Properties

Label 70.5.f.a.57.2
Level $70$
Weight $5$
Character 70.57
Analytic conductor $7.236$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,5,Mod(43,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 0])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.43"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 70.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.23589741587\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 334x^{10} + 34233x^{8} + 1144512x^{6} + 13607616x^{4} + 38549504x^{2} + 31360000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5^{2}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.2
Root \(-4.60707i\) of defining polynomial
Character \(\chi\) \(=\) 70.57
Dual form 70.5.f.a.43.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 2.00000i) q^{2} +(-7.02600 + 7.02600i) q^{3} +8.00000i q^{4} +(-24.9839 - 0.897502i) q^{5} +28.1040 q^{6} +(-13.0958 - 13.0958i) q^{7} +(16.0000 - 16.0000i) q^{8} -17.7293i q^{9} +(48.1728 + 51.7628i) q^{10} +142.126 q^{11} +(-56.2080 - 56.2080i) q^{12} +(167.395 - 167.395i) q^{13} +52.3832i q^{14} +(181.843 - 169.231i) q^{15} -64.0000 q^{16} +(-195.069 - 195.069i) q^{17} +(-35.4587 + 35.4587i) q^{18} -130.598i q^{19} +(7.18001 - 199.871i) q^{20} +184.022 q^{21} +(-284.251 - 284.251i) q^{22} +(77.4569 - 77.4569i) q^{23} +224.832i q^{24} +(623.389 + 44.8462i) q^{25} -669.581 q^{26} +(-444.540 - 444.540i) q^{27} +(104.766 - 104.766i) q^{28} +355.719i q^{29} +(-702.147 - 25.2234i) q^{30} +1190.62 q^{31} +(128.000 + 128.000i) q^{32} +(-998.574 + 998.574i) q^{33} +780.274i q^{34} +(315.430 + 338.937i) q^{35} +141.835 q^{36} +(472.084 + 472.084i) q^{37} +(-261.196 + 261.196i) q^{38} +2352.24i q^{39} +(-414.102 + 385.382i) q^{40} -73.0858 q^{41} +(-368.044 - 368.044i) q^{42} +(1495.82 - 1495.82i) q^{43} +1137.00i q^{44} +(-15.9121 + 442.948i) q^{45} -309.828 q^{46} +(-2439.36 - 2439.36i) q^{47} +(449.664 - 449.664i) q^{48} +343.000i q^{49} +(-1157.09 - 1336.47i) q^{50} +2741.10 q^{51} +(1339.16 + 1339.16i) q^{52} +(-2683.33 + 2683.33i) q^{53} +1778.16i q^{54} +(-3550.85 - 127.558i) q^{55} -419.066 q^{56} +(917.581 + 917.581i) q^{57} +(711.439 - 711.439i) q^{58} -5527.82i q^{59} +(1353.85 + 1454.74i) q^{60} +413.680 q^{61} +(-2381.24 - 2381.24i) q^{62} +(-232.180 + 232.180i) q^{63} -512.000i q^{64} +(-4332.42 + 4031.95i) q^{65} +3994.30 q^{66} +(-3561.92 - 3561.92i) q^{67} +(1560.55 - 1560.55i) q^{68} +1088.42i q^{69} +(47.0140 - 1308.74i) q^{70} +8454.30 q^{71} +(-283.669 - 283.669i) q^{72} +(7044.21 - 7044.21i) q^{73} -1888.34i q^{74} +(-4695.02 + 4064.84i) q^{75} +1044.78 q^{76} +(-1861.25 - 1861.25i) q^{77} +(4704.48 - 4704.48i) q^{78} -6515.21i q^{79} +(1598.97 + 57.4401i) q^{80} +7682.75 q^{81} +(146.172 + 146.172i) q^{82} +(-127.740 + 127.740i) q^{83} +1472.18i q^{84} +(4698.50 + 5048.65i) q^{85} -5983.30 q^{86} +(-2499.28 - 2499.28i) q^{87} +(2274.01 - 2274.01i) q^{88} +2322.67i q^{89} +(917.720 - 854.071i) q^{90} -4384.35 q^{91} +(619.655 + 619.655i) q^{92} +(-8365.30 + 8365.30i) q^{93} +9757.45i q^{94} +(-117.212 + 3262.84i) q^{95} -1798.66 q^{96} +(10168.4 + 10168.4i) q^{97} +(686.000 - 686.000i) q^{98} -2519.79i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{2} - 20 q^{3} + 8 q^{5} + 80 q^{6} + 192 q^{8} - 144 q^{10} + 4 q^{11} - 160 q^{12} - 180 q^{13} - 736 q^{15} - 768 q^{16} - 236 q^{17} - 464 q^{18} + 512 q^{20} - 196 q^{21} - 8 q^{22} - 1232 q^{23}+ \cdots + 8232 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 2.00000i −0.500000 0.500000i
\(3\) −7.02600 + 7.02600i −0.780667 + 0.780667i −0.979943 0.199277i \(-0.936141\pi\)
0.199277 + 0.979943i \(0.436141\pi\)
\(4\) 8.00000i 0.500000i
\(5\) −24.9839 0.897502i −0.999355 0.0359001i
\(6\) 28.1040 0.780667
\(7\) −13.0958 13.0958i −0.267261 0.267261i
\(8\) 16.0000 16.0000i 0.250000 0.250000i
\(9\) 17.7293i 0.218881i
\(10\) 48.1728 + 51.7628i 0.481728 + 0.517628i
\(11\) 142.126 1.17459 0.587296 0.809372i \(-0.300193\pi\)
0.587296 + 0.809372i \(0.300193\pi\)
\(12\) −56.2080 56.2080i −0.390333 0.390333i
\(13\) 167.395 167.395i 0.990504 0.990504i −0.00945101 0.999955i \(-0.503008\pi\)
0.999955 + 0.00945101i \(0.00300840\pi\)
\(14\) 52.3832i 0.267261i
\(15\) 181.843 169.231i 0.808189 0.752137i
\(16\) −64.0000 −0.250000
\(17\) −195.069 195.069i −0.674978 0.674978i 0.283882 0.958859i \(-0.408378\pi\)
−0.958859 + 0.283882i \(0.908378\pi\)
\(18\) −35.4587 + 35.4587i −0.109440 + 0.109440i
\(19\) 130.598i 0.361767i −0.983505 0.180884i \(-0.942104\pi\)
0.983505 0.180884i \(-0.0578957\pi\)
\(20\) 7.18001 199.871i 0.0179500 0.499678i
\(21\) 184.022 0.417284
\(22\) −284.251 284.251i −0.587296 0.587296i
\(23\) 77.4569 77.4569i 0.146421 0.146421i −0.630096 0.776517i \(-0.716984\pi\)
0.776517 + 0.630096i \(0.216984\pi\)
\(24\) 224.832i 0.390333i
\(25\) 623.389 + 44.8462i 0.997422 + 0.0717538i
\(26\) −669.581 −0.990504
\(27\) −444.540 444.540i −0.609794 0.609794i
\(28\) 104.766 104.766i 0.133631 0.133631i
\(29\) 355.719i 0.422972i 0.977381 + 0.211486i \(0.0678303\pi\)
−0.977381 + 0.211486i \(0.932170\pi\)
\(30\) −702.147 25.2234i −0.780163 0.0280260i
\(31\) 1190.62 1.23894 0.619470 0.785021i \(-0.287348\pi\)
0.619470 + 0.785021i \(0.287348\pi\)
\(32\) 128.000 + 128.000i 0.125000 + 0.125000i
\(33\) −998.574 + 998.574i −0.916964 + 0.916964i
\(34\) 780.274i 0.674978i
\(35\) 315.430 + 338.937i 0.257494 + 0.276684i
\(36\) 141.835 0.109440
\(37\) 472.084 + 472.084i 0.344839 + 0.344839i 0.858183 0.513344i \(-0.171594\pi\)
−0.513344 + 0.858183i \(0.671594\pi\)
\(38\) −261.196 + 261.196i −0.180884 + 0.180884i
\(39\) 2352.24i 1.54651i
\(40\) −414.102 + 385.382i −0.258814 + 0.240864i
\(41\) −73.0858 −0.0434776 −0.0217388 0.999764i \(-0.506920\pi\)
−0.0217388 + 0.999764i \(0.506920\pi\)
\(42\) −368.044 368.044i −0.208642 0.208642i
\(43\) 1495.82 1495.82i 0.808991 0.808991i −0.175490 0.984481i \(-0.556151\pi\)
0.984481 + 0.175490i \(0.0561510\pi\)
\(44\) 1137.00i 0.587296i
\(45\) −15.9121 + 442.948i −0.00785783 + 0.218740i
\(46\) −309.828 −0.146421
\(47\) −2439.36 2439.36i −1.10428 1.10428i −0.993888 0.110395i \(-0.964788\pi\)
−0.110395 0.993888i \(-0.535212\pi\)
\(48\) 449.664 449.664i 0.195167 0.195167i
\(49\) 343.000i 0.142857i
\(50\) −1157.09 1336.47i −0.462834 0.534588i
\(51\) 2741.10 1.05387
\(52\) 1339.16 + 1339.16i 0.495252 + 0.495252i
\(53\) −2683.33 + 2683.33i −0.955260 + 0.955260i −0.999041 0.0437809i \(-0.986060\pi\)
0.0437809 + 0.999041i \(0.486060\pi\)
\(54\) 1778.16i 0.609794i
\(55\) −3550.85 127.558i −1.17383 0.0421679i
\(56\) −419.066 −0.133631
\(57\) 917.581 + 917.581i 0.282419 + 0.282419i
\(58\) 711.439 711.439i 0.211486 0.211486i
\(59\) 5527.82i 1.58800i −0.607919 0.793999i \(-0.707995\pi\)
0.607919 0.793999i \(-0.292005\pi\)
\(60\) 1353.85 + 1454.74i 0.376069 + 0.404095i
\(61\) 413.680 0.111174 0.0555872 0.998454i \(-0.482297\pi\)
0.0555872 + 0.998454i \(0.482297\pi\)
\(62\) −2381.24 2381.24i −0.619470 0.619470i
\(63\) −232.180 + 232.180i −0.0584983 + 0.0584983i
\(64\) 512.000i 0.125000i
\(65\) −4332.42 + 4031.95i −1.02543 + 0.954307i
\(66\) 3994.30 0.916964
\(67\) −3561.92 3561.92i −0.793478 0.793478i 0.188580 0.982058i \(-0.439611\pi\)
−0.982058 + 0.188580i \(0.939611\pi\)
\(68\) 1560.55 1560.55i 0.337489 0.337489i
\(69\) 1088.42i 0.228612i
\(70\) 47.0140 1308.74i 0.00959470 0.267089i
\(71\) 8454.30 1.67711 0.838554 0.544818i \(-0.183401\pi\)
0.838554 + 0.544818i \(0.183401\pi\)
\(72\) −283.669 283.669i −0.0547202 0.0547202i
\(73\) 7044.21 7044.21i 1.32186 1.32186i 0.409596 0.912267i \(-0.365670\pi\)
0.912267 0.409596i \(-0.134330\pi\)
\(74\) 1888.34i 0.344839i
\(75\) −4695.02 + 4064.84i −0.834670 + 0.722639i
\(76\) 1044.78 0.180884
\(77\) −1861.25 1861.25i −0.313923 0.313923i
\(78\) 4704.48 4704.48i 0.773254 0.773254i
\(79\) 6515.21i 1.04394i −0.852965 0.521968i \(-0.825198\pi\)
0.852965 0.521968i \(-0.174802\pi\)
\(80\) 1598.97 + 57.4401i 0.249839 + 0.00897502i
\(81\) 7682.75 1.17097
\(82\) 146.172 + 146.172i 0.0217388 + 0.0217388i
\(83\) −127.740 + 127.740i −0.0185425 + 0.0185425i −0.716317 0.697775i \(-0.754174\pi\)
0.697775 + 0.716317i \(0.254174\pi\)
\(84\) 1472.18i 0.208642i
\(85\) 4698.50 + 5048.65i 0.650311 + 0.698775i
\(86\) −5983.30 −0.808991
\(87\) −2499.28 2499.28i −0.330200 0.330200i
\(88\) 2274.01 2274.01i 0.293648 0.293648i
\(89\) 2322.67i 0.293229i 0.989194 + 0.146615i \(0.0468377\pi\)
−0.989194 + 0.146615i \(0.953162\pi\)
\(90\) 917.720 854.071i 0.113299 0.105441i
\(91\) −4384.35 −0.529447
\(92\) 619.655 + 619.655i 0.0732107 + 0.0732107i
\(93\) −8365.30 + 8365.30i −0.967199 + 0.967199i
\(94\) 9757.45i 1.10428i
\(95\) −117.212 + 3262.84i −0.0129875 + 0.361534i
\(96\) −1798.66 −0.195167
\(97\) 10168.4 + 10168.4i 1.08071 + 1.08071i 0.996443 + 0.0842676i \(0.0268551\pi\)
0.0842676 + 0.996443i \(0.473145\pi\)
\(98\) 686.000 686.000i 0.0714286 0.0714286i
\(99\) 2519.79i 0.257095i
\(100\) −358.769 + 4987.11i −0.0358769 + 0.498711i
\(101\) −15319.9 −1.50180 −0.750901 0.660414i \(-0.770381\pi\)
−0.750901 + 0.660414i \(0.770381\pi\)
\(102\) −5482.21 5482.21i −0.526933 0.526933i
\(103\) −4219.97 + 4219.97i −0.397773 + 0.397773i −0.877447 0.479674i \(-0.840755\pi\)
0.479674 + 0.877447i \(0.340755\pi\)
\(104\) 5356.65i 0.495252i
\(105\) −4597.59 165.160i −0.417015 0.0149805i
\(106\) 10733.3 0.955260
\(107\) −9579.84 9579.84i −0.836740 0.836740i 0.151688 0.988428i \(-0.451529\pi\)
−0.988428 + 0.151688i \(0.951529\pi\)
\(108\) 3556.32 3556.32i 0.304897 0.304897i
\(109\) 6217.25i 0.523294i −0.965164 0.261647i \(-0.915734\pi\)
0.965164 0.261647i \(-0.0842655\pi\)
\(110\) 6846.58 + 7356.81i 0.565833 + 0.608001i
\(111\) −6633.73 −0.538408
\(112\) 838.131 + 838.131i 0.0668153 + 0.0668153i
\(113\) 12825.7 12825.7i 1.00444 1.00444i 0.00445163 0.999990i \(-0.498583\pi\)
0.999990 0.00445163i \(-0.00141700\pi\)
\(114\) 3670.32i 0.282419i
\(115\) −2004.69 + 1865.66i −0.151583 + 0.141070i
\(116\) −2845.76 −0.211486
\(117\) −2967.81 2967.81i −0.216802 0.216802i
\(118\) −11055.6 + 11055.6i −0.793999 + 0.793999i
\(119\) 5109.16i 0.360791i
\(120\) 201.787 5617.18i 0.0140130 0.390082i
\(121\) 5558.68 0.379665
\(122\) −827.360 827.360i −0.0555872 0.0555872i
\(123\) 513.501 513.501i 0.0339415 0.0339415i
\(124\) 9524.97i 0.619470i
\(125\) −15534.4 1679.92i −0.994203 0.107515i
\(126\) 928.720 0.0584983
\(127\) 11500.2 + 11500.2i 0.713016 + 0.713016i 0.967165 0.254149i \(-0.0817953\pi\)
−0.254149 + 0.967165i \(0.581795\pi\)
\(128\) −1024.00 + 1024.00i −0.0625000 + 0.0625000i
\(129\) 21019.3i 1.26310i
\(130\) 16728.7 + 600.950i 0.989866 + 0.0355592i
\(131\) −13924.8 −0.811423 −0.405711 0.914001i \(-0.632976\pi\)
−0.405711 + 0.914001i \(0.632976\pi\)
\(132\) −7988.59 7988.59i −0.458482 0.458482i
\(133\) −1710.28 + 1710.28i −0.0966863 + 0.0966863i
\(134\) 14247.7i 0.793478i
\(135\) 10707.4 + 11505.3i 0.587509 + 0.631292i
\(136\) −6242.20 −0.337489
\(137\) −1819.33 1819.33i −0.0969327 0.0969327i 0.656977 0.753910i \(-0.271835\pi\)
−0.753910 + 0.656977i \(0.771835\pi\)
\(138\) 2176.85 2176.85i 0.114306 0.114306i
\(139\) 12797.9i 0.662384i 0.943563 + 0.331192i \(0.107451\pi\)
−0.943563 + 0.331192i \(0.892549\pi\)
\(140\) −2711.50 + 2523.44i −0.138342 + 0.128747i
\(141\) 34277.9 1.72415
\(142\) −16908.6 16908.6i −0.838554 0.838554i
\(143\) 23791.1 23791.1i 1.16344 1.16344i
\(144\) 1134.68i 0.0547202i
\(145\) 319.259 8887.25i 0.0151847 0.422699i
\(146\) −28176.8 −1.32186
\(147\) −2409.92 2409.92i −0.111524 0.111524i
\(148\) −3776.68 + 3776.68i −0.172419 + 0.172419i
\(149\) 5487.24i 0.247162i 0.992334 + 0.123581i \(0.0394379\pi\)
−0.992334 + 0.123581i \(0.960562\pi\)
\(150\) 17519.7 + 1260.36i 0.778654 + 0.0560158i
\(151\) 13562.1 0.594802 0.297401 0.954753i \(-0.403880\pi\)
0.297401 + 0.954753i \(0.403880\pi\)
\(152\) −2089.57 2089.57i −0.0904418 0.0904418i
\(153\) −3458.44 + 3458.44i −0.147740 + 0.147740i
\(154\) 7444.99i 0.313923i
\(155\) −29746.3 1068.58i −1.23814 0.0444780i
\(156\) −18817.9 −0.773254
\(157\) 23975.6 + 23975.6i 0.972680 + 0.972680i 0.999637 0.0269566i \(-0.00858158\pi\)
−0.0269566 + 0.999637i \(0.508582\pi\)
\(158\) −13030.4 + 13030.4i −0.521968 + 0.521968i
\(159\) 37706.1i 1.49148i
\(160\) −3083.06 3312.82i −0.120432 0.129407i
\(161\) −2028.72 −0.0782655
\(162\) −15365.5 15365.5i −0.585486 0.585486i
\(163\) 20247.0 20247.0i 0.762055 0.762055i −0.214639 0.976693i \(-0.568857\pi\)
0.976693 + 0.214639i \(0.0688575\pi\)
\(164\) 584.687i 0.0217388i
\(165\) 25844.5 24052.0i 0.949292 0.883454i
\(166\) 510.958 0.0185425
\(167\) 19088.5 + 19088.5i 0.684447 + 0.684447i 0.960999 0.276552i \(-0.0891919\pi\)
−0.276552 + 0.960999i \(0.589192\pi\)
\(168\) 2944.35 2944.35i 0.104321 0.104321i
\(169\) 27481.3i 0.962198i
\(170\) 700.298 19494.3i 0.0242317 0.674543i
\(171\) −2315.41 −0.0791838
\(172\) 11966.6 + 11966.6i 0.404496 + 0.404496i
\(173\) −33924.5 + 33924.5i −1.13350 + 1.13350i −0.143909 + 0.989591i \(0.545967\pi\)
−0.989591 + 0.143909i \(0.954033\pi\)
\(174\) 9997.14i 0.330200i
\(175\) −7576.48 8751.07i −0.247395 0.285749i
\(176\) −9096.04 −0.293648
\(177\) 38838.5 + 38838.5i 1.23970 + 1.23970i
\(178\) 4645.34 4645.34i 0.146615 0.146615i
\(179\) 63544.8i 1.98323i −0.129213 0.991617i \(-0.541245\pi\)
0.129213 0.991617i \(-0.458755\pi\)
\(180\) −3543.58 127.297i −0.109370 0.00392892i
\(181\) −9171.79 −0.279961 −0.139980 0.990154i \(-0.544704\pi\)
−0.139980 + 0.990154i \(0.544704\pi\)
\(182\) 8768.70 + 8768.70i 0.264723 + 0.264723i
\(183\) −2906.51 + 2906.51i −0.0867901 + 0.0867901i
\(184\) 2478.62i 0.0732107i
\(185\) −11370.8 12218.2i −0.332237 0.356996i
\(186\) 33461.2 0.967199
\(187\) −27724.2 27724.2i −0.792823 0.792823i
\(188\) 19514.9 19514.9i 0.552142 0.552142i
\(189\) 11643.2i 0.325948i
\(190\) 6760.11 6291.26i 0.187261 0.174273i
\(191\) 41456.1 1.13637 0.568187 0.822899i \(-0.307645\pi\)
0.568187 + 0.822899i \(0.307645\pi\)
\(192\) 3597.31 + 3597.31i 0.0975833 + 0.0975833i
\(193\) −43070.5 + 43070.5i −1.15628 + 1.15628i −0.171017 + 0.985268i \(0.554705\pi\)
−0.985268 + 0.171017i \(0.945295\pi\)
\(194\) 40673.6i 1.08071i
\(195\) 2111.14 58768.0i 0.0555197 1.54551i
\(196\) −2744.00 −0.0714286
\(197\) 13416.2 + 13416.2i 0.345699 + 0.345699i 0.858505 0.512806i \(-0.171394\pi\)
−0.512806 + 0.858505i \(0.671394\pi\)
\(198\) −5039.59 + 5039.59i −0.128548 + 0.128548i
\(199\) 40433.5i 1.02102i −0.859871 0.510512i \(-0.829456\pi\)
0.859871 0.510512i \(-0.170544\pi\)
\(200\) 10691.8 9256.69i 0.267294 0.231417i
\(201\) 50052.1 1.23888
\(202\) 30639.8 + 30639.8i 0.750901 + 0.750901i
\(203\) 4658.43 4658.43i 0.113044 0.113044i
\(204\) 21928.8i 0.526933i
\(205\) 1825.97 + 65.5946i 0.0434496 + 0.00156085i
\(206\) 16879.9 0.397773
\(207\) −1373.26 1373.26i −0.0320488 0.0320488i
\(208\) −10713.3 + 10713.3i −0.247626 + 0.247626i
\(209\) 18561.3i 0.424929i
\(210\) 8864.86 + 9525.50i 0.201017 + 0.215998i
\(211\) −55794.3 −1.25321 −0.626607 0.779335i \(-0.715557\pi\)
−0.626607 + 0.779335i \(0.715557\pi\)
\(212\) −21466.6 21466.6i −0.477630 0.477630i
\(213\) −59399.9 + 59399.9i −1.30926 + 1.30926i
\(214\) 38319.4i 0.836740i
\(215\) −38714.0 + 36029.0i −0.837512 + 0.779427i
\(216\) −14225.3 −0.304897
\(217\) −15592.1 15592.1i −0.331121 0.331121i
\(218\) −12434.5 + 12434.5i −0.261647 + 0.261647i
\(219\) 98985.2i 2.06387i
\(220\) 1020.46 28406.8i 0.0210840 0.586917i
\(221\) −65307.1 −1.33714
\(222\) 13267.5 + 13267.5i 0.269204 + 0.269204i
\(223\) −27951.6 + 27951.6i −0.562078 + 0.562078i −0.929897 0.367819i \(-0.880105\pi\)
0.367819 + 0.929897i \(0.380105\pi\)
\(224\) 3352.53i 0.0668153i
\(225\) 795.093 11052.3i 0.0157055 0.218317i
\(226\) −51302.9 −1.00444
\(227\) 20677.1 + 20677.1i 0.401271 + 0.401271i 0.878681 0.477410i \(-0.158424\pi\)
−0.477410 + 0.878681i \(0.658424\pi\)
\(228\) −7340.65 + 7340.65i −0.141210 + 0.141210i
\(229\) 55096.7i 1.05064i −0.850904 0.525321i \(-0.823945\pi\)
0.850904 0.525321i \(-0.176055\pi\)
\(230\) 7740.69 + 278.071i 0.146327 + 0.00525654i
\(231\) 26154.3 0.490138
\(232\) 5691.51 + 5691.51i 0.105743 + 0.105743i
\(233\) −9128.75 + 9128.75i −0.168151 + 0.168151i −0.786166 0.618015i \(-0.787937\pi\)
0.618015 + 0.786166i \(0.287937\pi\)
\(234\) 11871.2i 0.216802i
\(235\) 58755.4 + 63134.1i 1.06393 + 1.14322i
\(236\) 44222.6 0.793999
\(237\) 45775.9 + 45775.9i 0.814967 + 0.814967i
\(238\) 10218.3 10218.3i 0.180395 0.180395i
\(239\) 39677.3i 0.694618i 0.937751 + 0.347309i \(0.112905\pi\)
−0.937751 + 0.347309i \(0.887095\pi\)
\(240\) −11637.9 + 10830.8i −0.202047 + 0.188034i
\(241\) −96914.9 −1.66862 −0.834308 0.551298i \(-0.814133\pi\)
−0.834308 + 0.551298i \(0.814133\pi\)
\(242\) −11117.4 11117.4i −0.189833 0.189833i
\(243\) −17971.3 + 17971.3i −0.304345 + 0.304345i
\(244\) 3309.44i 0.0555872i
\(245\) 307.843 8569.47i 0.00512858 0.142765i
\(246\) −2054.00 −0.0339415
\(247\) −21861.5 21861.5i −0.358332 0.358332i
\(248\) 19049.9 19049.9i 0.309735 0.309735i
\(249\) 1795.00i 0.0289511i
\(250\) 27709.0 + 34428.7i 0.443344 + 0.550859i
\(251\) 29808.3 0.473141 0.236570 0.971614i \(-0.423977\pi\)
0.236570 + 0.971614i \(0.423977\pi\)
\(252\) −1857.44 1857.44i −0.0292492 0.0292492i
\(253\) 11008.6 11008.6i 0.171985 0.171985i
\(254\) 46001.0i 0.713016i
\(255\) −68483.4 2460.15i −1.05319 0.0378338i
\(256\) 4096.00 0.0625000
\(257\) 69337.4 + 69337.4i 1.04979 + 1.04979i 0.998694 + 0.0510941i \(0.0162708\pi\)
0.0510941 + 0.998694i \(0.483729\pi\)
\(258\) 42038.6 42038.6i 0.631552 0.631552i
\(259\) 12364.6i 0.184324i
\(260\) −32255.6 34659.4i −0.477153 0.512713i
\(261\) 6306.67 0.0925804
\(262\) 27849.6 + 27849.6i 0.405711 + 0.405711i
\(263\) −39200.2 + 39200.2i −0.566731 + 0.566731i −0.931211 0.364480i \(-0.881247\pi\)
0.364480 + 0.931211i \(0.381247\pi\)
\(264\) 31954.4i 0.458482i
\(265\) 69448.2 64631.6i 0.988938 0.920351i
\(266\) 6841.14 0.0966863
\(267\) −16319.1 16319.1i −0.228914 0.228914i
\(268\) 28495.4 28495.4i 0.396739 0.396739i
\(269\) 35479.8i 0.490316i −0.969483 0.245158i \(-0.921160\pi\)
0.969483 0.245158i \(-0.0788398\pi\)
\(270\) 1595.90 44425.3i 0.0218916 0.609401i
\(271\) 71173.4 0.969124 0.484562 0.874757i \(-0.338979\pi\)
0.484562 + 0.874757i \(0.338979\pi\)
\(272\) 12484.4 + 12484.4i 0.168744 + 0.168744i
\(273\) 30804.4 30804.4i 0.413321 0.413321i
\(274\) 7277.32i 0.0969327i
\(275\) 88599.5 + 6373.79i 1.17156 + 0.0842815i
\(276\) −8707.39 −0.114306
\(277\) −87266.6 87266.6i −1.13734 1.13734i −0.988926 0.148409i \(-0.952585\pi\)
−0.148409 0.988926i \(-0.547415\pi\)
\(278\) 25595.9 25595.9i 0.331192 0.331192i
\(279\) 21108.9i 0.271180i
\(280\) 10469.9 + 376.112i 0.133544 + 0.00479735i
\(281\) −50104.2 −0.634544 −0.317272 0.948335i \(-0.602767\pi\)
−0.317272 + 0.948335i \(0.602767\pi\)
\(282\) −68555.8 68555.8i −0.862077 0.862077i
\(283\) 31754.2 31754.2i 0.396487 0.396487i −0.480505 0.876992i \(-0.659547\pi\)
0.876992 + 0.480505i \(0.159547\pi\)
\(284\) 67634.4i 0.838554i
\(285\) −22101.2 23748.3i −0.272099 0.292376i
\(286\) −95164.6 −1.16344
\(287\) 957.117 + 957.117i 0.0116199 + 0.0116199i
\(288\) 2269.36 2269.36i 0.0273601 0.0273601i
\(289\) 7417.48i 0.0888098i
\(290\) −18413.0 + 17136.0i −0.218942 + 0.203757i
\(291\) −142886. −1.68735
\(292\) 56353.7 + 56353.7i 0.660931 + 0.660931i
\(293\) 27048.1 27048.1i 0.315066 0.315066i −0.531802 0.846868i \(-0.678485\pi\)
0.846868 + 0.531802i \(0.178485\pi\)
\(294\) 9639.67i 0.111524i
\(295\) −4961.23 + 138106.i −0.0570092 + 1.58697i
\(296\) 15106.7 0.172419
\(297\) −63180.5 63180.5i −0.716259 0.716259i
\(298\) 10974.5 10974.5i 0.123581 0.123581i
\(299\) 25931.8i 0.290062i
\(300\) −32518.7 37560.2i −0.361319 0.417335i
\(301\) −39178.0 −0.432424
\(302\) −27124.2 27124.2i −0.297401 0.297401i
\(303\) 107638. 107638.i 1.17241 1.17241i
\(304\) 8358.27i 0.0904418i
\(305\) −10335.3 371.278i −0.111103 0.00399117i
\(306\) 13833.7 0.147740
\(307\) 23505.0 + 23505.0i 0.249392 + 0.249392i 0.820721 0.571329i \(-0.193572\pi\)
−0.571329 + 0.820721i \(0.693572\pi\)
\(308\) 14890.0 14890.0i 0.156961 0.156961i
\(309\) 59299.0i 0.621055i
\(310\) 57355.5 + 61629.8i 0.596831 + 0.641309i
\(311\) −363.610 −0.00375937 −0.00187969 0.999998i \(-0.500598\pi\)
−0.00187969 + 0.999998i \(0.500598\pi\)
\(312\) 37635.8 + 37635.8i 0.386627 + 0.386627i
\(313\) 73662.4 73662.4i 0.751895 0.751895i −0.222938 0.974833i \(-0.571565\pi\)
0.974833 + 0.222938i \(0.0715647\pi\)
\(314\) 95902.4i 0.972680i
\(315\) 6009.14 5592.37i 0.0605607 0.0563605i
\(316\) 52121.7 0.521968
\(317\) −76995.4 76995.4i −0.766208 0.766208i 0.211229 0.977437i \(-0.432253\pi\)
−0.977437 + 0.211229i \(0.932253\pi\)
\(318\) −75412.2 + 75412.2i −0.745740 + 0.745740i
\(319\) 50556.8i 0.496819i
\(320\) −459.521 + 12791.7i −0.00448751 + 0.124919i
\(321\) 134616. 1.30643
\(322\) 4057.44 + 4057.44i 0.0391327 + 0.0391327i
\(323\) −25475.5 + 25475.5i −0.244185 + 0.244185i
\(324\) 61462.0i 0.585486i
\(325\) 111859. 96845.3i 1.05902 0.916879i
\(326\) −80988.1 −0.762055
\(327\) 43682.4 + 43682.4i 0.408518 + 0.408518i
\(328\) −1169.37 + 1169.37i −0.0108694 + 0.0108694i
\(329\) 63890.8i 0.590264i
\(330\) −99793.1 3584.89i −0.916373 0.0329191i
\(331\) 48023.0 0.438322 0.219161 0.975689i \(-0.429668\pi\)
0.219161 + 0.975689i \(0.429668\pi\)
\(332\) −1021.92 1021.92i −0.00927127 0.00927127i
\(333\) 8369.74 8369.74i 0.0754786 0.0754786i
\(334\) 76354.1i 0.684447i
\(335\) 85793.8 + 92187.4i 0.764480 + 0.821452i
\(336\) −11777.4 −0.104321
\(337\) −49062.7 49062.7i −0.432008 0.432008i 0.457303 0.889311i \(-0.348815\pi\)
−0.889311 + 0.457303i \(0.848815\pi\)
\(338\) −54962.7 + 54962.7i −0.481099 + 0.481099i
\(339\) 180227.i 1.56827i
\(340\) −40389.2 + 37588.0i −0.349387 + 0.325156i
\(341\) 169218. 1.45525
\(342\) 4630.83 + 4630.83i 0.0395919 + 0.0395919i
\(343\) 4491.86 4491.86i 0.0381802 0.0381802i
\(344\) 47866.4i 0.404496i
\(345\) 976.862 27193.1i 0.00820720 0.228465i
\(346\) 135698. 1.13350
\(347\) 122068. + 122068.i 1.01378 + 1.01378i 0.999904 + 0.0138775i \(0.00441748\pi\)
0.0138775 + 0.999904i \(0.495583\pi\)
\(348\) 19994.3 19994.3i 0.165100 0.165100i
\(349\) 17749.3i 0.145724i −0.997342 0.0728620i \(-0.976787\pi\)
0.997342 0.0728620i \(-0.0232133\pi\)
\(350\) −2349.19 + 32655.1i −0.0191770 + 0.266572i
\(351\) −148828. −1.20801
\(352\) 18192.1 + 18192.1i 0.146824 + 0.146824i
\(353\) 110706. 110706.i 0.888427 0.888427i −0.105945 0.994372i \(-0.533787\pi\)
0.994372 + 0.105945i \(0.0337869\pi\)
\(354\) 155354.i 1.23970i
\(355\) −211221. 7587.75i −1.67603 0.0602083i
\(356\) −18581.4 −0.146615
\(357\) −35896.9 35896.9i −0.281657 0.281657i
\(358\) −127090. + 127090.i −0.991617 + 0.991617i
\(359\) 69586.2i 0.539926i 0.962871 + 0.269963i \(0.0870115\pi\)
−0.962871 + 0.269963i \(0.912988\pi\)
\(360\) 6832.57 + 7341.76i 0.0527205 + 0.0566494i
\(361\) 113265. 0.869125
\(362\) 18343.6 + 18343.6i 0.139980 + 0.139980i
\(363\) −39055.3 + 39055.3i −0.296392 + 0.296392i
\(364\) 35074.8i 0.264723i
\(365\) −182314. + 169669.i −1.36847 + 1.27356i
\(366\) 11626.1 0.0867901
\(367\) −121457. 121457.i −0.901762 0.901762i 0.0938265 0.995589i \(-0.470090\pi\)
−0.995589 + 0.0938265i \(0.970090\pi\)
\(368\) −4957.24 + 4957.24i −0.0366053 + 0.0366053i
\(369\) 1295.76i 0.00951640i
\(370\) −1694.79 + 47178.0i −0.0123797 + 0.344617i
\(371\) 70280.6 0.510608
\(372\) −66922.4 66922.4i −0.483599 0.483599i
\(373\) −85881.0 + 85881.0i −0.617276 + 0.617276i −0.944832 0.327556i \(-0.893775\pi\)
0.327556 + 0.944832i \(0.393775\pi\)
\(374\) 110897.i 0.792823i
\(375\) 120948. 97341.7i 0.860075 0.692208i
\(376\) −78059.6 −0.552142
\(377\) 59545.7 + 59545.7i 0.418956 + 0.418956i
\(378\) 23286.4 23286.4i 0.162974 0.162974i
\(379\) 1064.28i 0.00740929i 0.999993 + 0.00370464i \(0.00117923\pi\)
−0.999993 + 0.00370464i \(0.998821\pi\)
\(380\) −26102.7 937.695i −0.180767 0.00649373i
\(381\) −161601. −1.11326
\(382\) −82912.1 82912.1i −0.568187 0.568187i
\(383\) −27545.5 + 27545.5i −0.187781 + 0.187781i −0.794736 0.606955i \(-0.792391\pi\)
0.606955 + 0.794736i \(0.292391\pi\)
\(384\) 14389.2i 0.0975833i
\(385\) 44830.7 + 48171.7i 0.302451 + 0.324990i
\(386\) 172282. 1.15628
\(387\) −26520.0 26520.0i −0.177073 0.177073i
\(388\) −81347.3 + 81347.3i −0.540355 + 0.540355i
\(389\) 217133.i 1.43492i 0.696600 + 0.717459i \(0.254695\pi\)
−0.696600 + 0.717459i \(0.745305\pi\)
\(390\) −121758. + 113314.i −0.800515 + 0.744995i
\(391\) −30218.8 −0.197662
\(392\) 5488.00 + 5488.00i 0.0357143 + 0.0357143i
\(393\) 97835.8 97835.8i 0.633451 0.633451i
\(394\) 53665.0i 0.345699i
\(395\) −5847.41 + 162775.i −0.0374774 + 1.04326i
\(396\) 20158.3 0.128548
\(397\) −180198. 180198.i −1.14332 1.14332i −0.987839 0.155481i \(-0.950307\pi\)
−0.155481 0.987839i \(-0.549693\pi\)
\(398\) −80867.1 + 80867.1i −0.510512 + 0.510512i
\(399\) 24032.9i 0.150960i
\(400\) −39896.9 2870.15i −0.249356 0.0179385i
\(401\) 142883. 0.888568 0.444284 0.895886i \(-0.353458\pi\)
0.444284 + 0.895886i \(0.353458\pi\)
\(402\) −100104. 100104.i −0.619441 0.619441i
\(403\) 199304. 199304.i 1.22717 1.22717i
\(404\) 122559.i 0.750901i
\(405\) −191945. 6895.28i −1.17022 0.0420380i
\(406\) −18633.7 −0.113044
\(407\) 67095.3 + 67095.3i 0.405045 + 0.405045i
\(408\) 43857.7 43857.7i 0.263466 0.263466i
\(409\) 98659.2i 0.589781i 0.955531 + 0.294891i \(0.0952832\pi\)
−0.955531 + 0.294891i \(0.904717\pi\)
\(410\) −3520.75 3783.12i −0.0209444 0.0225052i
\(411\) 25565.2 0.151344
\(412\) −33759.7 33759.7i −0.198886 0.198886i
\(413\) −72391.2 + 72391.2i −0.424410 + 0.424410i
\(414\) 5493.04i 0.0320488i
\(415\) 3306.08 3076.78i 0.0191963 0.0178649i
\(416\) 42853.2 0.247626
\(417\) −89918.3 89918.3i −0.517101 0.517101i
\(418\) −37122.6 + 37122.6i −0.212464 + 0.212464i
\(419\) 165207.i 0.941021i −0.882394 0.470511i \(-0.844070\pi\)
0.882394 0.470511i \(-0.155930\pi\)
\(420\) 1321.28 36780.7i 0.00749026 0.208507i
\(421\) 288697. 1.62884 0.814419 0.580277i \(-0.197056\pi\)
0.814419 + 0.580277i \(0.197056\pi\)
\(422\) 111589. + 111589.i 0.626607 + 0.626607i
\(423\) −43248.3 + 43248.3i −0.241706 + 0.241706i
\(424\) 85866.4i 0.477630i
\(425\) −112856. 130352.i −0.624806 0.721670i
\(426\) 237600. 1.30926
\(427\) −5417.47 5417.47i −0.0297126 0.0297126i
\(428\) 76638.7 76638.7i 0.418370 0.418370i
\(429\) 334313.i 1.81651i
\(430\) 149486. + 5370.02i 0.808470 + 0.0290428i
\(431\) −103792. −0.558739 −0.279369 0.960184i \(-0.590125\pi\)
−0.279369 + 0.960184i \(0.590125\pi\)
\(432\) 28450.5 + 28450.5i 0.152448 + 0.152448i
\(433\) −225675. + 225675.i −1.20367 + 1.20367i −0.230626 + 0.973043i \(0.574077\pi\)
−0.973043 + 0.230626i \(0.925923\pi\)
\(434\) 62368.5i 0.331121i
\(435\) 60198.7 + 64684.9i 0.318133 + 0.341841i
\(436\) 49738.0 0.261647
\(437\) −10115.7 10115.7i −0.0529704 0.0529704i
\(438\) 197970. 197970.i 1.03193 1.03193i
\(439\) 171526.i 0.890023i −0.895525 0.445012i \(-0.853200\pi\)
0.895525 0.445012i \(-0.146800\pi\)
\(440\) −58854.5 + 54772.7i −0.304001 + 0.282917i
\(441\) 6081.16 0.0312687
\(442\) 130614. + 130614.i 0.668568 + 0.668568i
\(443\) 224865. 224865.i 1.14581 1.14581i 0.158446 0.987368i \(-0.449352\pi\)
0.987368 0.158446i \(-0.0506485\pi\)
\(444\) 53069.8i 0.269204i
\(445\) 2084.60 58029.3i 0.0105269 0.293040i
\(446\) 111806. 0.562078
\(447\) −38553.3 38553.3i −0.192951 0.192951i
\(448\) −6705.05 + 6705.05i −0.0334077 + 0.0334077i
\(449\) 308137.i 1.52845i −0.644951 0.764224i \(-0.723122\pi\)
0.644951 0.764224i \(-0.276878\pi\)
\(450\) −23694.7 + 20514.4i −0.117011 + 0.101305i
\(451\) −10387.4 −0.0510684
\(452\) 102606. + 102606.i 0.502221 + 0.502221i
\(453\) −95287.1 + 95287.1i −0.464342 + 0.464342i
\(454\) 82708.4i 0.401271i
\(455\) 109538. + 3934.96i 0.529106 + 0.0190072i
\(456\) 29362.6 0.141210
\(457\) −120633. 120633.i −0.577608 0.577608i 0.356635 0.934244i \(-0.383924\pi\)
−0.934244 + 0.356635i \(0.883924\pi\)
\(458\) −110193. + 110193.i −0.525321 + 0.525321i
\(459\) 173431.i 0.823195i
\(460\) −14925.2 16037.5i −0.0705352 0.0757917i
\(461\) −191542. −0.901287 −0.450644 0.892704i \(-0.648805\pi\)
−0.450644 + 0.892704i \(0.648805\pi\)
\(462\) −52308.5 52308.5i −0.245069 0.245069i
\(463\) −128651. + 128651.i −0.600140 + 0.600140i −0.940350 0.340210i \(-0.889502\pi\)
0.340210 + 0.940350i \(0.389502\pi\)
\(464\) 22766.0i 0.105743i
\(465\) 216506. 201490.i 1.00130 0.931853i
\(466\) 36515.0 0.168151
\(467\) 130887. + 130887.i 0.600153 + 0.600153i 0.940353 0.340200i \(-0.110495\pi\)
−0.340200 + 0.940353i \(0.610495\pi\)
\(468\) 23742.5 23742.5i 0.108401 0.108401i
\(469\) 93292.4i 0.424132i
\(470\) 8757.32 243779.i 0.0396438 1.10357i
\(471\) −336905. −1.51868
\(472\) −88445.1 88445.1i −0.397000 0.397000i
\(473\) 212595. 212595.i 0.950234 0.950234i
\(474\) 183103.i 0.814967i
\(475\) 5856.81 81413.3i 0.0259582 0.360835i
\(476\) −40873.3 −0.180395
\(477\) 47573.6 + 47573.6i 0.209088 + 0.209088i
\(478\) 79354.6 79354.6i 0.347309 0.347309i
\(479\) 94396.7i 0.411420i 0.978613 + 0.205710i \(0.0659504\pi\)
−0.978613 + 0.205710i \(0.934050\pi\)
\(480\) 44937.4 + 1614.30i 0.195041 + 0.00700650i
\(481\) 158049. 0.683129
\(482\) 193830. + 193830.i 0.834308 + 0.834308i
\(483\) 14253.8 14253.8i 0.0610993 0.0610993i
\(484\) 44469.5i 0.189833i
\(485\) −244920. 263172.i −1.04122 1.11881i
\(486\) 71885.1 0.304345
\(487\) −177602. 177602.i −0.748843 0.748843i 0.225419 0.974262i \(-0.427625\pi\)
−0.974262 + 0.225419i \(0.927625\pi\)
\(488\) 6618.88 6618.88i 0.0277936 0.0277936i
\(489\) 284511.i 1.18982i
\(490\) −17754.6 + 16523.3i −0.0739468 + 0.0688182i
\(491\) −66239.8 −0.274762 −0.137381 0.990518i \(-0.543868\pi\)
−0.137381 + 0.990518i \(0.543868\pi\)
\(492\) 4108.01 + 4108.01i 0.0169707 + 0.0169707i
\(493\) 69389.7 69389.7i 0.285497 0.285497i
\(494\) 87445.9i 0.358332i
\(495\) −2261.52 + 62954.2i −0.00922974 + 0.256930i
\(496\) −76199.7 −0.309735
\(497\) −110716. 110716.i −0.448226 0.448226i
\(498\) −3589.99 + 3589.99i −0.0144755 + 0.0144755i
\(499\) 161462.i 0.648440i 0.945982 + 0.324220i \(0.105102\pi\)
−0.945982 + 0.324220i \(0.894898\pi\)
\(500\) 13439.4 124275.i 0.0537576 0.497102i
\(501\) −268232. −1.06865
\(502\) −59616.7 59616.7i −0.236570 0.236570i
\(503\) 132042. 132042.i 0.521885 0.521885i −0.396255 0.918140i \(-0.629690\pi\)
0.918140 + 0.396255i \(0.129690\pi\)
\(504\) 7429.76i 0.0292492i
\(505\) 382750. + 13749.6i 1.50083 + 0.0539148i
\(506\) −44034.4 −0.171985
\(507\) 193084. + 193084.i 0.751156 + 0.751156i
\(508\) −92001.9 + 92001.9i −0.356508 + 0.356508i
\(509\) 379583.i 1.46511i 0.680706 + 0.732557i \(0.261673\pi\)
−0.680706 + 0.732557i \(0.738327\pi\)
\(510\) 132047. + 141887.i 0.507676 + 0.545510i
\(511\) −184499. −0.706565
\(512\) −8192.00 8192.00i −0.0312500 0.0312500i
\(513\) −58055.9 + 58055.9i −0.220603 + 0.220603i
\(514\) 277350.i 1.04979i
\(515\) 109219. 101644.i 0.411796 0.383236i
\(516\) −168155. −0.631552
\(517\) −346696. 346696.i −1.29708 1.29708i
\(518\) −24729.3 + 24729.3i −0.0921621 + 0.0921621i
\(519\) 476707.i 1.76977i
\(520\) −4807.60 + 133830.i −0.0177796 + 0.494933i
\(521\) 246212. 0.907055 0.453528 0.891242i \(-0.350165\pi\)
0.453528 + 0.891242i \(0.350165\pi\)
\(522\) −12613.3 12613.3i −0.0462902 0.0462902i
\(523\) −85270.1 + 85270.1i −0.311741 + 0.311741i −0.845584 0.533843i \(-0.820747\pi\)
0.533843 + 0.845584i \(0.320747\pi\)
\(524\) 111399.i 0.405711i
\(525\) 114717. + 8252.69i 0.416208 + 0.0299417i
\(526\) 156801. 0.566731
\(527\) −232253. 232253.i −0.836257 0.836257i
\(528\) 63908.8 63908.8i 0.229241 0.229241i
\(529\) 267842.i 0.957122i
\(530\) −268160. 9633.16i −0.954644 0.0342939i
\(531\) −98004.6 −0.347582
\(532\) −13682.3 13682.3i −0.0483432 0.0483432i
\(533\) −12234.2 + 12234.2i −0.0430647 + 0.0430647i
\(534\) 65276.3i 0.228914i
\(535\) 230744. + 247939.i 0.806162 + 0.866240i
\(536\) −113981. −0.396739
\(537\) 446466. + 446466.i 1.54824 + 1.54824i
\(538\) −70959.5 + 70959.5i −0.245158 + 0.245158i
\(539\) 48749.1i 0.167799i
\(540\) −92042.4 + 85658.8i −0.315646 + 0.293755i
\(541\) −263049. −0.898757 −0.449378 0.893342i \(-0.648354\pi\)
−0.449378 + 0.893342i \(0.648354\pi\)
\(542\) −142347. 142347.i −0.484562 0.484562i
\(543\) 64441.0 64441.0i 0.218556 0.218556i
\(544\) 49937.6i 0.168744i
\(545\) −5579.99 + 155331.i −0.0187863 + 0.522956i
\(546\) −123218. −0.413321
\(547\) 247352. + 247352.i 0.826685 + 0.826685i 0.987057 0.160371i \(-0.0512692\pi\)
−0.160371 + 0.987057i \(0.551269\pi\)
\(548\) 14554.6 14554.6i 0.0484664 0.0484664i
\(549\) 7334.27i 0.0243339i
\(550\) −164451. 189947.i −0.543641 0.627923i
\(551\) 46456.2 0.153017
\(552\) 17414.8 + 17414.8i 0.0571531 + 0.0571531i
\(553\) −85321.9 + 85321.9i −0.279004 + 0.279004i
\(554\) 349066.i 1.13734i
\(555\) 165736. + 5953.78i 0.538061 + 0.0193289i
\(556\) −102383. −0.331192
\(557\) 142879. + 142879.i 0.460531 + 0.460531i 0.898830 0.438298i \(-0.144419\pi\)
−0.438298 + 0.898830i \(0.644419\pi\)
\(558\) −42217.8 + 42217.8i −0.135590 + 0.135590i
\(559\) 500788.i 1.60262i
\(560\) −20187.6 21692.0i −0.0643736 0.0691709i
\(561\) 389581. 1.23786
\(562\) 100208. + 100208.i 0.317272 + 0.317272i
\(563\) 117054. 117054.i 0.369293 0.369293i −0.497927 0.867219i \(-0.665905\pi\)
0.867219 + 0.497927i \(0.165905\pi\)
\(564\) 274223.i 0.862077i
\(565\) −331947. + 308925.i −1.03985 + 0.967735i
\(566\) −127017. −0.396487
\(567\) −100612. 100612.i −0.312955 0.312955i
\(568\) 135269. 135269.i 0.419277 0.419277i
\(569\) 326279.i 1.00778i −0.863769 0.503888i \(-0.831902\pi\)
0.863769 0.503888i \(-0.168098\pi\)
\(570\) −3294.12 + 91698.9i −0.0101389 + 0.282237i
\(571\) −271493. −0.832697 −0.416348 0.909205i \(-0.636690\pi\)
−0.416348 + 0.909205i \(0.636690\pi\)
\(572\) 190329. + 190329.i 0.581719 + 0.581719i
\(573\) −291270. + 291270.i −0.887130 + 0.887130i
\(574\) 3828.47i 0.0116199i
\(575\) 51759.4 44812.1i 0.156550 0.135538i
\(576\) −9077.42 −0.0273601
\(577\) 213637. + 213637.i 0.641690 + 0.641690i 0.950971 0.309281i \(-0.100088\pi\)
−0.309281 + 0.950971i \(0.600088\pi\)
\(578\) −14835.0 + 14835.0i −0.0444049 + 0.0444049i
\(579\) 605226.i 1.80535i
\(580\) 71098.0 + 2554.07i 0.211350 + 0.00759236i
\(581\) 3345.70 0.00991141
\(582\) 285773. + 285773.i 0.843675 + 0.843675i
\(583\) −381369. + 381369.i −1.12204 + 1.12204i
\(584\) 225415.i 0.660931i
\(585\) 71483.7 + 76811.0i 0.208879 + 0.224446i
\(586\) −108192. −0.315066
\(587\) −18219.6 18219.6i −0.0528766 0.0528766i 0.680174 0.733051i \(-0.261904\pi\)
−0.733051 + 0.680174i \(0.761904\pi\)
\(588\) 19279.3 19279.3i 0.0557619 0.0557619i
\(589\) 155493.i 0.448207i
\(590\) 286135. 266290.i 0.821992 0.764983i
\(591\) −188525. −0.539752
\(592\) −30213.4 30213.4i −0.0862097 0.0862097i
\(593\) −394452. + 394452.i −1.12172 + 1.12172i −0.130237 + 0.991483i \(0.541574\pi\)
−0.991483 + 0.130237i \(0.958426\pi\)
\(594\) 252722.i 0.716259i
\(595\) 4585.48 127647.i 0.0129524 0.360558i
\(596\) −43897.9 −0.123581
\(597\) 284086. + 284086.i 0.797079 + 0.797079i
\(598\) −51863.6 + 51863.6i −0.145031 + 0.145031i
\(599\) 277665.i 0.773868i 0.922107 + 0.386934i \(0.126466\pi\)
−0.922107 + 0.386934i \(0.873534\pi\)
\(600\) −10082.9 + 140158.i −0.0280079 + 0.389327i
\(601\) 544885. 1.50854 0.754269 0.656566i \(-0.227992\pi\)
0.754269 + 0.656566i \(0.227992\pi\)
\(602\) 78356.1 + 78356.1i 0.216212 + 0.216212i
\(603\) −63150.5 + 63150.5i −0.173677 + 0.173677i
\(604\) 108497.i 0.297401i
\(605\) −138877. 4988.93i −0.379421 0.0136300i
\(606\) −430550. −1.17241
\(607\) 306025. + 306025.i 0.830577 + 0.830577i 0.987596 0.157019i \(-0.0501884\pi\)
−0.157019 + 0.987596i \(0.550188\pi\)
\(608\) 16716.5 16716.5i 0.0452209 0.0452209i
\(609\) 65460.3i 0.176499i
\(610\) 19928.1 + 21413.2i 0.0535558 + 0.0575469i
\(611\) −816675. −2.18759
\(612\) −27667.5 27667.5i −0.0738698 0.0738698i
\(613\) 17628.3 17628.3i 0.0469125 0.0469125i −0.683261 0.730174i \(-0.739439\pi\)
0.730174 + 0.683261i \(0.239439\pi\)
\(614\) 94019.9i 0.249392i
\(615\) −13290.1 + 12368.4i −0.0351381 + 0.0327011i
\(616\) −59559.9 −0.156961
\(617\) −327135. 327135.i −0.859324 0.859324i 0.131934 0.991258i \(-0.457881\pi\)
−0.991258 + 0.131934i \(0.957881\pi\)
\(618\) −118598. + 118598.i −0.310528 + 0.310528i
\(619\) 107360.i 0.280195i −0.990138 0.140098i \(-0.955258\pi\)
0.990138 0.140098i \(-0.0447416\pi\)
\(620\) 8548.67 237971.i 0.0222390 0.619070i
\(621\) −68865.3 −0.178574
\(622\) 727.220 + 727.220i 0.00187969 + 0.00187969i
\(623\) 30417.2 30417.2i 0.0783688 0.0783688i
\(624\) 150543.i 0.386627i
\(625\) 386603. + 55913.2i 0.989703 + 0.143138i
\(626\) −294650. −0.751895
\(627\) 130412. + 130412.i 0.331727 + 0.331727i
\(628\) −191805. + 191805.i −0.486340 + 0.486340i
\(629\) 184178.i 0.465517i
\(630\) −23203.0 833.527i −0.0584606 0.00210009i
\(631\) 219042. 0.550135 0.275067 0.961425i \(-0.411300\pi\)
0.275067 + 0.961425i \(0.411300\pi\)
\(632\) −104243. 104243.i −0.260984 0.260984i
\(633\) 392011. 392011.i 0.978342 0.978342i
\(634\) 307982.i 0.766208i
\(635\) −276999. 297642.i −0.686959 0.738154i
\(636\) 301649. 0.745740
\(637\) 57416.6 + 57416.6i 0.141501 + 0.141501i
\(638\) 101114. 101114.i 0.248410 0.248410i
\(639\) 149889.i 0.367087i
\(640\) 26502.5 24664.5i 0.0647035 0.0602160i
\(641\) 458498. 1.11589 0.557946 0.829878i \(-0.311590\pi\)
0.557946 + 0.829878i \(0.311590\pi\)
\(642\) −269232. 269232.i −0.653215 0.653215i
\(643\) −160509. + 160509.i −0.388220 + 0.388220i −0.874052 0.485832i \(-0.838517\pi\)
0.485832 + 0.874052i \(0.338517\pi\)
\(644\) 16229.8i 0.0391327i
\(645\) 18864.9 525144.i 0.0453455 1.26229i
\(646\) 101902. 0.244185
\(647\) 174907. + 174907.i 0.417830 + 0.417830i 0.884455 0.466625i \(-0.154530\pi\)
−0.466625 + 0.884455i \(0.654530\pi\)
\(648\) 122924. 122924.i 0.292743 0.292743i
\(649\) 785645.i 1.86525i
\(650\) −417409. 30028.1i −0.987951 0.0710725i
\(651\) 219101. 0.516989
\(652\) 161976. + 161976.i 0.381027 + 0.381027i
\(653\) 85900.9 85900.9i 0.201452 0.201452i −0.599170 0.800622i \(-0.704503\pi\)
0.800622 + 0.599170i \(0.204503\pi\)
\(654\) 174730.i 0.408518i
\(655\) 347896. + 12497.6i 0.810900 + 0.0291301i
\(656\) 4677.49 0.0108694
\(657\) −124889. 124889.i −0.289330 0.289330i
\(658\) 127782. 127782.i 0.295132 0.295132i
\(659\) 503714.i 1.15988i −0.814659 0.579940i \(-0.803076\pi\)
0.814659 0.579940i \(-0.196924\pi\)
\(660\) 192416. + 206756.i 0.441727 + 0.474646i
\(661\) 318462. 0.728878 0.364439 0.931227i \(-0.381261\pi\)
0.364439 + 0.931227i \(0.381261\pi\)
\(662\) −96046.1 96046.1i −0.219161 0.219161i
\(663\) 458848. 458848.i 1.04386 1.04386i
\(664\) 4087.67i 0.00927127i
\(665\) 44264.5 41194.6i 0.100095 0.0931529i
\(666\) −33479.0 −0.0754786
\(667\) 27552.9 + 27552.9i 0.0619321 + 0.0619321i
\(668\) −152708. + 152708.i −0.342223 + 0.342223i
\(669\) 392776.i 0.877592i
\(670\) 12787.3 355962.i 0.0284859 0.792966i
\(671\) 58794.5 0.130585
\(672\) 23554.8 + 23554.8i 0.0521605 + 0.0521605i
\(673\) −34431.0 + 34431.0i −0.0760186 + 0.0760186i −0.744094 0.668075i \(-0.767118\pi\)
0.668075 + 0.744094i \(0.267118\pi\)
\(674\) 196251.i 0.432008i
\(675\) −257185. 297057.i −0.564467 0.651977i
\(676\) 219851. 0.481099
\(677\) 451840. + 451840.i 0.985842 + 0.985842i 0.999901 0.0140595i \(-0.00447544\pi\)
−0.0140595 + 0.999901i \(0.504475\pi\)
\(678\) 360454. 360454.i 0.784134 0.784134i
\(679\) 266327.i 0.577664i
\(680\) 155954. + 5602.38i 0.337271 + 0.0121159i
\(681\) −290555. −0.626518
\(682\) −338435. 338435.i −0.727624 0.727624i
\(683\) −146604. + 146604.i −0.314272 + 0.314272i −0.846562 0.532290i \(-0.821331\pi\)
0.532290 + 0.846562i \(0.321331\pi\)
\(684\) 18523.3i 0.0395919i
\(685\) 43821.1 + 47086.8i 0.0933904 + 0.100350i
\(686\) −17967.4 −0.0381802
\(687\) 387109. + 387109.i 0.820201 + 0.820201i
\(688\) −95732.8 + 95732.8i −0.202248 + 0.202248i
\(689\) 898352.i 1.89238i
\(690\) −56339.8 + 52432.4i −0.118336 + 0.110129i
\(691\) 72668.7 0.152192 0.0760959 0.997101i \(-0.475754\pi\)
0.0760959 + 0.997101i \(0.475754\pi\)
\(692\) −271396. 271396.i −0.566750 0.566750i
\(693\) −32998.7 + 32998.7i −0.0687117 + 0.0687117i
\(694\) 488274.i 1.01378i
\(695\) 11486.2 319742.i 0.0237796 0.661957i
\(696\) −79977.1 −0.165100
\(697\) 14256.7 + 14256.7i 0.0293464 + 0.0293464i
\(698\) −35498.6 + 35498.6i −0.0728620 + 0.0728620i
\(699\) 128277.i 0.262540i
\(700\) 70008.6 60611.9i 0.142875 0.123698i
\(701\) −56710.7 −0.115406 −0.0577031 0.998334i \(-0.518378\pi\)
−0.0577031 + 0.998334i \(0.518378\pi\)
\(702\) 297655. + 297655.i 0.604003 + 0.604003i
\(703\) 61653.2 61653.2i 0.124751 0.124751i
\(704\) 72768.3i 0.146824i
\(705\) −856395. 30764.5i −1.72304 0.0618972i
\(706\) −442824. −0.888427
\(707\) 200626. + 200626.i 0.401374 + 0.401374i
\(708\) −310708. + 310708.i −0.619849 + 0.619849i
\(709\) 791805.i 1.57516i 0.616209 + 0.787582i \(0.288668\pi\)
−0.616209 + 0.787582i \(0.711332\pi\)
\(710\) 407267. + 437618.i 0.807909 + 0.868118i
\(711\) −115510. −0.228498
\(712\) 37162.7 + 37162.7i 0.0733073 + 0.0733073i
\(713\) 92221.8 92221.8i 0.181407 0.181407i
\(714\) 143588.i 0.281657i
\(715\) −615748. + 573043.i −1.20446 + 1.12092i
\(716\) 508358. 0.991617
\(717\) −278773. 278773.i −0.542265 0.542265i
\(718\) 139172. 139172.i 0.269963 0.269963i
\(719\) 20588.7i 0.0398265i 0.999802 + 0.0199132i \(0.00633900\pi\)
−0.999802 + 0.0199132i \(0.993661\pi\)
\(720\) 1018.38 28348.7i 0.00196446 0.0546849i
\(721\) 110528. 0.212618
\(722\) −226530. 226530.i −0.434562 0.434562i
\(723\) 680924. 680924.i 1.30263 1.30263i
\(724\) 73374.3i 0.139980i
\(725\) −15952.6 + 221752.i −0.0303499 + 0.421882i
\(726\) 156221. 0.296392
\(727\) 69062.9 + 69062.9i 0.130670 + 0.130670i 0.769417 0.638747i \(-0.220547\pi\)
−0.638747 + 0.769417i \(0.720547\pi\)
\(728\) −70149.6 + 70149.6i −0.132362 + 0.132362i
\(729\) 369770.i 0.695788i
\(730\) 703967. + 25288.8i 1.32101 + 0.0474550i
\(731\) −583577. −1.09210
\(732\) −23252.1 23252.1i −0.0433951 0.0433951i
\(733\) −738060. + 738060.i −1.37367 + 1.37367i −0.518746 + 0.854929i \(0.673601\pi\)
−0.854929 + 0.518746i \(0.826399\pi\)
\(734\) 485830.i 0.901762i
\(735\) 58046.2 + 62372.0i 0.107448 + 0.115456i
\(736\) 19829.0 0.0366053
\(737\) −506240. 506240.i −0.932012 0.932012i
\(738\) 2591.53 2591.53i 0.00475820 0.00475820i
\(739\) 201783.i 0.369484i 0.982787 + 0.184742i \(0.0591449\pi\)
−0.982787 + 0.184742i \(0.940855\pi\)
\(740\) 97745.6 90966.4i 0.178498 0.166118i
\(741\) 307197. 0.559475
\(742\) −140561. 140561.i −0.255304 0.255304i
\(743\) −729388. + 729388.i −1.32124 + 1.32124i −0.408462 + 0.912775i \(0.633935\pi\)
−0.912775 + 0.408462i \(0.866065\pi\)
\(744\) 267690.i 0.483599i
\(745\) 4924.81 137093.i 0.00887313 0.247003i
\(746\) 343524. 0.617276
\(747\) 2264.74 + 2264.74i 0.00405861 + 0.00405861i
\(748\) 221794. 221794.i 0.396412 0.396412i
\(749\) 250911.i 0.447256i
\(750\) −436580. 47212.6i −0.776141 0.0839335i
\(751\) 276877. 0.490916 0.245458 0.969407i \(-0.421062\pi\)
0.245458 + 0.969407i \(0.421062\pi\)
\(752\) 156119. + 156119.i 0.276071 + 0.276071i
\(753\) −209433. + 209433.i −0.369365 + 0.369365i
\(754\) 238183.i 0.418956i
\(755\) −338833. 12172.0i −0.594418 0.0213534i
\(756\) −93145.6 −0.162974
\(757\) −260172. 260172.i −0.454014 0.454014i 0.442670 0.896684i \(-0.354031\pi\)
−0.896684 + 0.442670i \(0.854031\pi\)
\(758\) 2128.56 2128.56i 0.00370464 0.00370464i
\(759\) 154693.i 0.268526i
\(760\) 50330.1 + 54080.9i 0.0871366 + 0.0936303i
\(761\) −124482. −0.214949 −0.107475 0.994208i \(-0.534276\pi\)
−0.107475 + 0.994208i \(0.534276\pi\)
\(762\) 323203. + 323203.i 0.556628 + 0.556628i
\(763\) −81419.9 + 81419.9i −0.139856 + 0.139856i
\(764\) 331649.i 0.568187i
\(765\) 89509.2 83301.2i 0.152948 0.142341i
\(766\) 110182. 0.187781
\(767\) −925331. 925331.i −1.57292 1.57292i
\(768\) −28778.5 + 28778.5i −0.0487917 + 0.0487917i
\(769\) 1.05263e6i 1.78001i 0.455951 + 0.890005i \(0.349299\pi\)
−0.455951 + 0.890005i \(0.650701\pi\)
\(770\) 6681.89 186005.i 0.0112698 0.313720i
\(771\) −974330. −1.63907
\(772\) −344564. 344564.i −0.578142 0.578142i
\(773\) 91728.2 91728.2i 0.153513 0.153513i −0.626172 0.779685i \(-0.715379\pi\)
0.779685 + 0.626172i \(0.215379\pi\)
\(774\) 106080.i 0.177073i
\(775\) 742220. + 53394.8i 1.23575 + 0.0888987i
\(776\) 325389. 0.540355
\(777\) 86874.0 + 86874.0i 0.143896 + 0.143896i
\(778\) 434267. 434267.i 0.717459 0.717459i
\(779\) 9544.85i 0.0157288i
\(780\) 470144. + 16889.1i 0.772755 + 0.0277599i
\(781\) 1.20157e6 1.96992
\(782\) 60437.6 + 60437.6i 0.0988312 + 0.0988312i
\(783\) 158131. 158131.i 0.257926 0.257926i
\(784\) 21952.0i 0.0357143i
\(785\) −577485. 620522.i −0.937134 1.00697i
\(786\) −391343. −0.633451
\(787\) 9032.35 + 9032.35i 0.0145832 + 0.0145832i 0.714361 0.699778i \(-0.246718\pi\)
−0.699778 + 0.714361i \(0.746718\pi\)
\(788\) −107330. + 107330.i −0.172850 + 0.172850i
\(789\) 550841.i 0.884855i
\(790\) 337245. 313856.i 0.540371 0.502893i
\(791\) −335926. −0.536897
\(792\) −40316.7 40316.7i −0.0642739 0.0642739i
\(793\) 69248.0 69248.0i 0.110119 0.110119i
\(794\) 720790.i 1.14332i
\(795\) −33841.3 + 942045.i −0.0535442 + 1.49052i
\(796\) 323468. 0.510512
\(797\) −214356. 214356.i −0.337457 0.337457i 0.517952 0.855409i \(-0.326694\pi\)
−0.855409 + 0.517952i \(0.826694\pi\)
\(798\) −48065.8 + 48065.8i −0.0754798 + 0.0754798i
\(799\) 951686.i 1.49073i
\(800\) 74053.5 + 85534.1i 0.115709 + 0.133647i
\(801\) 41179.4 0.0641822
\(802\) −285765. 285765.i −0.444284 0.444284i
\(803\) 1.00116e6 1.00116e6i 1.55265 1.55265i
\(804\) 400417.i 0.619441i
\(805\) 50685.3 + 1820.78i 0.0782150 + 0.00280974i
\(806\) −797217. −1.22717
\(807\) 249281. + 249281.i 0.382773 + 0.382773i
\(808\) −245118. + 245118.i −0.375451 + 0.375451i
\(809\) 436107.i 0.666340i −0.942867 0.333170i \(-0.891882\pi\)
0.942867 0.333170i \(-0.108118\pi\)
\(810\) 370099. + 397680.i 0.564090 + 0.606128i
\(811\) 719061. 1.09326 0.546630 0.837374i \(-0.315910\pi\)
0.546630 + 0.837374i \(0.315910\pi\)
\(812\) 37267.4 + 37267.4i 0.0565220 + 0.0565220i
\(813\) −500065. + 500065.i −0.756563 + 0.756563i
\(814\) 268381.i 0.405045i
\(815\) −524021. + 487678.i −0.788921 + 0.734206i
\(816\) −175431. −0.263466
\(817\) −195352. 195352.i −0.292666 0.292666i
\(818\) 197318. 197318.i 0.294891 0.294891i
\(819\) 77731.6i 0.115886i
\(820\) −524.757 + 14607.7i −0.000780424 + 0.0217248i
\(821\) −463149. −0.687123 −0.343561 0.939130i \(-0.611633\pi\)
−0.343561 + 0.939130i \(0.611633\pi\)
\(822\) −51130.5 51130.5i −0.0756722 0.0756722i
\(823\) −635523. + 635523.i −0.938279 + 0.938279i −0.998203 0.0599241i \(-0.980914\pi\)
0.0599241 + 0.998203i \(0.480914\pi\)
\(824\) 135039.i 0.198886i
\(825\) −667282. + 577718.i −0.980397 + 0.848805i
\(826\) 289565. 0.424410
\(827\) 233699. + 233699.i 0.341701 + 0.341701i 0.857006 0.515306i \(-0.172322\pi\)
−0.515306 + 0.857006i \(0.672322\pi\)
\(828\) 10986.1 10986.1i 0.0160244 0.0160244i
\(829\) 1791.15i 0.00260629i 0.999999 + 0.00130315i \(0.000414804\pi\)
−0.999999 + 0.00130315i \(0.999585\pi\)
\(830\) −12765.7 458.586i −0.0185306 0.000665679i
\(831\) 1.22627e6 1.77576
\(832\) −85706.4 85706.4i −0.123813 0.123813i
\(833\) 66908.5 66908.5i 0.0964254 0.0964254i
\(834\) 359673.i 0.517101i
\(835\) −459774. 494038.i −0.659434 0.708577i
\(836\) 148490. 0.212464
\(837\) −529278. 529278.i −0.755498 0.755498i
\(838\) −330413. + 330413.i −0.470511 + 0.470511i
\(839\) 1.19961e6i 1.70418i −0.523395 0.852090i \(-0.675335\pi\)
0.523395 0.852090i \(-0.324665\pi\)
\(840\) −76204.0 + 70918.9i −0.107999 + 0.100509i
\(841\) 580745. 0.821095
\(842\) −577394. 577394.i −0.814419 0.814419i
\(843\) 352032. 352032.i 0.495367 0.495367i
\(844\) 446355.i 0.626607i
\(845\) −24664.5 + 686590.i −0.0345430 + 0.961577i
\(846\) 172993. 0.241706
\(847\) −72795.4 72795.4i −0.101470 0.101470i
\(848\) 171733. 171733.i 0.238815 0.238815i
\(849\) 446210.i 0.619048i
\(850\) −34992.3 + 486414.i −0.0484323 + 0.673238i
\(851\) 73132.4 0.100984
\(852\) −475199. 475199.i −0.654631 0.654631i
\(853\) 353036. 353036.i 0.485200 0.485200i −0.421588 0.906788i \(-0.638527\pi\)
0.906788 + 0.421588i \(0.138527\pi\)
\(854\) 21669.9i 0.0297126i
\(855\) 57848.0 + 2078.09i 0.0791328 + 0.00284270i
\(856\) −306555. −0.418370
\(857\) −254785. 254785.i −0.346906 0.346906i 0.512050 0.858956i \(-0.328886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(858\) 668626. 668626.i 0.908257 0.908257i
\(859\) 608927.i 0.825238i −0.910904 0.412619i \(-0.864614\pi\)
0.910904 0.412619i \(-0.135386\pi\)
\(860\) −288232. 309712.i −0.389713 0.418756i
\(861\) −13449.4 −0.0181425
\(862\) 207584. + 207584.i 0.279369 + 0.279369i
\(863\) 543741. 543741.i 0.730080 0.730080i −0.240555 0.970635i \(-0.577329\pi\)
0.970635 + 0.240555i \(0.0773295\pi\)
\(864\) 113802.i 0.152448i
\(865\) 878013. 817119.i 1.17346 1.09208i
\(866\) 902698. 1.20367
\(867\) 52115.2 + 52115.2i 0.0693308 + 0.0693308i
\(868\) 124737. 124737.i 0.165560 0.165560i
\(869\) 925978.i 1.22620i
\(870\) 8972.45 249767.i 0.0118542 0.329987i
\(871\) −1.19250e6 −1.57189
\(872\) −99476.0 99476.0i −0.130823 0.130823i
\(873\) 180279. 180279.i 0.236547 0.236547i
\(874\) 40462.8i 0.0529704i
\(875\) 181436. + 225436.i 0.236977 + 0.294447i
\(876\) −791882. −1.03193
\(877\) 869679. + 869679.i 1.13073 + 1.13073i 0.990056 + 0.140676i \(0.0449277\pi\)
0.140676 + 0.990056i \(0.455072\pi\)
\(878\) −343052. + 343052.i −0.445012 + 0.445012i
\(879\) 380080.i 0.491923i
\(880\) 227254. + 8163.71i 0.293459 + 0.0105420i
\(881\) −793137. −1.02187 −0.510936 0.859619i \(-0.670701\pi\)
−0.510936 + 0.859619i \(0.670701\pi\)
\(882\) −12162.3 12162.3i −0.0156343 0.0156343i
\(883\) −589040. + 589040.i −0.755480 + 0.755480i −0.975496 0.220016i \(-0.929389\pi\)
0.220016 + 0.975496i \(0.429389\pi\)
\(884\) 522457.i 0.668568i
\(885\) −935478. 1.00519e6i −1.19439 1.28340i
\(886\) −899459. −1.14581
\(887\) 691175. + 691175.i 0.878497 + 0.878497i 0.993379 0.114882i \(-0.0366489\pi\)
−0.114882 + 0.993379i \(0.536649\pi\)
\(888\) −106140. + 106140.i −0.134602 + 0.134602i
\(889\) 301210.i 0.381123i
\(890\) −120228. + 111889.i −0.151784 + 0.141257i
\(891\) 1.09191e6 1.37541
\(892\) −223613. 223613.i −0.281039 0.281039i
\(893\) −318575. + 318575.i −0.399493 + 0.399493i
\(894\) 154213.i 0.192951i
\(895\) −57031.6 + 1.58760e6i −0.0711982 + 1.98196i
\(896\) 26820.2 0.0334077
\(897\) 182197. + 182197.i 0.226442 + 0.226442i
\(898\) −616273. + 616273.i −0.764224 + 0.764224i
\(899\) 423527.i 0.524037i
\(900\) 88418.2 + 6360.74i 0.109158 + 0.00785277i
\(901\) 1.04687e6 1.28956
\(902\) 20774.7 + 20774.7i 0.0255342 + 0.0255342i
\(903\) 275265. 275265.i 0.337579 0.337579i
\(904\) 410423.i 0.502221i
\(905\) 229147. + 8231.69i 0.279780 + 0.0100506i
\(906\) 381149. 0.464342
\(907\) −869238. 869238.i −1.05663 1.05663i −0.998297 0.0583365i \(-0.981420\pi\)
−0.0583365 0.998297i \(-0.518580\pi\)
\(908\) −165417. + 165417.i −0.200636 + 0.200636i
\(909\) 271611.i 0.328716i
\(910\) −211206. 226946.i −0.255049 0.274056i
\(911\) 881891. 1.06262 0.531310 0.847177i \(-0.321700\pi\)
0.531310 + 0.847177i \(0.321700\pi\)
\(912\) −58725.2 58725.2i −0.0706049 0.0706049i
\(913\) −18155.1 + 18155.1i −0.0217799 + 0.0217799i
\(914\) 482532.i 0.577608i
\(915\) 75224.6 70007.4i 0.0898500 0.0836184i
\(916\) 440773. 0.525321
\(917\) 182357. + 182357.i 0.216862 + 0.216862i
\(918\) 346863. 346863.i 0.411597 0.411597i
\(919\) 1.54970e6i 1.83492i −0.397831 0.917459i \(-0.630237\pi\)
0.397831 0.917459i \(-0.369763\pi\)
\(920\) −2224.57 + 61925.6i −0.00262827 + 0.0731635i
\(921\) −330292. −0.389384
\(922\) 383085. + 383085.i 0.450644 + 0.450644i
\(923\) 1.41521e6 1.41521e6i 1.66118 1.66118i
\(924\) 209234.i 0.245069i
\(925\) 273121. + 315463.i 0.319206 + 0.368693i
\(926\) 514606. 0.600140
\(927\) 74817.3 + 74817.3i 0.0870647 + 0.0870647i
\(928\) −45532.1 + 45532.1i −0.0528715 + 0.0528715i
\(929\) 991662.i 1.14903i 0.818493 + 0.574516i \(0.194810\pi\)
−0.818493 + 0.574516i \(0.805190\pi\)
\(930\) −835991. 30031.5i −0.966575 0.0347225i
\(931\) 44795.1 0.0516810
\(932\) −73030.0 73030.0i −0.0840755 0.0840755i
\(933\) 2554.72 2554.72i 0.00293482 0.00293482i
\(934\) 523547.i 0.600153i
\(935\) 667777. + 717542.i 0.763850 + 0.820775i
\(936\) −94969.8 −0.108401
\(937\) 447928. + 447928.i 0.510187 + 0.510187i 0.914584 0.404397i \(-0.132519\pi\)
−0.404397 + 0.914584i \(0.632519\pi\)
\(938\) 186585. 186585.i 0.212066 0.212066i
\(939\) 1.03510e6i 1.17396i
\(940\) −505072. + 470043.i −0.571608 + 0.531964i
\(941\) 117854. 0.133096 0.0665481 0.997783i \(-0.478801\pi\)
0.0665481 + 0.997783i \(0.478801\pi\)
\(942\) 673810. + 673810.i 0.759339 + 0.759339i
\(943\) −5661.00 + 5661.00i −0.00636604 + 0.00636604i
\(944\) 353781.i 0.397000i
\(945\) 10449.8 290892.i 0.0117016 0.325738i
\(946\) −850380. −0.950234
\(947\) 117399. + 117399.i 0.130908 + 0.130908i 0.769525 0.638617i \(-0.220493\pi\)
−0.638617 + 0.769525i \(0.720493\pi\)
\(948\) −366207. + 366207.i −0.407483 + 0.407483i
\(949\) 2.35833e6i 2.61862i
\(950\) −174540. + 151113.i −0.193396 + 0.167438i
\(951\) 1.08194e6 1.19631
\(952\) 81746.5 + 81746.5i 0.0901977 + 0.0901977i
\(953\) 1.21362e6 1.21362e6i 1.33628 1.33628i 0.436653 0.899630i \(-0.356164\pi\)
0.899630 0.436653i \(-0.143836\pi\)
\(954\) 190294.i 0.209088i
\(955\) −1.03573e6 37206.9i −1.13564 0.0407959i
\(956\) −317418. −0.347309
\(957\) −355212. 355212.i −0.387850 0.387850i
\(958\) 188793. 188793.i 0.205710 0.205710i
\(959\) 47651.2i 0.0518127i
\(960\) −86646.2 93103.4i −0.0940172 0.101024i
\(961\) 494057. 0.534971
\(962\) −316099. 316099.i −0.341564 0.341564i
\(963\) −169844. + 169844.i −0.183146 + 0.183146i
\(964\) 775319.i 0.834308i
\(965\) 1.11472e6 1.03741e6i 1.19705 1.11403i
\(966\) −57015.1 −0.0610993
\(967\) −972541. 972541.i −1.04005 1.04005i −0.999164 0.0408884i \(-0.986981\pi\)
−0.0408884 0.999164i \(-0.513019\pi\)
\(968\) 88938.9 88938.9i 0.0949164 0.0949164i
\(969\) 357982.i 0.381254i
\(970\) −36504.6 + 1.01619e6i −0.0387976 + 1.08001i
\(971\) −1.26305e6 −1.33962 −0.669810 0.742533i \(-0.733624\pi\)
−0.669810 + 0.742533i \(0.733624\pi\)
\(972\) −143770. 143770.i −0.152172 0.152172i
\(973\) 167599. 167599.i 0.177030 0.177030i
\(974\) 710409.i 0.748843i
\(975\) −105489. + 1.46636e6i −0.110968 + 1.54252i
\(976\) −26475.5 −0.0277936
\(977\) 610115. + 610115.i 0.639179 + 0.639179i 0.950353 0.311174i \(-0.100722\pi\)
−0.311174 + 0.950353i \(0.600722\pi\)
\(978\) 569022. 569022.i 0.594911 0.594911i
\(979\) 330111.i 0.344425i
\(980\) 68555.8 + 2462.74i 0.0713825 + 0.00256429i
\(981\) −110228. −0.114539
\(982\) 132480. + 132480.i 0.137381 + 0.137381i
\(983\) 120397. 120397.i 0.124597 0.124597i −0.642058 0.766656i \(-0.721919\pi\)
0.766656 + 0.642058i \(0.221919\pi\)
\(984\) 16432.0i 0.0169707i
\(985\) −323149. 347231.i −0.333066 0.357887i
\(986\) −277559. −0.285497
\(987\) −448897. 448897.i −0.460799 0.460799i
\(988\) 174892. 174892.i 0.179166 0.179166i
\(989\) 231724.i 0.236907i
\(990\) 130431. 121385.i 0.133080 0.123850i
\(991\) −280958. −0.286084 −0.143042 0.989717i \(-0.545688\pi\)
−0.143042 + 0.989717i \(0.545688\pi\)
\(992\) 152399. + 152399.i 0.154867 + 0.154867i
\(993\) −337410. + 337410.i −0.342184 + 0.342184i
\(994\) 442863.i 0.448226i
\(995\) −36289.2 + 1.01019e6i −0.0366548 + 1.02036i
\(996\) 14360.0 0.0144755
\(997\) 154924. + 154924.i 0.155857 + 0.155857i 0.780728 0.624871i \(-0.214848\pi\)
−0.624871 + 0.780728i \(0.714848\pi\)
\(998\) 322924. 322924.i 0.324220 0.324220i
\(999\) 419720.i 0.420561i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.5.f.a.57.2 yes 12
5.2 odd 4 350.5.f.d.43.5 12
5.3 odd 4 inner 70.5.f.a.43.2 12
5.4 even 2 350.5.f.d.57.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.5.f.a.43.2 12 5.3 odd 4 inner
70.5.f.a.57.2 yes 12 1.1 even 1 trivial
350.5.f.d.43.5 12 5.2 odd 4
350.5.f.d.57.5 12 5.4 even 2