0.840002\pi\)
0.876309 0.481749i \(-0.159998\pi\)
\(294\) −6.77354 12.9203i −0.395041 0.753525i
\(295\) 0 0
\(296\) −7.53553 + 15.9681i −0.437994 + 0.928127i
\(297\) 15.7850i 0.915939i
\(298\) −0.414214 + 2.79793i −0.0239947 + 0.162080i
\(299\) −23.0723 −1.33431
\(300\) 0 0
\(301\) −4.58579 14.0772i −0.264320 0.811394i
\(302\) 2.29289 + 0.339446i 0.131941 + 0.0195329i
\(303\) 3.55919i 0.204470i
\(304\) −18.7779 12.5158i −1.07699 0.717832i
\(305\) 0 0
\(306\) 4.77844 + 0.707413i 0.273165 + 0.0404401i
\(307\) 18.6515 1.06450 0.532248 0.846589i \(-0.321348\pi\)
0.532248 + 0.846589i \(0.321348\pi\)
\(308\) 0.310435 + 14.8020i 0.0176887 + 0.843423i
\(309\) −10.4853 −0.596487
\(310\) 0 0
\(311\) −11.7890 −0.668493 −0.334247 0.942486i \(-0.608482\pi\)
−0.334247 + 0.942486i \(0.608482\pi\)
\(312\) −21.9792 10.3722i −1.24433 0.587212i
\(313\) 4.83052i 0.273037i −0.990638 0.136519i \(-0.956409\pi\)
0.990638 0.136519i \(-0.0435913\pi\)
\(314\) −31.2296 4.62332i −1.76239 0.260909i
\(315\) 0 0
\(316\) 4.58579 15.1486i 0.257971 0.852176i
\(317\) 25.6569 1.44103 0.720516 0.693438i \(-0.243905\pi\)
0.720516 + 0.693438i \(0.243905\pi\)
\(318\) −3.73643 + 25.2389i −0.209528 + 1.41532i
\(319\) 0.678892i 0.0380107i
\(320\) 0 0
\(321\) 19.2007i 1.07168i
\(322\) −14.5970 + 2.47479i −0.813457 + 0.137915i
\(323\) 23.2612i 1.29429i
\(324\) 11.1569 + 3.37740i 0.619825 + 0.187634i
\(325\) 0 0
\(326\) −30.6421 4.53635i −1.69711 0.251245i
\(327\) −4.16804 −0.230493
\(328\) 10.5465 + 4.97703i 0.582334 + 0.274810i
\(329\) −15.7279 + 5.12354i −0.867108 + 0.282470i
\(330\) 0 0
\(331\) 28.8571i 1.58613i −0.609139 0.793064i \(-0.708485\pi\)
0.609139 0.793064i \(-0.291515\pi\)
\(332\) 2.82083 + 0.853923i 0.154813 + 0.0468651i
\(333\) 5.17157 0.283400
\(334\) 3.55765 24.0312i 0.194666 1.31493i
\(335\) 0 0
\(336\) −15.0179 4.20457i −0.819294 0.229378i
\(337\) 14.7990 0.806152 0.403076 0.915166i \(-0.367941\pi\)
0.403076 + 0.915166i \(0.367941\pi\)
\(338\) 4.34924 29.3783i 0.236568 1.59797i
\(339\) −26.9876 −1.46576
\(340\) 0 0
\(341\) 5.83095i 0.315764i
\(342\) −0.967957 + 6.53836i −0.0523411 + 0.353554i
\(343\) 10.8517 15.0080i 0.585938 0.810356i
\(344\) −14.3137 6.75481i −0.771743 0.364195i
\(345\) 0 0
\(346\) 19.6935 + 2.91548i 1.05873 + 0.156737i
\(347\) 19.9832i 1.07276i −0.843978 0.536378i \(-0.819792\pi\)
0.843978 0.536378i \(-0.180208\pi\)
\(348\) −0.684449 0.207196i −0.0366903 0.0111069i
\(349\) 14.0772i 0.753533i 0.926308 + 0.376767i \(0.122964\pi\)
−0.926308 + 0.376767i \(0.877036\pi\)
\(350\) 0 0
\(351\) 32.8963i 1.75587i
\(352\) 11.7426 + 10.6123i 0.625885 + 0.565635i
\(353\) 11.6619i 0.620701i −0.950622 0.310350i \(-0.899554\pi\)
0.950622 0.310350i \(-0.100446\pi\)
\(354\) −0.899495 + 6.07591i −0.0478076 + 0.322931i
\(355\) 0 0
\(356\) −7.16766 + 23.6775i −0.379885 + 1.25491i
\(357\) −4.97918 15.2848i −0.263526 0.808957i
\(358\) 14.9853 + 2.21846i 0.791997 + 0.117249i
\(359\) 20.4633i 1.08001i −0.841662 0.540005i \(-0.818422\pi\)
0.841662 0.540005i \(-0.181578\pi\)
\(360\) 0 0
\(361\) 12.8284 0.675180
\(362\) 27.8508 + 4.12311i 1.46380 + 0.216706i
\(363\) −4.67371 −0.245306
\(364\) −0.646952 30.8477i −0.0339095 1.61686i
\(365\) 0 0
\(366\) 24.0416 + 3.55919i 1.25668 + 0.186042i
\(367\) −15.9570 −0.832951 −0.416476 0.909147i \(-0.636735\pi\)
−0.416476 + 0.909147i \(0.636735\pi\)
\(368\) −8.77817 + 13.1702i −0.457594 + 0.686542i
\(369\) 3.41569i 0.177814i
\(370\) 0 0
\(371\) −30.7980 + 10.0328i −1.59895 + 0.520876i
\(372\) −5.87868 1.77959i −0.304795 0.0922677i
\(373\) 13.4142 0.694562 0.347281 0.937761i \(-0.387105\pi\)
0.347281 + 0.937761i \(0.387105\pi\)
\(374\) −2.38922 + 16.1387i −0.123544 + 0.834513i
\(375\) 0 0
\(376\) −7.54691 + 15.9922i −0.389202 + 0.824735i
\(377\) 1.41483i 0.0728673i
\(378\) 3.52853 + 20.8122i 0.181488 + 1.07046i
\(379\) 4.15572i 0.213465i 0.994288 + 0.106732i \(0.0340388\pi\)
−0.994288 + 0.106732i \(0.965961\pi\)
\(380\) 0 0
\(381\) 8.24621i 0.422466i
\(382\) 34.5563 + 5.11582i 1.76806 + 0.261748i
\(383\) −18.3986 −0.940126 −0.470063 0.882633i \(-0.655769\pi\)
−0.470063 + 0.882633i \(0.655769\pi\)
\(384\) −14.2830 + 8.59992i −0.728874 + 0.438863i
\(385\) 0 0
\(386\) 1.72183 11.6306i 0.0876386 0.591982i
\(387\) 4.63577i 0.235649i
\(388\) 4.77844 15.7850i 0.242588 0.801362i
\(389\) 15.5563 0.788738 0.394369 0.918952i \(-0.370963\pi\)
0.394369 + 0.918952i \(0.370963\pi\)
\(390\) 0 0
\(391\) −16.3146 −0.825065
\(392\) −3.71810 19.4467i −0.187792 0.982209i
\(393\) 19.1716 0.967078
\(394\) 0.514719 3.47682i 0.0259311 0.175160i
\(395\) 0 0
\(396\) 1.34315 4.43692i 0.0674956 0.222964i
\(397\) 18.9077i 0.948949i 0.880269 + 0.474475i \(0.157362\pi\)
−0.880269 + 0.474475i \(0.842638\pi\)
\(398\) −3.63170 + 24.5314i −0.182041 + 1.22965i
\(399\) 20.9143 6.81305i 1.04702 0.341079i
\(400\) 0 0
\(401\) −22.4558 −1.12139 −0.560696 0.828022i \(-0.689466\pi\)
−0.560696 + 0.828022i \(0.689466\pi\)
\(402\) 15.3250 + 2.26875i 0.764340 + 0.113155i
\(403\) 12.1518i 0.605326i
\(404\) −1.39957 + 4.62332i −0.0696313 + 0.230019i
\(405\) 0 0
\(406\) −0.151757 0.895105i −0.00753160 0.0444233i
\(407\) 17.4665i 0.865782i
\(408\) −15.5416 7.33428i −0.769425 0.363101i
\(409\) 15.7850i 0.780518i 0.920705 + 0.390259i \(0.127615\pi\)
−0.920705 + 0.390259i \(0.872385\pi\)
\(410\) 0 0
\(411\) 5.13600 0.253340
\(412\) −13.6202 4.12311i −0.671019 0.203131i
\(413\) −7.41421 + 2.41526i −0.364830 + 0.118847i
\(414\) 4.58579 + 0.678892i 0.225379 + 0.0333657i
\(415\) 0 0
\(416\) −24.4719 22.1162i −1.19983 1.08433i
\(417\) −3.97056 −0.194439
\(418\) −22.0827 3.26918i −1.08010 0.159901i
\(419\) −24.5460 −1.19915 −0.599575 0.800319i \(-0.704664\pi\)
−0.599575 + 0.800319i \(0.704664\pi\)
\(420\) 0 0
\(421\) −0.686292 −0.0334478 −0.0167239 0.999860i \(-0.505324\pi\)
−0.0167239 + 0.999860i \(0.505324\pi\)
\(422\) −2.01472 0.298264i −0.0980750 0.0145193i
\(423\) 5.17938 0.251830
\(424\) −14.7782 + 31.3155i −0.717692 + 1.52082i
\(425\) 0 0
\(426\) 14.9150 + 2.20806i 0.722636 + 0.106981i
\(427\) 9.55688 + 29.3371i 0.462490 + 1.41972i
\(428\) −7.55025 + 24.9414i −0.364955 + 1.20559i
\(429\) −24.0416 −1.16074
\(430\) 0 0
\(431\) 8.19496i 0.394737i 0.980329 + 0.197369i \(0.0632396\pi\)
−0.980329 + 0.197369i \(0.936760\pi\)
\(432\) 18.7779 + 12.5158i 0.903451 + 0.602168i
\(433\) 4.12311i 0.198144i −0.995080 0.0990719i \(-0.968413\pi\)
0.995080 0.0990719i \(-0.0315874\pi\)
\(434\) −1.30343 7.68798i −0.0625668 0.369035i
\(435\) 0 0
\(436\) −5.41421 1.63899i −0.259294 0.0784934i
\(437\) 22.3234i 1.06787i
\(438\) 25.5000 + 3.77509i 1.21844 + 0.180381i
\(439\) 2.94725 0.140665 0.0703323 0.997524i \(-0.477594\pi\)
0.0703323 + 0.997524i \(0.477594\pi\)
\(440\) 0 0
\(441\) −4.68629 + 3.41569i −0.223157 + 0.162652i
\(442\) 4.97918 33.6334i 0.236836 1.59978i
\(443\) 1.83783i 0.0873181i −0.999046 0.0436591i \(-0.986098\pi\)
0.999046 0.0436591i \(-0.0139015\pi\)
\(444\) −17.6095 5.33074i −0.835708 0.252986i
\(445\) 0 0
\(446\) −0.178781 + 1.20763i −0.00846552 + 0.0571829i
\(447\) −2.94725 −0.139400
\(448\) −17.8547 11.3671i −0.843553 0.537046i
\(449\) 10.6569 0.502928 0.251464 0.967867i \(-0.419088\pi\)
0.251464 + 0.967867i \(0.419088\pi\)
\(450\) 0 0
\(451\) 11.5362 0.543217
\(452\) −35.0563 10.6123i −1.64891 0.499159i
\(453\) 2.41526i 0.113479i
\(454\) −1.47363 + 9.95406i −0.0691607 + 0.467167i
\(455\) 0 0
\(456\) 10.0355 21.2657i 0.469957 0.995858i
\(457\) −29.4853 −1.37926 −0.689632 0.724160i \(-0.742228\pi\)
−0.689632 + 0.724160i \(0.742228\pi\)
\(458\) −19.6935 2.91548i −0.920216 0.136231i
\(459\) 23.2612i 1.08574i
\(460\) 0 0
\(461\) 2.41526i 0.112490i −0.998417 0.0562449i \(-0.982087\pi\)
0.998417 0.0562449i \(-0.0179128\pi\)
\(462\) −15.2102 + 2.57876i −0.707642 + 0.119975i
\(463\) 1.35778i 0.0631016i 0.999502 + 0.0315508i \(0.0100446\pi\)
−0.999502 + 0.0315508i \(0.989955\pi\)
\(464\) −0.807612 0.538289i −0.0374924 0.0249894i
\(465\) 0 0
\(466\) −3.27208 + 22.1023i −0.151576 + 1.02387i
\(467\) −7.62096 −0.352656 −0.176328 0.984331i \(-0.556422\pi\)
−0.176328 + 0.984331i \(0.556422\pi\)
\(468\) −2.79914 + 9.24664i −0.129391 + 0.427426i
\(469\) 6.09188 + 18.7005i 0.281297 + 0.863508i
\(470\) 0 0
\(471\) 32.8963i 1.51578i
\(472\) −3.55765 + 7.53880i −0.163754 + 0.347001i
\(473\) −15.6569 −0.719903
\(474\) 16.3146 + 2.41526i 0.749355 + 0.110937i
\(475\) 0 0
\(476\) −0.457464 21.8126i −0.0209678 0.999780i
\(477\) 10.1421 0.464376
\(478\) −23.4853 3.47682i −1.07419 0.159026i
\(479\) 8.84175 0.403990 0.201995 0.979387i \(-0.435258\pi\)
0.201995 + 0.979387i \(0.435258\pi\)
\(480\) 0 0
\(481\) 36.4005i 1.65972i
\(482\) 22.0827 + 3.26918i 1.00584 + 0.148907i
\(483\) −4.77844 14.6686i −0.217426 0.667442i
\(484\) −6.07107 1.83783i −0.275958 0.0835379i
\(485\) 0 0
\(486\) 1.72646 11.6619i 0.0783138 0.528995i
\(487\) 3.67567i 0.166560i 0.996526 + 0.0832802i \(0.0265397\pi\)
−0.996526 + 0.0832802i \(0.973460\pi\)
\(488\) 29.8301 + 14.0772i 1.35034 + 0.637243i
\(489\) 32.2774i 1.45964i
\(490\) 0 0
\(491\) 29.3371i 1.32397i 0.749519 + 0.661983i \(0.230285\pi\)
−0.749519 + 0.661983i \(0.769715\pi\)
\(492\) −3.52082 + 11.6306i −0.158731 + 0.524348i
\(493\) 1.00043i 0.0450572i
\(494\) 46.0208 + 6.81305i 2.07057 + 0.306533i
\(495\) 0 0
\(496\) −6.93651 4.62332i −0.311459 0.207593i
\(497\) 5.92893 + 18.2003i 0.265949 + 0.816394i
\(498\) −0.449747 + 3.03796i −0.0201537 + 0.136134i
\(499\) 16.7876i 0.751516i −0.926718 0.375758i \(-0.877382\pi\)
0.926718 0.375758i \(-0.122618\pi\)
\(500\) 0 0
\(501\) 25.3137 1.13093
\(502\) 2.89489 19.5544i 0.129205 0.872756i
\(503\) 31.0509 1.38449 0.692245 0.721663i \(-0.256622\pi\)
0.692245 + 0.721663i \(0.256622\pi\)
\(504\) −0.779092 + 6.15023i −0.0347035 + 0.273953i
\(505\) 0 0
\(506\) −2.29289 + 15.4881i −0.101932 + 0.688528i
\(507\) 30.9461 1.37437
\(508\) 3.24264 10.7117i 0.143869 0.475254i
\(509\) 8.24621i 0.365507i 0.983159 + 0.182753i \(0.0585010\pi\)
−0.983159 + 0.182753i \(0.941499\pi\)
\(510\) 0 0
\(511\) 10.1366 + 31.1167i 0.448417 + 1.37652i
\(512\) −21.9350 + 5.55468i −0.969400 + 0.245485i
\(513\) −31.8284 −1.40526
\(514\) 32.6292 + 4.83052i 1.43921 + 0.213065i
\(515\) 0 0
\(516\) 4.77844 15.7850i 0.210359 0.694896i
\(517\) 17.4929i 0.769335i
\(518\) −3.90440 23.0292i −0.171550 1.01184i
\(519\) 20.7445i 0.910581i
\(520\) 0 0
\(521\) 28.8617i 1.26446i 0.774782 + 0.632228i \(0.217859\pi\)
−0.774782 + 0.632228i \(0.782141\pi\)
\(522\) −0.0416306 + 0.281206i −0.00182212 + 0.0123081i
\(523\) −4.42088 −0.193311 −0.0966557 0.995318i \(-0.530815\pi\)
−0.0966557 + 0.995318i \(0.530815\pi\)
\(524\) 24.9035 + 7.53880i 1.08792 + 0.329334i
\(525\) 0 0
\(526\) −39.1421 5.79471i −1.70668 0.252661i
\(527\) 8.59264i 0.374301i
\(528\) −9.14695 + 13.7235i −0.398070 + 0.597237i
\(529\) 7.34315 0.319267
\(530\) 0 0
\(531\) 2.44158 0.105956
\(532\) 29.8463 0.625951i 1.29400 0.0271384i
\(533\) −24.0416 −1.04136
\(534\) −25.5000 3.77509i −1.10349 0.163364i
\(535\) 0 0
\(536\) 19.0147 + 8.97327i 0.821311 + 0.387586i
\(537\) 15.7850i 0.681173i
\(538\) −3.37887 0.500217i −0.145673 0.0215659i
\(539\) −11.5362 15.8275i −0.496898 0.681739i
\(540\) 0 0
\(541\) 10.2426 0.440366 0.220183 0.975459i \(-0.429335\pi\)
0.220183 + 0.975459i \(0.429335\pi\)
\(542\) −5.64167 + 38.1084i −0.242330 + 1.63690i
\(543\) 29.3371i 1.25898i
\(544\) −17.3043 15.6385i −0.741914 0.670495i
\(545\) 0 0
\(546\) 31.6984 5.37419i 1.35657 0.229994i
\(547\) 13.0296i 0.557104i −0.960421 0.278552i \(-0.910146\pi\)
0.960421 0.278552i \(-0.0898545\pi\)
\(548\) 6.67157 + 2.01962i 0.284995 + 0.0862738i
\(549\) 9.66104i 0.412323i
\(550\) 0 0
\(551\) 1.36890 0.0583170
\(552\) −14.9150 7.03858i −0.634826 0.299582i
\(553\) 6.48528 + 19.9081i 0.275782 + 0.846579i
\(554\) 1.26346 8.53440i 0.0536791 0.362592i
\(555\) 0 0
\(556\) −5.15769 1.56134i −0.218735 0.0662154i
\(557\) 10.6863 0.452793 0.226396 0.974035i \(-0.427306\pi\)
0.226396 + 0.974035i \(0.427306\pi\)
\(558\) −0.357562 + 2.41526i −0.0151368 + 0.102246i
\(559\) 32.6292 1.38007
\(560\) 0 0
\(561\) −17.0000 −0.717741
\(562\) −6.82843 + 46.1247i −0.288040 + 1.94565i
\(563\) 13.7249 0.578436 0.289218 0.957263i \(-0.406605\pi\)
0.289218 + 0.957263i \(0.406605\pi\)
\(564\) −17.6360 5.33878i −0.742611 0.224803i
\(565\) 0 0
\(566\) 6.55726 44.2930i 0.275622 1.86178i
\(567\) −14.6622 + 4.77637i −0.615755 + 0.200589i
\(568\) 18.5061 + 8.73324i 0.776499 + 0.366439i
\(569\) 3.68629 0.154537 0.0772687 0.997010i \(-0.475380\pi\)
0.0772687 + 0.997010i \(0.475380\pi\)
\(570\) 0 0
\(571\) 1.35778i 0.0568215i 0.999596 + 0.0284108i \(0.00904464\pi\)
−0.999596 + 0.0284108i \(0.990955\pi\)
\(572\) −31.2296 9.45384i −1.30578 0.395285i
\(573\) 36.4005i 1.52065i
\(574\) −15.2102 + 2.57876i −0.634861 + 0.107635i
\(575\) 0 0
\(576\) 4.21320 + 5.11582i 0.175550 + 0.213159i
\(577\) 7.53880i 0.313844i 0.987611 + 0.156922i \(0.0501572\pi\)
−0.987611 + 0.156922i \(0.949843\pi\)
\(578\) 0 0
\(579\) 12.2513 0.509146
\(580\) 0 0
\(581\) −3.70711 + 1.20763i −0.153797 + 0.0501009i
\(582\) 17.0000 + 2.51673i 0.704673 + 0.104322i
\(583\) 34.2541i 1.41866i
\(584\) 31.6396 + 14.9311i 1.30925 + 0.617853i
\(585\) 0 0
\(586\) 23.0723 + 3.41569i 0.953110 + 0.141101i
\(587\) −0.967957 −0.0399519 −0.0199759 0.999800i \(-0.506359\pi\)
−0.0199759 + 0.999800i \(0.506359\pi\)
\(588\) 19.4779 6.80008i 0.803254 0.280431i
\(589\) 11.7574 0.484454
\(590\) 0 0
\(591\) 3.66237 0.150650
\(592\) −20.7782 13.8491i −0.853978 0.569193i
\(593\) 24.0312i 0.986844i 0.869790 + 0.493422i \(0.164254\pi\)
−0.869790 + 0.493422i \(0.835746\pi\)
\(594\) 22.0827 + 3.26918i 0.906064 + 0.134136i
\(595\) 0 0
\(596\) −3.82843 1.15894i −0.156818 0.0474721i
\(597\) −25.8406 −1.05759
\(598\) 4.77844 32.2774i 0.195405 1.31992i
\(599\) 20.7445i 0.847596i 0.905757 + 0.423798i \(0.139303\pi\)
−0.905757 + 0.423798i \(0.860697\pi\)
\(600\) 0 0
\(601\) 15.7850i 0.643884i −0.946759 0.321942i \(-0.895664\pi\)
0.946759 0.321942i \(-0.104336\pi\)
\(602\) 20.6432 3.49988i 0.841355 0.142645i
\(603\) 6.15828i 0.250784i
\(604\) −0.949747 + 3.13738i −0.0386447 + 0.127658i
\(605\) 0 0
\(606\) −4.97918 0.737132i −0.202266 0.0299439i
\(607\) 16.6722 0.676703 0.338351 0.941020i \(-0.390131\pi\)
0.338351 + 0.941020i \(0.390131\pi\)
\(608\) 21.3982 23.6775i 0.867814 0.960250i
\(609\) 0.899495 0.293020i 0.0364494 0.0118738i
\(610\) 0 0
\(611\) 36.4555i 1.47483i
\(612\) −1.97929 + 6.53836i −0.0800082 + 0.264298i
\(613\) 17.1127 0.691175 0.345588 0.938386i \(-0.387680\pi\)
0.345588 + 0.938386i \(0.387680\pi\)
\(614\) −3.86285 + 26.0928i −0.155892 + 1.05302i
\(615\) 0 0
\(616\) −20.7718 2.63131i −0.836920 0.106018i
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 2.17157 14.6686i 0.0873535 0.590056i
\(619\) 18.9043 0.759828 0.379914 0.925022i \(-0.375954\pi\)
0.379914 + 0.925022i \(0.375954\pi\)
\(620\) 0 0
\(621\) 22.3234i 0.895806i
\(622\) 2.44158 16.4924i 0.0978986 0.661286i
\(623\) −10.1366 31.1167i −0.406114 1.24666i
\(624\) 19.0624 28.6000i 0.763109 1.14492i
\(625\) 0 0
\(626\) 6.75773 + 1.00043i 0.270093 + 0.0399854i
\(627\) 23.2612i 0.928963i
\(628\) 12.9357 42.7317i 0.516192 1.70518i
\(629\) 25.7391i 1.02628i
\(630\) 0 0
\(631\) 11.8706i 0.472562i −0.971685 0.236281i \(-0.924071\pi\)
0.971685 0.236281i \(-0.0759286\pi\)
\(632\) 20.2426 + 9.55274i 0.805209 + 0.379988i
\(633\) 2.12224i 0.0843514i
\(634\) −5.31371 + 35.8931i −0.211034 + 1.42550i
\(635\) 0 0
\(636\) −34.5345 10.4543i −1.36938 0.414539i
\(637\) 24.0416 + 32.9848i 0.952564 + 1.30691i
\(638\) −0.949747 0.140603i −0.0376009 0.00556653i
\(639\) 5.99355i 0.237101i
\(640\) 0 0
\(641\) −21.1716 −0.836227 −0.418113 0.908395i \(-0.637309\pi\)
−0.418113 + 0.908395i \(0.637309\pi\)
\(642\) −26.8611 3.97660i −1.06012 0.156944i
\(643\) −25.5139 −1.00617 −0.503086 0.864237i \(-0.667802\pi\)
−0.503086 + 0.864237i \(0.667802\pi\)
\(644\) −0.439021 20.9332i −0.0172998 0.824884i
\(645\) 0 0
\(646\) 32.5416 + 4.81755i 1.28033 + 0.189544i
\(647\) −46.8598 −1.84225 −0.921125 0.389268i \(-0.872728\pi\)
−0.921125 + 0.389268i \(0.872728\pi\)
\(648\) −7.03553 + 14.9086i −0.276382 + 0.585664i
\(649\) 8.24621i 0.323692i
\(650\) 0 0
\(651\) 7.72569 2.51673i 0.302794 0.0986383i
\(652\) 12.6924 41.9278i 0.497072 1.64202i
\(653\) 29.5563 1.15663 0.578315 0.815814i \(-0.303711\pi\)
0.578315 + 0.815814i \(0.303711\pi\)
\(654\) 0.863230 5.83095i 0.0337550 0.228008i
\(655\) 0 0
\(656\) −9.14695 + 13.7235i −0.357128 + 0.535811i
\(657\) 10.2471i 0.399777i
\(658\) −3.91030 23.0640i −0.152439 0.899126i
\(659\) 6.47360i 0.252176i 0.992019 + 0.126088i \(0.0402421\pi\)
−0.992019 + 0.126088i \(0.959758\pi\)
\(660\) 0 0
\(661\) 27.1539i 1.05616i 0.849193 + 0.528082i \(0.177089\pi\)
−0.849193 + 0.528082i \(0.822911\pi\)
\(662\) 40.3701 + 5.97649i 1.56903 + 0.232283i
\(663\) 35.4284 1.37592
\(664\) −1.77882 + 3.76940i −0.0690317 + 0.146281i
\(665\) 0 0
\(666\) −1.07107 + 7.23486i −0.0415030 + 0.280345i
\(667\) 0.960099i 0.0371752i
\(668\) 32.8821 + 9.95406i 1.27224 + 0.385134i
\(669\) −1.27208 −0.0491814
\(670\) 0 0
\(671\) 32.6292 1.25964
\(672\) 8.99236 20.1388i 0.346888 0.776870i
\(673\) −4.00000 −0.154189 −0.0770943 0.997024i \(-0.524564\pi\)
−0.0770943 + 0.997024i \(0.524564\pi\)
\(674\) −3.06497 + 20.7033i −0.118058 + 0.797461i
\(675\) 0 0
\(676\) 40.1985 + 12.1689i 1.54610 + 0.468034i
\(677\) 11.6619i 0.448203i 0.974566 + 0.224102i \(0.0719448\pi\)
−0.974566 + 0.224102i \(0.928055\pi\)
\(678\) 5.58931 37.7547i 0.214656 1.44996i
\(679\) 6.75773 + 20.7445i 0.259338 + 0.796100i
\(680\) 0 0
\(681\) −10.4853 −0.401797
\(682\) −8.15731 1.20763i −0.312359 0.0462425i
\(683\) 26.5392i 1.01549i 0.861506 + 0.507747i \(0.169521\pi\)
−0.861506 + 0.507747i \(0.830479\pi\)
\(684\) −8.94648 2.70828i −0.342077 0.103554i
\(685\) 0 0
\(686\) 18.7482 + 18.2895i 0.715811 + 0.698295i
\(687\) 20.7445i 0.791451i
\(688\) 12.4142 18.6254i 0.473287 0.710088i
\(689\) 71.3862i 2.71960i
\(690\) 0 0
\(691\) −48.3334 −1.83869 −0.919345 0.393452i \(-0.871281\pi\)
−0.919345 + 0.393452i \(0.871281\pi\)
\(692\) −8.15731 + 26.9467i −0.310094 + 1.02436i
\(693\) 1.89949 + 5.83095i 0.0721558 + 0.221500i
\(694\) 27.9558 + 4.13866i 1.06119 + 0.157101i
\(695\) 0 0
\(696\) 0.431615 0.914610i 0.0163603 0.0346682i
\(697\) −17.0000 −0.643921
\(698\) −19.6935 2.91548i −0.745409 0.110352i
\(699\) −23.2818 −0.880598
\(700\) 0 0
\(701\) −16.8284 −0.635601 −0.317800 0.948158i \(-0.602944\pi\)
−0.317800 + 0.948158i \(0.602944\pi\)
\(702\) −46.0208 6.81305i −1.73694 0.257142i
\(703\) 35.2189 1.32831
\(704\) −17.2782 + 14.2297i −0.651196 + 0.536302i
\(705\) 0 0
\(706\) 16.3146 + 2.41526i 0.614008 + 0.0908995i
\(707\) −1.97929 6.07591i −0.0744390 0.228508i
\(708\) −8.31371 2.51673i −0.312448 0.0945844i
\(709\) −28.0000 −1.05156 −0.525781 0.850620i \(-0.676227\pi\)
−0.525781 + 0.850620i \(0.676227\pi\)
\(710\) 0 0
\(711\) 6.55596i 0.245868i
\(712\) −31.6396 14.9311i −1.18574 0.559566i
\(713\) 8.24621i 0.308823i
\(714\) 22.4141 3.80013i 0.838828 0.142216i
\(715\) 0 0
\(716\) −6.20711 + 20.5044i −0.231970 + 0.766287i
\(717\) 24.7386i 0.923881i
\(718\) 28.6274 + 4.23808i 1.06837 + 0.158164i
\(719\) 36.9454 1.37783 0.688915 0.724842i \(-0.258087\pi\)
0.688915 + 0.724842i \(0.258087\pi\)
\(720\) 0 0
\(721\) 17.8995 5.83095i 0.666612 0.217156i
\(722\) −2.65685 + 17.9465i −0.0988779 + 0.667901i
\(723\) 23.2612i 0.865093i
\(724\) −11.5362 + 38.1084i −0.428738 + 1.41629i
\(725\) 0 0
\(726\) 0.967957 6.53836i 0.0359243 0.242661i
\(727\) −32.2717 −1.19689 −0.598445 0.801164i \(-0.704214\pi\)
−0.598445 + 0.801164i \(0.704214\pi\)
\(728\) 43.2889 + 5.48371i 1.60439 + 0.203240i
\(729\) 29.7696 1.10258
\(730\) 0 0
\(731\) 23.0723 0.853361
\(732\) −9.95837 + 32.8963i −0.368072 + 1.21588i
\(733\) 24.7386i 0.913742i 0.889533 + 0.456871i \(0.151030\pi\)
−0.889533 + 0.456871i \(0.848970\pi\)
\(734\) 3.30481 22.3234i 0.121983 0.823971i
\(735\) 0 0
\(736\) −16.6066 15.0080i −0.612127 0.553202i
\(737\) 20.7990 0.766141
\(738\) 4.77844 + 0.707413i 0.175897 + 0.0260402i
\(739\) 18.7078i 0.688177i −0.938937 0.344089i \(-0.888188\pi\)
0.938937 0.344089i \(-0.111812\pi\)
\(740\) 0 0
\(741\) 48.4768i 1.78084i
\(742\) −7.65705 45.1633i −0.281099 1.65800i
\(743\) 16.5064i 0.605561i 0.953060 + 0.302780i \(0.0979149\pi\)
−0.953060 + 0.302780i \(0.902085\pi\)
\(744\) 3.70711 7.85551i 0.135909 0.287997i
\(745\) 0 0
\(746\) −2.77817 + 18.7660i −0.101716 + 0.687073i
\(747\) 1.22079 0.0446664
\(748\) −22.0827 6.68488i −0.807423 0.244423i
\(749\) −10.6777 32.7776i −0.390154 1.19767i
\(750\) 0 0
\(751\) 21.1422i 0.771488i −0.922606 0.385744i \(-0.873945\pi\)
0.922606 0.385744i \(-0.126055\pi\)
\(752\) −20.8095 13.8700i −0.758846 0.505786i
\(753\) 20.5980 0.750632
\(754\) 1.97929 + 0.293020i 0.0720816 + 0.0106712i
\(755\) 0 0
\(756\) −29.8463 + 0.625951i −1.08550 + 0.0227656i
\(757\) −12.5858 −0.457438 −0.228719 0.973492i \(-0.573454\pi\)
−0.228719 + 0.973492i \(0.573454\pi\)
\(758\) −5.81371 0.860677i −0.211163 0.0312612i
\(759\) −16.3146 −0.592183
\(760\) 0 0
\(761\) 39.1088i 1.41769i 0.705363 + 0.708847i \(0.250784\pi\)
−0.705363 + 0.708847i \(0.749216\pi\)
\(762\) 11.5362 + 1.70785i 0.417911 + 0.0618687i
\(763\) 7.11529 2.31788i 0.257591 0.0839130i
\(764\) −14.3137 + 47.2836i −0.517852 + 1.71066i
\(765\) 0 0
\(766\) 3.81048 25.7391i 0.137678 0.929990i
\(767\) 17.1853i 0.620525i
\(768\) −9.07290 21.7625i −0.327390 0.785286i
\(769\) 40.5236i 1.46132i 0.682742 + 0.730660i \(0.260788\pi\)
−0.682742 + 0.730660i \(0.739212\pi\)
\(770\) 0 0
\(771\) 34.3706i 1.23783i
\(772\) 15.9142 + 4.81755i 0.572765 + 0.173387i
\(773\) 36.4005i 1.30924i 0.755960 + 0.654618i \(0.227171\pi\)
−0.755960 + 0.654618i \(0.772829\pi\)
\(774\) −6.48528 0.960099i −0.233109 0.0345100i
\(775\) 0 0
\(776\) 21.0930 + 9.95406i 0.757196 + 0.357330i
\(777\) 23.1421 7.53880i 0.830219 0.270453i
\(778\) −3.22183 + 21.7628i −0.115508 + 0.780234i
\(779\) 23.2612i 0.833419i
\(780\) 0 0
\(781\) 20.2426 0.724339
\(782\) 3.37887 22.8236i 0.120828 0.816170i
\(783\) −1.36890 −0.0489204
\(784\) 27.9754 1.17394i 0.999121 0.0419265i
\(785\) 0 0
\(786\) −3.97056 + 26.8204i −0.141625 + 0.956651i
\(787\) 20.6308 0.735407 0.367704 0.929943i \(-0.380144\pi\)
0.367704 + 0.929943i \(0.380144\pi\)
\(788\) 4.75736 + 1.44015i 0.169474 + 0.0513032i
\(789\) 41.2311i 1.46786i
\(790\) 0 0
\(791\) 46.0706 15.0080i 1.63808 0.533623i
\(792\) 5.92893 + 2.79793i 0.210675 + 0.0994202i
\(793\) −68.0000 −2.41475
\(794\) −26.4512 3.91591i −0.938718 0.138970i
\(795\) 0 0
\(796\) −33.5665 10.1613i −1.18973 0.360156i
\(797\) 26.7395i 0.947162i −0.880750 0.473581i \(-0.842961\pi\)
0.880750 0.473581i \(-0.157039\pi\)
\(798\) 5.19974 + 30.6694i 0.184069 + 1.08568i
\(799\) 25.7779i 0.911957i
\(800\) 0 0
\(801\) 10.2471i 0.362063i
\(802\) 4.65076 31.4150i 0.164224 1.10930i
\(803\) 34.6085 1.22131
\(804\) −6.34781 + 20.9692i −0.223870 + 0.739528i
\(805\) 0 0
\(806\) 17.0000 + 2.51673i 0.598799 + 0.0886479i
\(807\) 3.55919i 0.125289i
\(808\) −6.17801 2.91548i −0.217342 0.102566i
\(809\) −1.17157 −0.0411903 −0.0205952 0.999788i \(-0.506556\pi\)
−0.0205952 + 0.999788i \(0.506556\pi\)
\(810\) 0 0
\(811\) 36.0821 1.26702 0.633508 0.773736i \(-0.281615\pi\)
0.633508 + 0.773736i \(0.281615\pi\)
\(812\) 1.28365 0.0269213i 0.0450473 0.000944753i
\(813\) −40.1421 −1.40785
\(814\) −24.4350 3.61743i −0.856447 0.126791i
\(815\) 0 0
\(816\) 13.4792 20.2232i 0.471866 0.707955i
\(817\) 31.5700i 1.10450i
\(818\) −22.0827 3.26918i −0.772103 0.114304i
\(819\) −3.95859 12.1518i −0.138324 0.424619i
\(820\) 0 0
\(821\) 14.5858 0.509047 0.254524 0.967067i \(-0.418081\pi\)
0.254524 + 0.967067i \(0.418081\pi\)
\(822\) −1.06370 + 7.18509i −0.0371008 + 0.250609i
\(823\) 49.1215i 1.71227i −0.516755 0.856134i \(-0.672860\pi\)
0.516755 0.856134i \(-0.327140\pi\)
\(824\) 8.58892 18.2003i 0.299209 0.634036i
\(825\) 0 0
\(826\) −1.84333 10.8725i −0.0641377 0.378301i
\(827\) 47.0024i 1.63444i 0.576329 + 0.817218i \(0.304485\pi\)
−0.576329 + 0.817218i \(0.695515\pi\)
\(828\) −1.89949 + 6.27476i −0.0660120 + 0.218063i
\(829\) 26.7395i 0.928701i −0.885651 0.464351i \(-0.846288\pi\)
0.885651 0.464351i \(-0.153712\pi\)
\(830\) 0 0
\(831\) 8.98986 0.311855
\(832\) 36.0081 29.6550i 1.24836 1.02810i
\(833\) 17.0000 + 23.3238i 0.589015 + 0.808122i
\(834\) 0.822330 5.55468i 0.0284750 0.192343i
\(835\) 0 0
\(836\) 9.14695 30.2159i 0.316354 1.04504i
\(837\) −11.7574 −0.406394
\(838\) 5.08364 34.3390i 0.175611 1.18622i
\(839\) 37.6605 1.30018 0.650092 0.759855i \(-0.274730\pi\)
0.650092 + 0.759855i \(0.274730\pi\)
\(840\) 0 0
\(841\) −28.9411 −0.997970
\(842\) 0.142136 0.960099i 0.00489832 0.0330872i
\(843\) −48.5863 −1.67340
\(844\) 0.834524 2.75675i 0.0287255 0.0948913i
\(845\) 0 0
\(846\) −1.07268 + 7.24578i −0.0368797 + 0.249115i
\(847\) 7.97852 2.59909i 0.274145 0.0893058i
\(848\) −40.7487 27.1598i −1.39932 0.932672i
\(849\) 46.6569 1.60126
\(850\) 0 0
\(851\) 24.7013i 0.846751i
\(852\) −6.17801 + 20.4083i −0.211655 + 0.699178i
\(853\) 15.0776i 0.516247i −0.966112 0.258124i \(-0.916896\pi\)
0.966112 0.258124i \(-0.0831042\pi\)
\(854\) −43.0209 + 7.29384i −1.47215 + 0.249590i
\(855\) 0 0
\(856\) −33.3284 15.7281i −1.13914 0.537575i
\(857\) 5.53793i 0.189172i −0.995517 0.0945861i \(-0.969847\pi\)
0.995517 0.0945861i \(-0.0301528\pi\)
\(858\) 4.97918 33.6334i 0.169987 1.14823i
\(859\) −36.3350 −1.23973 −0.619867 0.784707i \(-0.712813\pi\)
−0.619867 + 0.784707i \(0.712813\pi\)
\(860\) 0 0
\(861\) −4.97918 15.2848i −0.169690 0.520904i
\(862\) −11.4645 1.69723i −0.390481 0.0578079i
\(863\) 12.1518i 0.413653i −0.978378 0.206827i \(-0.933686\pi\)
0.978378 0.206827i \(-0.0663136\pi\)
\(864\) −21.3982 + 23.6775i −0.727983 + 0.805525i
\(865\) 0 0
\(866\) 5.76809 + 0.853923i 0.196008 + 0.0290175i
\(867\) 0 0
\(868\) 11.0252 0.231225i 0.374219 0.00784829i
\(869\) 22.1421 0.751121
\(870\) 0 0
\(871\) −43.3455 −1.46871
\(872\) 3.41421 7.23486i 0.115620 0.245003i
\(873\) 6.83139i 0.231207i
\(874\) 31.2296 + 4.62332i 1.05636 + 0.156386i
\(875\) 0 0
\(876\) −10.5624 + 34.8918i −0.356872 + 1.17888i
\(877\) −4.97056 −0.167844 −0.0839220 0.996472i \(-0.526745\pi\)
−0.0839220 + 0.996472i \(0.526745\pi\)
\(878\) −0.610396 + 4.12311i −0.0205999 + 0.139148i
\(879\) 24.3037i 0.819742i
\(880\) 0 0
\(881\) 11.6619i 0.392900i −0.980514 0.196450i \(-0.937059\pi\)
0.980514 0.196450i \(-0.0629413\pi\)
\(882\) −3.80788 7.26338i −0.128218 0.244571i
\(883\) 7.99611i 0.269091i −0.990907 0.134545i \(-0.957043\pi\)
0.990907 0.134545i \(-0.0429574\pi\)
\(884\) 46.0208 + 13.9314i 1.54785 + 0.468564i
\(885\) 0 0
\(886\) 2.57107 + 0.380628i 0.0863767 + 0.0127874i
\(887\) 10.9258 0.366852 0.183426 0.983034i \(-0.441281\pi\)
0.183426 + 0.983034i \(0.441281\pi\)
\(888\) 11.1046 23.5310i 0.372645 0.789649i
\(889\) 4.58579 + 14.0772i 0.153802 + 0.472133i
\(890\) 0 0
\(891\) 16.3075i 0.546323i
\(892\) −1.65241 0.500217i −0.0553267 0.0167485i
\(893\) 35.2721 1.18034
\(894\) 0.610396 4.12311i 0.0204147 0.137897i
\(895\) 0 0
\(896\) 19.6000 22.6238i 0.654791 0.755810i
\(897\) 34.0000 1.13523
\(898\) −2.20711 + 14.9086i −0.0736521 + 0.497506i
\(899\) 0.505668 0.0168650
\(900\) 0 0
\(901\) 50.4777i 1.68166i
\(902\) −2.38922 + 16.1387i −0.0795523 + 0.537360i
\(903\) 6.75773 + 20.7445i 0.224883 + 0.690333i
\(904\) 22.1066 46.8448i 0.735255 1.55803i
\(905\) 0 0
\(906\) −3.37887 0.500217i −0.112255 0.0166186i
\(907\) 39.5687i 1.31386i 0.753952 + 0.656929i \(0.228145\pi\)
−0.753952 + 0.656929i \(0.771855\pi\)
\(908\) −13.6202 4.12311i −0.452002 0.136830i
\(909\) 2.00087i 0.0663645i
\(910\) 0 0
\(911\) 30.2972i 1.00379i 0.864928 + 0.501896i \(0.167364\pi\)
−0.864928 + 0.501896i \(0.832636\pi\)
\(912\) 27.6716 + 18.4436i 0.916297 + 0.610730i
\(913\) 4.12311i 0.136455i
\(914\) 6.10660 41.2489i 0.201988 1.36439i
\(915\) 0 0
\(916\) 8.15731 26.9467i 0.269525 0.890344i
\(917\) −32.7279 + 10.6615i −1.08077 + 0.352073i
\(918\) −32.5416 4.81755i −1.07403 0.159003i
\(919\) 22.7811i 0.751481i 0.926725 + 0.375740i \(0.122612\pi\)
−0.926725 + 0.375740i \(0.877388\pi\)
\(920\) 0 0
\(921\) −27.4853 −0.905671
\(922\) 3.37887 + 0.500217i 0.111277 + 0.0164738i
\(923\) −42.1861 −1.38857
\(924\) −0.457464 21.8126i −0.0150495 0.717583i
\(925\) 0 0
\(926\) −1.89949 0.281206i −0.0624213 0.00924102i
\(927\) −5.89450 −0.193601
\(928\) 0.920310 1.01834i 0.0302107 0.0334286i
\(929\) 39.8162i 1.30633i 0.757216 + 0.653164i \(0.226559\pi\)
−0.757216 + 0.653164i \(0.773441\pi\)
\(930\) 0 0
\(931\) −31.9141 + 23.2612i −1.04594 + 0.762355i
\(932\) −30.2426 9.15505i −0.990631 0.299884i
\(933\) 17.3726 0.568753
\(934\) 1.57835 10.6615i 0.0516453 0.348854i
\(935\) 0 0
\(936\) −12.3560 5.83095i −0.403869 0.190591i
\(937\) 10.9545i 0.357868i 0.983861 + 0.178934i \(0.0572648\pi\)
−0.983861 + 0.178934i \(0.942735\pi\)
\(938\) −27.4230 + 4.64934i −0.895393 + 0.151806i
\(939\) 7.11838i 0.232299i
\(940\) 0 0
\(941\) 24.7386i 0.806456i 0.915099 + 0.403228i \(0.132112\pi\)
−0.915099 + 0.403228i \(0.867888\pi\)
\(942\) 46.0208 + 6.81305i 1.49944 + 0.221981i
\(943\) −16.3146 −0.531277
\(944\) −9.80971 6.53836i −0.319279 0.212806i
\(945\) 0 0
\(946\) 3.24264 21.9034i 0.105427 0.712141i
\(947\) 19.5032i 0.633768i −0.948464 0.316884i \(-0.897363\pi\)
0.948464 0.316884i \(-0.102637\pi\)
\(948\) −6.75773 + 22.3234i −0.219481 + 0.725029i
\(949\) −72.1249 −2.34127
\(950\) 0 0
\(951\) −37.8086 −1.22603
\(952\) 30.6099 + 3.87757i 0.992072 + 0.125673i
\(953\) −53.7696 −1.74177 −0.870883 0.491490i \(-0.836453\pi\)
−0.870883 + 0.491490i \(0.836453\pi\)
\(954\) −2.10051 + 14.1885i −0.0680064 + 0.459370i
\(955\) 0 0
\(956\) 9.72792 32.1350i 0.314623 1.03932i
\(957\) 1.00043i 0.0323394i
\(958\) −1.83119 + 12.3693i −0.0591630 + 0.399634i
\(959\) −8.76770 + 2.85617i −0.283124 + 0.0922306i
\(960\) 0 0
\(961\) −26.6569 −0.859899
\(962\) 50.9231 + 7.53880i 1.64183 + 0.243061i
\(963\) 10.7940i 0.347833i
\(964\) −9.14695 + 30.2159i −0.294604 + 0.973188i
\(965\) 0 0
\(966\) 21.5105 3.64692i 0.692088 0.117338i
\(967\) 9.55274i 0.307195i 0.988133 + 0.153598i \(0.0490860\pi\)
−0.988133 + 0.153598i \(0.950914\pi\)
\(968\) 3.82843 8.11259i 0.123050 0.260749i
\(969\) 34.2783i 1.10118i
\(970\) 0 0
\(971\) −4.92655 −0.158100 −0.0790502 0.996871i \(-0.525189\pi\)
−0.0790502 + 0.996871i \(0.525189\pi\)
\(972\) 15.9570 + 4.83052i 0.511823 + 0.154939i
\(973\) 6.77817 2.20806i 0.217298 0.0707872i
\(974\) −5.14214 0.761256i −0.164765 0.0243922i
\(975\) 0 0
\(976\) −25.8715 + 38.8158i −0.828126 + 1.24246i
\(977\) 7.28427 0.233044 0.116522 0.993188i \(-0.462825\pi\)
0.116522 + 0.993188i \(0.462825\pi\)
\(978\) 45.1550 + 6.68488i 1.44390 + 0.213759i
\(979\) −34.6085 −1.10609
\(980\) 0 0
\(981\) −2.34315 −0.0748109
\(982\) −41.0416 6.07591i −1.30969 0.193890i
\(983\) −11.6409 −0.371287 −0.185644 0.982617i \(-0.559437\pi\)
−0.185644 + 0.982617i \(0.559437\pi\)
\(984\) −15.5416 7.33428i −0.495449 0.233808i
\(985\) 0 0
\(986\) 1.39957 + 0.207196i 0.0445715 + 0.00659848i
\(987\) 23.1771 7.55018i 0.737734 0.240325i
\(988\) −19.0624 + 62.9705i −0.606457 + 2.00336i
\(989\) 22.1421 0.704079
\(990\) 0 0
\(991\) 6.27476i 0.199324i 0.995021 + 0.0996621i \(0.0317762\pi\)
−0.995021 + 0.0996621i \(0.968224\pi\)
\(992\) 7.90447 8.74643i 0.250967 0.277699i
\(993\) 42.5245i 1.34947i
\(994\) −26.6895 + 4.52498i −0.846539 + 0.143524i
\(995\) 0 0
\(996\) −4.15685 1.25836i −0.131715 0.0398728i
\(997\) 2.41526i 0.0764920i −0.999268 0.0382460i \(-0.987823\pi\)
0.999268 0.0382460i \(-0.0121771\pi\)
\(998\) 23.4853 + 3.47682i 0.743414 + 0.110057i
\(999\) −35.2189 −1.11428
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.g.k.251.3 yes 8
4.3 odd 2 inner 700.2.g.k.251.2 yes 8
5.2 odd 4 700.2.c.k.699.2 16
5.3 odd 4 700.2.c.k.699.15 16
5.4 even 2 700.2.g.i.251.6 yes 8
7.6 odd 2 inner 700.2.g.k.251.4 yes 8
20.3 even 4 700.2.c.k.699.4 16
20.7 even 4 700.2.c.k.699.13 16
20.19 odd 2 700.2.g.i.251.7 yes 8
28.27 even 2 inner 700.2.g.k.251.1 yes 8
35.13 even 4 700.2.c.k.699.16 16
35.27 even 4 700.2.c.k.699.1 16
35.34 odd 2 700.2.g.i.251.5 8
140.27 odd 4 700.2.c.k.699.14 16
140.83 odd 4 700.2.c.k.699.3 16
140.139 even 2 700.2.g.i.251.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.2.c.k.699.1 16 35.27 even 4
700.2.c.k.699.2 16 5.2 odd 4
700.2.c.k.699.3 16 140.83 odd 4
700.2.c.k.699.4 16 20.3 even 4
700.2.c.k.699.13 16 20.7 even 4
700.2.c.k.699.14 16 140.27 odd 4
700.2.c.k.699.15 16 5.3 odd 4
700.2.c.k.699.16 16 35.13 even 4
700.2.g.i.251.5 8 35.34 odd 2
700.2.g.i.251.6 yes 8 5.4 even 2
700.2.g.i.251.7 yes 8 20.19 odd 2
700.2.g.i.251.8 yes 8 140.139 even 2
700.2.g.k.251.1 yes 8 28.27 even 2 inner
700.2.g.k.251.2 yes 8 4.3 odd 2 inner
700.2.g.k.251.3 yes 8 1.1 even 1 trivial
700.2.g.k.251.4 yes 8 7.6 odd 2 inner