Properties

Label 70.8.e.a
Level $70$
Weight $8$
Character orbit 70.e
Analytic conductor $21.867$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,8,Mod(11,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.11"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 70.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8669517839\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 \zeta_{6} q^{2} + (30 \zeta_{6} - 30) q^{3} + (64 \zeta_{6} - 64) q^{4} + 125 \zeta_{6} q^{5} + 240 q^{6} + (686 \zeta_{6} - 1029) q^{7} + 512 q^{8} + 1287 \zeta_{6} q^{9} + ( - 1000 \zeta_{6} + 1000) q^{10} + \cdots - 3861 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 30 q^{3} - 64 q^{4} + 125 q^{5} + 480 q^{6} - 1372 q^{7} + 1024 q^{8} + 1287 q^{9} + 1000 q^{10} - 3 q^{11} - 1920 q^{12} + 3490 q^{13} + 13720 q^{14} - 7500 q^{15} - 4096 q^{16} + 3786 q^{17}+ \cdots - 7722 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
0.500000 + 0.866025i
0.500000 0.866025i
−4.00000 6.92820i −15.0000 + 25.9808i −32.0000 + 55.4256i 62.5000 + 108.253i 240.000 −686.000 + 594.093i 512.000 643.500 + 1114.57i 500.000 866.025i
51.1 −4.00000 + 6.92820i −15.0000 25.9808i −32.0000 55.4256i 62.5000 108.253i 240.000 −686.000 594.093i 512.000 643.500 1114.57i 500.000 + 866.025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.8.e.a 2
7.c even 3 1 inner 70.8.e.a 2
7.c even 3 1 490.8.a.d 1
7.d odd 6 1 490.8.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.8.e.a 2 1.a even 1 1 trivial
70.8.e.a 2 7.c even 3 1 inner
490.8.a.a 1 7.d odd 6 1
490.8.a.d 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 30T_{3} + 900 \) acting on \(S_{8}^{\mathrm{new}}(70, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$3$ \( T^{2} + 30T + 900 \) Copy content Toggle raw display
$5$ \( T^{2} - 125T + 15625 \) Copy content Toggle raw display
$7$ \( T^{2} + 1372 T + 823543 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( (T - 1745)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3786 T + 14333796 \) Copy content Toggle raw display
$19$ \( T^{2} - 1945 T + 3783025 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 6328361601 \) Copy content Toggle raw display
$29$ \( (T + 94926)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 16288906384 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 16449858049 \) Copy content Toggle raw display
$41$ \( (T + 298077)^{2} \) Copy content Toggle raw display
$43$ \( (T + 875626)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 374004410481 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 67151984769 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 8279062456896 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 22071262096 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 3207265501456 \) Copy content Toggle raw display
$71$ \( (T + 493236)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 4235578034704 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 34422557321476 \) Copy content Toggle raw display
$83$ \( (T + 921132)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 26245969178724 \) Copy content Toggle raw display
$97$ \( (T + 5878306)^{2} \) Copy content Toggle raw display
show more
show less