Properties

Label 70.5.f.a.57.1
Level $70$
Weight $5$
Character 70.57
Analytic conductor $7.236$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,5,Mod(43,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.43"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 70.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.23589741587\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 334x^{10} + 34233x^{8} + 1144512x^{6} + 13607616x^{4} + 38549504x^{2} + 31360000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5^{2}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.1
Root \(10.8624i\) of defining polynomial
Character \(\chi\) \(=\) 70.57
Dual form 70.5.f.a.43.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 2.00000i) q^{2} +(-10.1564 + 10.1564i) q^{3} +8.00000i q^{4} +(2.02135 + 24.9181i) q^{5} +40.6256 q^{6} +(13.0958 + 13.0958i) q^{7} +(16.0000 - 16.0000i) q^{8} -125.305i q^{9} +(45.7936 - 53.8790i) q^{10} -182.561 q^{11} +(-81.2512 - 81.2512i) q^{12} +(-9.84039 + 9.84039i) q^{13} -52.3832i q^{14} +(-273.608 - 232.549i) q^{15} -64.0000 q^{16} +(173.376 + 173.376i) q^{17} +(-250.609 + 250.609i) q^{18} -660.618i q^{19} +(-199.345 + 16.1708i) q^{20} -266.012 q^{21} +(365.122 + 365.122i) q^{22} +(22.6288 - 22.6288i) q^{23} +325.005i q^{24} +(-616.828 + 100.736i) q^{25} +39.3615 q^{26} +(449.976 + 449.976i) q^{27} +(-104.766 + 104.766i) q^{28} -594.726i q^{29} +(82.1184 + 1012.31i) q^{30} -371.681 q^{31} +(128.000 + 128.000i) q^{32} +(1854.16 - 1854.16i) q^{33} -693.502i q^{34} +(-299.852 + 352.794i) q^{35} +1002.44 q^{36} +(660.943 + 660.943i) q^{37} +(-1321.24 + 1321.24i) q^{38} -199.886i q^{39} +(431.032 + 366.349i) q^{40} +1356.35 q^{41} +(532.025 + 532.025i) q^{42} +(-518.639 + 518.639i) q^{43} -1460.49i q^{44} +(3122.36 - 253.284i) q^{45} -90.5153 q^{46} +(-879.567 - 879.567i) q^{47} +(650.009 - 650.009i) q^{48} +343.000i q^{49} +(1435.13 + 1032.18i) q^{50} -3521.74 q^{51} +(-78.7231 - 78.7231i) q^{52} +(-3393.38 + 3393.38i) q^{53} -1799.91i q^{54} +(-369.019 - 4549.08i) q^{55} +419.066 q^{56} +(6709.50 + 6709.50i) q^{57} +(-1189.45 + 1189.45i) q^{58} +6916.34i q^{59} +(1860.39 - 2188.87i) q^{60} -5335.18 q^{61} +(743.362 + 743.362i) q^{62} +(1640.97 - 1640.97i) q^{63} -512.000i q^{64} +(-265.095 - 225.313i) q^{65} -7416.64 q^{66} +(-3947.34 - 3947.34i) q^{67} +(-1387.00 + 1387.00i) q^{68} +459.655i q^{69} +(1305.29 - 105.885i) q^{70} -8321.45 q^{71} +(-2004.88 - 2004.88i) q^{72} +(7073.77 - 7073.77i) q^{73} -2643.77i q^{74} +(5241.63 - 7287.87i) q^{75} +5284.94 q^{76} +(-2390.78 - 2390.78i) q^{77} +(-399.771 + 399.771i) q^{78} -7279.73i q^{79} +(-129.366 - 1594.76i) q^{80} +1009.41 q^{81} +(-2712.69 - 2712.69i) q^{82} +(-7716.80 + 7716.80i) q^{83} -2128.10i q^{84} +(-3969.75 + 4670.65i) q^{85} +2074.55 q^{86} +(6040.27 + 6040.27i) q^{87} +(-2920.97 + 2920.97i) q^{88} +435.762i q^{89} +(-6751.29 - 5738.15i) q^{90} -257.736 q^{91} +(181.031 + 181.031i) q^{92} +(3774.94 - 3774.94i) q^{93} +3518.27i q^{94} +(16461.4 - 1335.34i) q^{95} -2600.04 q^{96} +(101.451 + 101.451i) q^{97} +(686.000 - 686.000i) q^{98} +22875.7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{2} - 20 q^{3} + 8 q^{5} + 80 q^{6} + 192 q^{8} - 144 q^{10} + 4 q^{11} - 160 q^{12} - 180 q^{13} - 736 q^{15} - 768 q^{16} - 236 q^{17} - 464 q^{18} + 512 q^{20} - 196 q^{21} - 8 q^{22} - 1232 q^{23}+ \cdots + 8232 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 2.00000i −0.500000 0.500000i
\(3\) −10.1564 + 10.1564i −1.12849 + 1.12849i −0.138065 + 0.990423i \(0.544088\pi\)
−0.990423 + 0.138065i \(0.955912\pi\)
\(4\) 8.00000i 0.500000i
\(5\) 2.02135 + 24.9181i 0.0808539 + 0.996726i
\(6\) 40.6256 1.12849
\(7\) 13.0958 + 13.0958i 0.267261 + 0.267261i
\(8\) 16.0000 16.0000i 0.250000 0.250000i
\(9\) 125.305i 1.54697i
\(10\) 45.7936 53.8790i 0.457936 0.538790i
\(11\) −182.561 −1.50877 −0.754383 0.656434i \(-0.772064\pi\)
−0.754383 + 0.656434i \(0.772064\pi\)
\(12\) −81.2512 81.2512i −0.564244 0.564244i
\(13\) −9.84039 + 9.84039i −0.0582271 + 0.0582271i −0.735621 0.677394i \(-0.763109\pi\)
0.677394 + 0.735621i \(0.263109\pi\)
\(14\) 52.3832i 0.267261i
\(15\) −273.608 232.549i −1.21604 1.03355i
\(16\) −64.0000 −0.250000
\(17\) 173.376 + 173.376i 0.599916 + 0.599916i 0.940290 0.340374i \(-0.110554\pi\)
−0.340374 + 0.940290i \(0.610554\pi\)
\(18\) −250.609 + 250.609i −0.773486 + 0.773486i
\(19\) 660.618i 1.82997i −0.403492 0.914983i \(-0.632204\pi\)
0.403492 0.914983i \(-0.367796\pi\)
\(20\) −199.345 + 16.1708i −0.498363 + 0.0404269i
\(21\) −266.012 −0.603202
\(22\) 365.122 + 365.122i 0.754383 + 0.754383i
\(23\) 22.6288 22.6288i 0.0427766 0.0427766i −0.685395 0.728172i \(-0.740370\pi\)
0.728172 + 0.685395i \(0.240370\pi\)
\(24\) 325.005i 0.564244i
\(25\) −616.828 + 100.736i −0.986925 + 0.161178i
\(26\) 39.3615 0.0582271
\(27\) 449.976 + 449.976i 0.617251 + 0.617251i
\(28\) −104.766 + 104.766i −0.133631 + 0.133631i
\(29\) 594.726i 0.707165i −0.935403 0.353582i \(-0.884963\pi\)
0.935403 0.353582i \(-0.115037\pi\)
\(30\) 82.1184 + 1012.31i 0.0912427 + 1.12479i
\(31\) −371.681 −0.386765 −0.193382 0.981123i \(-0.561946\pi\)
−0.193382 + 0.981123i \(0.561946\pi\)
\(32\) 128.000 + 128.000i 0.125000 + 0.125000i
\(33\) 1854.16 1854.16i 1.70263 1.70263i
\(34\) 693.502i 0.599916i
\(35\) −299.852 + 352.794i −0.244777 + 0.287995i
\(36\) 1002.44 0.773486
\(37\) 660.943 + 660.943i 0.482792 + 0.482792i 0.906022 0.423230i \(-0.139104\pi\)
−0.423230 + 0.906022i \(0.639104\pi\)
\(38\) −1321.24 + 1321.24i −0.914983 + 0.914983i
\(39\) 199.886i 0.131417i
\(40\) 431.032 + 366.349i 0.269395 + 0.228968i
\(41\) 1356.35 0.806869 0.403434 0.915009i \(-0.367816\pi\)
0.403434 + 0.915009i \(0.367816\pi\)
\(42\) 532.025 + 532.025i 0.301601 + 0.301601i
\(43\) −518.639 + 518.639i −0.280497 + 0.280497i −0.833307 0.552810i \(-0.813555\pi\)
0.552810 + 0.833307i \(0.313555\pi\)
\(44\) 1460.49i 0.754383i
\(45\) 3122.36 253.284i 1.54191 0.125079i
\(46\) −90.5153 −0.0427766
\(47\) −879.567 879.567i −0.398174 0.398174i 0.479414 0.877589i \(-0.340849\pi\)
−0.877589 + 0.479414i \(0.840849\pi\)
\(48\) 650.009 650.009i 0.282122 0.282122i
\(49\) 343.000i 0.142857i
\(50\) 1435.13 + 1032.18i 0.574052 + 0.412873i
\(51\) −3521.74 −1.35400
\(52\) −78.7231 78.7231i −0.0291136 0.0291136i
\(53\) −3393.38 + 3393.38i −1.20804 + 1.20804i −0.236379 + 0.971661i \(0.575961\pi\)
−0.971661 + 0.236379i \(0.924039\pi\)
\(54\) 1799.91i 0.617251i
\(55\) −369.019 4549.08i −0.121990 1.50383i
\(56\) 419.066 0.133631
\(57\) 6709.50 + 6709.50i 2.06510 + 2.06510i
\(58\) −1189.45 + 1189.45i −0.353582 + 0.353582i
\(59\) 6916.34i 1.98688i 0.114343 + 0.993441i \(0.463524\pi\)
−0.114343 + 0.993441i \(0.536476\pi\)
\(60\) 1860.39 2188.87i 0.516775 0.608018i
\(61\) −5335.18 −1.43380 −0.716902 0.697174i \(-0.754440\pi\)
−0.716902 + 0.697174i \(0.754440\pi\)
\(62\) 743.362 + 743.362i 0.193382 + 0.193382i
\(63\) 1640.97 1640.97i 0.413446 0.413446i
\(64\) 512.000i 0.125000i
\(65\) −265.095 225.313i −0.0627444 0.0533286i
\(66\) −7416.64 −1.70263
\(67\) −3947.34 3947.34i −0.879336 0.879336i 0.114130 0.993466i \(-0.463592\pi\)
−0.993466 + 0.114130i \(0.963592\pi\)
\(68\) −1387.00 + 1387.00i −0.299958 + 0.299958i
\(69\) 459.655i 0.0965458i
\(70\) 1305.29 105.885i 0.266386 0.0216091i
\(71\) −8321.45 −1.65075 −0.825377 0.564582i \(-0.809037\pi\)
−0.825377 + 0.564582i \(0.809037\pi\)
\(72\) −2004.88 2004.88i −0.386743 0.386743i
\(73\) 7073.77 7073.77i 1.32741 1.32741i 0.419789 0.907622i \(-0.362104\pi\)
0.907622 0.419789i \(-0.137896\pi\)
\(74\) 2643.77i 0.482792i
\(75\) 5241.63 7287.87i 0.931846 1.29562i
\(76\) 5284.94 0.914983
\(77\) −2390.78 2390.78i −0.403235 0.403235i
\(78\) −399.771 + 399.771i −0.0657087 + 0.0657087i
\(79\) 7279.73i 1.16644i −0.812315 0.583218i \(-0.801793\pi\)
0.812315 0.583218i \(-0.198207\pi\)
\(80\) −129.366 1594.76i −0.0202135 0.249181i
\(81\) 1009.41 0.153850
\(82\) −2712.69 2712.69i −0.403434 0.403434i
\(83\) −7716.80 + 7716.80i −1.12016 + 1.12016i −0.128446 + 0.991717i \(0.540999\pi\)
−0.991717 + 0.128446i \(0.959001\pi\)
\(84\) 2128.10i 0.301601i
\(85\) −3969.75 + 4670.65i −0.549446 + 0.646457i
\(86\) 2074.55 0.280497
\(87\) 6040.27 + 6040.27i 0.798027 + 0.798027i
\(88\) −2920.97 + 2920.97i −0.377192 + 0.377192i
\(89\) 435.762i 0.0550135i 0.999622 + 0.0275067i \(0.00875677\pi\)
−0.999622 + 0.0275067i \(0.991243\pi\)
\(90\) −6751.29 5738.15i −0.833493 0.708414i
\(91\) −257.736 −0.0311237
\(92\) 181.031 + 181.031i 0.0213883 + 0.0213883i
\(93\) 3774.94 3774.94i 0.436460 0.436460i
\(94\) 3518.27i 0.398174i
\(95\) 16461.4 1335.34i 1.82397 0.147960i
\(96\) −2600.04 −0.282122
\(97\) 101.451 + 101.451i 0.0107823 + 0.0107823i 0.712477 0.701695i \(-0.247573\pi\)
−0.701695 + 0.712477i \(0.747573\pi\)
\(98\) 686.000 686.000i 0.0714286 0.0714286i
\(99\) 22875.7i 2.33402i
\(100\) −805.892 4934.63i −0.0805892 0.493463i
\(101\) 4189.81 0.410726 0.205363 0.978686i \(-0.434163\pi\)
0.205363 + 0.978686i \(0.434163\pi\)
\(102\) 7043.49 + 7043.49i 0.676998 + 0.676998i
\(103\) −6462.25 + 6462.25i −0.609129 + 0.609129i −0.942719 0.333589i \(-0.891740\pi\)
0.333589 + 0.942719i \(0.391740\pi\)
\(104\) 314.892i 0.0291136i
\(105\) −537.703 6628.53i −0.0487712 0.601227i
\(106\) 13573.5 1.20804
\(107\) 3504.94 + 3504.94i 0.306135 + 0.306135i 0.843408 0.537273i \(-0.180546\pi\)
−0.537273 + 0.843408i \(0.680546\pi\)
\(108\) −3599.81 + 3599.81i −0.308626 + 0.308626i
\(109\) 3778.42i 0.318022i −0.987277 0.159011i \(-0.949169\pi\)
0.987277 0.159011i \(-0.0508305\pi\)
\(110\) −8360.12 + 9836.19i −0.690919 + 0.812908i
\(111\) −13425.6 −1.08965
\(112\) −838.131 838.131i −0.0668153 0.0668153i
\(113\) −10509.5 + 10509.5i −0.823051 + 0.823051i −0.986544 0.163493i \(-0.947724\pi\)
0.163493 + 0.986544i \(0.447724\pi\)
\(114\) 26838.0i 2.06510i
\(115\) 609.609 + 518.128i 0.0460952 + 0.0391779i
\(116\) 4757.81 0.353582
\(117\) 1233.05 + 1233.05i 0.0900758 + 0.0900758i
\(118\) 13832.7 13832.7i 0.993441 0.993441i
\(119\) 4540.99i 0.320668i
\(120\) −8098.51 + 656.947i −0.562397 + 0.0456213i
\(121\) 18687.4 1.27638
\(122\) 10670.4 + 10670.4i 0.716902 + 0.716902i
\(123\) −13775.6 + 13775.6i −0.910542 + 0.910542i
\(124\) 2973.45i 0.193382i
\(125\) −3756.99 15166.6i −0.240447 0.970662i
\(126\) −6563.86 −0.413446
\(127\) 3544.81 + 3544.81i 0.219779 + 0.219779i 0.808405 0.588626i \(-0.200331\pi\)
−0.588626 + 0.808405i \(0.700331\pi\)
\(128\) −1024.00 + 1024.00i −0.0625000 + 0.0625000i
\(129\) 10535.0i 0.633075i
\(130\) 79.5633 + 980.817i 0.00470789 + 0.0580365i
\(131\) 6682.80 0.389418 0.194709 0.980861i \(-0.437624\pi\)
0.194709 + 0.980861i \(0.437624\pi\)
\(132\) 14833.3 + 14833.3i 0.851313 + 0.851313i
\(133\) 8651.32 8651.32i 0.489079 0.489079i
\(134\) 15789.3i 0.879336i
\(135\) −10303.0 + 12122.1i −0.565323 + 0.665138i
\(136\) 5548.02 0.299958
\(137\) −16827.9 16827.9i −0.896577 0.896577i 0.0985544 0.995132i \(-0.468578\pi\)
−0.995132 + 0.0985544i \(0.968578\pi\)
\(138\) 919.309 919.309i 0.0482729 0.0482729i
\(139\) 24977.9i 1.29278i −0.763006 0.646392i \(-0.776277\pi\)
0.763006 0.646392i \(-0.223723\pi\)
\(140\) −2822.35 2398.82i −0.143998 0.122389i
\(141\) 17866.5 0.898670
\(142\) 16642.9 + 16642.9i 0.825377 + 0.825377i
\(143\) 1796.47 1796.47i 0.0878512 0.0878512i
\(144\) 8019.50i 0.386743i
\(145\) 14819.5 1202.15i 0.704850 0.0571770i
\(146\) −28295.1 −1.32741
\(147\) −3483.64 3483.64i −0.161213 0.161213i
\(148\) −5287.54 + 5287.54i −0.241396 + 0.241396i
\(149\) 20595.3i 0.927674i 0.885921 + 0.463837i \(0.153528\pi\)
−0.885921 + 0.463837i \(0.846472\pi\)
\(150\) −25059.0 + 4092.48i −1.11373 + 0.181888i
\(151\) 21488.0 0.942417 0.471208 0.882022i \(-0.343818\pi\)
0.471208 + 0.882022i \(0.343818\pi\)
\(152\) −10569.9 10569.9i −0.457492 0.457492i
\(153\) 21724.8 21724.8i 0.928053 0.928053i
\(154\) 9563.12i 0.403235i
\(155\) −751.296 9261.61i −0.0312714 0.385499i
\(156\) 1599.09 0.0657087
\(157\) −4550.88 4550.88i −0.184627 0.184627i 0.608741 0.793369i \(-0.291675\pi\)
−0.793369 + 0.608741i \(0.791675\pi\)
\(158\) −14559.5 + 14559.5i −0.583218 + 0.583218i
\(159\) 68929.1i 2.72652i
\(160\) −2930.79 + 3448.26i −0.114484 + 0.134697i
\(161\) 592.685 0.0228651
\(162\) −2018.82 2018.82i −0.0769250 0.0769250i
\(163\) −29611.3 + 29611.3i −1.11451 + 1.11451i −0.121972 + 0.992534i \(0.538922\pi\)
−0.992534 + 0.121972i \(0.961078\pi\)
\(164\) 10850.8i 0.403434i
\(165\) 49950.1 + 42454.3i 1.83471 + 1.55939i
\(166\) 30867.2 1.12016
\(167\) 5313.72 + 5313.72i 0.190531 + 0.190531i 0.795925 0.605395i \(-0.206985\pi\)
−0.605395 + 0.795925i \(0.706985\pi\)
\(168\) −4256.20 + 4256.20i −0.150801 + 0.150801i
\(169\) 28367.3i 0.993219i
\(170\) 17280.8 1401.81i 0.597951 0.0485055i
\(171\) −82778.5 −2.83091
\(172\) −4149.11 4149.11i −0.140248 0.140248i
\(173\) 2608.64 2608.64i 0.0871609 0.0871609i −0.662182 0.749343i \(-0.730369\pi\)
0.749343 + 0.662182i \(0.230369\pi\)
\(174\) 24161.1i 0.798027i
\(175\) −9397.09 6758.64i −0.306844 0.220690i
\(176\) 11683.9 0.377192
\(177\) −70245.1 70245.1i −2.24217 2.24217i
\(178\) 871.524 871.524i 0.0275067 0.0275067i
\(179\) 4178.59i 0.130414i 0.997872 + 0.0652069i \(0.0207707\pi\)
−0.997872 + 0.0652069i \(0.979229\pi\)
\(180\) 2026.27 + 24978.9i 0.0625393 + 0.770954i
\(181\) −39910.8 −1.21824 −0.609121 0.793078i \(-0.708477\pi\)
−0.609121 + 0.793078i \(0.708477\pi\)
\(182\) 515.471 + 515.471i 0.0155619 + 0.0155619i
\(183\) 54186.2 54186.2i 1.61803 1.61803i
\(184\) 724.122i 0.0213883i
\(185\) −15133.5 + 17805.5i −0.442176 + 0.520247i
\(186\) −15099.8 −0.436460
\(187\) −31651.6 31651.6i −0.905133 0.905133i
\(188\) 7036.54 7036.54i 0.199087 0.199087i
\(189\) 11785.6i 0.329935i
\(190\) −35593.4 30252.1i −0.985967 0.838008i
\(191\) −24257.2 −0.664928 −0.332464 0.943116i \(-0.607880\pi\)
−0.332464 + 0.943116i \(0.607880\pi\)
\(192\) 5200.07 + 5200.07i 0.141061 + 0.141061i
\(193\) 2866.23 2866.23i 0.0769477 0.0769477i −0.667585 0.744533i \(-0.732672\pi\)
0.744533 + 0.667585i \(0.232672\pi\)
\(194\) 405.804i 0.0107823i
\(195\) 4980.78 404.038i 0.130987 0.0106256i
\(196\) −2744.00 −0.0714286
\(197\) −10648.6 10648.6i −0.274384 0.274384i 0.556478 0.830862i \(-0.312152\pi\)
−0.830862 + 0.556478i \(0.812152\pi\)
\(198\) 45751.5 45751.5i 1.16701 1.16701i
\(199\) 41772.6i 1.05484i 0.849605 + 0.527419i \(0.176840\pi\)
−0.849605 + 0.527419i \(0.823160\pi\)
\(200\) −8257.47 + 11481.0i −0.206437 + 0.287026i
\(201\) 80181.4 1.98464
\(202\) −8379.63 8379.63i −0.205363 0.205363i
\(203\) 7788.41 7788.41i 0.188998 0.188998i
\(204\) 28173.9i 0.676998i
\(205\) 2741.65 + 33797.6i 0.0652385 + 0.804227i
\(206\) 25849.0 0.609129
\(207\) −2835.50 2835.50i −0.0661742 0.0661742i
\(208\) 629.785 629.785i 0.0145568 0.0145568i
\(209\) 120603.i 2.76099i
\(210\) −12181.7 + 14332.5i −0.276228 + 0.324999i
\(211\) −40691.4 −0.913983 −0.456991 0.889471i \(-0.651073\pi\)
−0.456991 + 0.889471i \(0.651073\pi\)
\(212\) −27147.1 27147.1i −0.604020 0.604020i
\(213\) 84515.9 84515.9i 1.86286 1.86286i
\(214\) 14019.8i 0.306135i
\(215\) −13971.9 11875.2i −0.302258 0.256899i
\(216\) 14399.2 0.308626
\(217\) −4867.46 4867.46i −0.103367 0.103367i
\(218\) −7556.84 + 7556.84i −0.159011 + 0.159011i
\(219\) 143688.i 2.99594i
\(220\) 36392.6 2952.15i 0.751913 0.0609948i
\(221\) −3412.17 −0.0698627
\(222\) 26851.2 + 26851.2i 0.544826 + 0.544826i
\(223\) 330.458 330.458i 0.00664518 0.00664518i −0.703776 0.710422i \(-0.748504\pi\)
0.710422 + 0.703776i \(0.248504\pi\)
\(224\) 3352.53i 0.0668153i
\(225\) 12622.8 + 77291.5i 0.249338 + 1.52675i
\(226\) 42038.2 0.823051
\(227\) 35381.1 + 35381.1i 0.686625 + 0.686625i 0.961484 0.274859i \(-0.0886312\pi\)
−0.274859 + 0.961484i \(0.588631\pi\)
\(228\) −53676.0 + 53676.0i −1.03255 + 1.03255i
\(229\) 50380.9i 0.960716i 0.877072 + 0.480358i \(0.159493\pi\)
−0.877072 + 0.480358i \(0.840507\pi\)
\(230\) −182.963 2255.47i −0.00345865 0.0426366i
\(231\) 48563.4 0.910092
\(232\) −9515.61 9515.61i −0.176791 0.176791i
\(233\) 20559.6 20559.6i 0.378706 0.378706i −0.491929 0.870635i \(-0.663708\pi\)
0.870635 + 0.491929i \(0.163708\pi\)
\(234\) 4932.19i 0.0900758i
\(235\) 20139.3 23695.1i 0.364677 0.429065i
\(236\) −55330.7 −0.993441
\(237\) 73935.8 + 73935.8i 1.31631 + 1.31631i
\(238\) 9081.97 9081.97i 0.160334 0.160334i
\(239\) 99597.9i 1.74363i −0.489835 0.871815i \(-0.662943\pi\)
0.489835 0.871815i \(-0.337057\pi\)
\(240\) 17510.9 + 14883.1i 0.304009 + 0.258388i
\(241\) 17865.2 0.307591 0.153795 0.988103i \(-0.450850\pi\)
0.153795 + 0.988103i \(0.450850\pi\)
\(242\) −37374.9 37374.9i −0.638188 0.638188i
\(243\) −46700.0 + 46700.0i −0.790869 + 0.790869i
\(244\) 42681.5i 0.716902i
\(245\) −8546.93 + 693.322i −0.142389 + 0.0115506i
\(246\) 55102.4 0.910542
\(247\) 6500.74 + 6500.74i 0.106554 + 0.106554i
\(248\) −5946.90 + 5946.90i −0.0966912 + 0.0966912i
\(249\) 156750.i 2.52818i
\(250\) −22819.2 + 37847.2i −0.365107 + 0.605555i
\(251\) 74512.0 1.18271 0.591355 0.806411i \(-0.298593\pi\)
0.591355 + 0.806411i \(0.298593\pi\)
\(252\) 13127.7 + 13127.7i 0.206723 + 0.206723i
\(253\) −4131.14 + 4131.14i −0.0645399 + 0.0645399i
\(254\) 14179.2i 0.219779i
\(255\) −7118.66 87755.3i −0.109476 1.34956i
\(256\) 4096.00 0.0625000
\(257\) 1403.76 + 1403.76i 0.0212533 + 0.0212533i 0.717654 0.696400i \(-0.245216\pi\)
−0.696400 + 0.717654i \(0.745216\pi\)
\(258\) −21070.0 + 21070.0i −0.316537 + 0.316537i
\(259\) 17311.2i 0.258063i
\(260\) 1802.51 2120.76i 0.0266643 0.0313722i
\(261\) −74521.9 −1.09396
\(262\) −13365.6 13365.6i −0.194709 0.194709i
\(263\) −45543.4 + 45543.4i −0.658436 + 0.658436i −0.955010 0.296574i \(-0.904156\pi\)
0.296574 + 0.955010i \(0.404156\pi\)
\(264\) 59333.1i 0.851313i
\(265\) −91416.0 77697.6i −1.30176 1.10641i
\(266\) −34605.3 −0.489079
\(267\) −4425.77 4425.77i −0.0620821 0.0620821i
\(268\) 31578.7 31578.7i 0.439668 0.439668i
\(269\) 2313.88i 0.0319769i 0.999872 + 0.0159884i \(0.00508950\pi\)
−0.999872 + 0.0159884i \(0.994911\pi\)
\(270\) 44850.3 3638.23i 0.615230 0.0499072i
\(271\) 95053.9 1.29429 0.647145 0.762367i \(-0.275963\pi\)
0.647145 + 0.762367i \(0.275963\pi\)
\(272\) −11096.0 11096.0i −0.149979 0.149979i
\(273\) 2617.66 2617.66i 0.0351228 0.0351228i
\(274\) 67311.4i 0.896577i
\(275\) 112609. 18390.5i 1.48904 0.243180i
\(276\) −3677.24 −0.0482729
\(277\) −23387.5 23387.5i −0.304806 0.304806i 0.538085 0.842891i \(-0.319148\pi\)
−0.842891 + 0.538085i \(0.819148\pi\)
\(278\) −49955.7 + 49955.7i −0.646392 + 0.646392i
\(279\) 46573.4i 0.598315i
\(280\) 847.077 + 10442.3i 0.0108046 + 0.133193i
\(281\) −32612.1 −0.413016 −0.206508 0.978445i \(-0.566210\pi\)
−0.206508 + 0.978445i \(0.566210\pi\)
\(282\) −35732.9 35732.9i −0.449335 0.449335i
\(283\) 22962.8 22962.8i 0.286716 0.286716i −0.549064 0.835780i \(-0.685016\pi\)
0.835780 + 0.549064i \(0.185016\pi\)
\(284\) 66571.6i 0.825377i
\(285\) −153626. + 180750.i −1.89136 + 2.22531i
\(286\) −7185.87 −0.0878512
\(287\) 17762.4 + 17762.4i 0.215645 + 0.215645i
\(288\) 16039.0 16039.0i 0.193371 0.193371i
\(289\) 23402.8i 0.280202i
\(290\) −32043.2 27234.6i −0.381013 0.323836i
\(291\) −2060.75 −0.0243355
\(292\) 56590.2 + 56590.2i 0.663705 + 0.663705i
\(293\) −82190.4 + 82190.4i −0.957383 + 0.957383i −0.999128 0.0417451i \(-0.986708\pi\)
0.0417451 + 0.999128i \(0.486708\pi\)
\(294\) 13934.6i 0.161213i
\(295\) −172342. + 13980.3i −1.98038 + 0.160647i
\(296\) 21150.2 0.241396
\(297\) −82148.0 82148.0i −0.931288 0.931288i
\(298\) 41190.6 41190.6i 0.463837 0.463837i
\(299\) 445.353i 0.00498152i
\(300\) 58303.0 + 41933.1i 0.647811 + 0.465923i
\(301\) −13584.0 −0.149932
\(302\) −42976.1 42976.1i −0.471208 0.471208i
\(303\) −42553.4 + 42553.4i −0.463499 + 0.463499i
\(304\) 42279.5i 0.457492i
\(305\) −10784.3 132943.i −0.115929 1.42911i
\(306\) −86899.1 −0.928053
\(307\) 49218.3 + 49218.3i 0.522216 + 0.522216i 0.918240 0.396024i \(-0.129610\pi\)
−0.396024 + 0.918240i \(0.629610\pi\)
\(308\) 19126.2 19126.2i 0.201617 0.201617i
\(309\) 131266.i 1.37479i
\(310\) −17020.6 + 20025.8i −0.177114 + 0.208385i
\(311\) 74774.5 0.773095 0.386548 0.922269i \(-0.373668\pi\)
0.386548 + 0.922269i \(0.373668\pi\)
\(312\) −3198.17 3198.17i −0.0328543 0.0328543i
\(313\) −48538.7 + 48538.7i −0.495449 + 0.495449i −0.910018 0.414569i \(-0.863932\pi\)
0.414569 + 0.910018i \(0.363932\pi\)
\(314\) 18203.5i 0.184627i
\(315\) 44206.8 + 37572.9i 0.445521 + 0.378663i
\(316\) 58237.8 0.583218
\(317\) −4937.29 4937.29i −0.0491326 0.0491326i 0.682114 0.731246i \(-0.261061\pi\)
−0.731246 + 0.682114i \(0.761061\pi\)
\(318\) −137858. + 137858.i −1.36326 + 1.36326i
\(319\) 108574.i 1.06695i
\(320\) 12758.1 1034.93i 0.124591 0.0101067i
\(321\) −71195.2 −0.690940
\(322\) −1185.37 1185.37i −0.0114325 0.0114325i
\(323\) 114535. 114535.i 1.09783 1.09783i
\(324\) 8075.27i 0.0769250i
\(325\) 5078.54 7061.12i 0.0480809 0.0668508i
\(326\) 118445. 1.11451
\(327\) 38375.1 + 38375.1i 0.358884 + 0.358884i
\(328\) 21701.5 21701.5i 0.201717 0.201717i
\(329\) 23037.3i 0.212833i
\(330\) −14991.6 184809.i −0.137664 1.69705i
\(331\) 78049.8 0.712387 0.356193 0.934412i \(-0.384074\pi\)
0.356193 + 0.934412i \(0.384074\pi\)
\(332\) −61734.4 61734.4i −0.560081 0.560081i
\(333\) 82819.3 82819.3i 0.746866 0.746866i
\(334\) 21254.9i 0.190531i
\(335\) 90381.4 106339.i 0.805359 0.947554i
\(336\) 17024.8 0.150801
\(337\) 5737.05 + 5737.05i 0.0505159 + 0.0505159i 0.731913 0.681398i \(-0.238627\pi\)
−0.681398 + 0.731913i \(0.738627\pi\)
\(338\) 56734.7 56734.7i 0.496610 0.496610i
\(339\) 213478.i 1.85761i
\(340\) −37365.2 31758.0i −0.323228 0.274723i
\(341\) 67854.4 0.583538
\(342\) 165557. + 165557.i 1.41545 + 1.41545i
\(343\) −4491.86 + 4491.86i −0.0381802 + 0.0381802i
\(344\) 16596.4i 0.140248i
\(345\) −11453.7 + 929.121i −0.0962297 + 0.00780610i
\(346\) −10434.6 −0.0871609
\(347\) −53729.7 53729.7i −0.446227 0.446227i 0.447871 0.894098i \(-0.352182\pi\)
−0.894098 + 0.447871i \(0.852182\pi\)
\(348\) −48322.2 + 48322.2i −0.399014 + 0.399014i
\(349\) 37283.6i 0.306102i −0.988218 0.153051i \(-0.951090\pi\)
0.988218 0.153051i \(-0.0489099\pi\)
\(350\) 5276.90 + 32311.4i 0.0430767 + 0.263767i
\(351\) −8855.88 −0.0718816
\(352\) −23367.8 23367.8i −0.188596 0.188596i
\(353\) −8421.72 + 8421.72i −0.0675851 + 0.0675851i −0.740091 0.672506i \(-0.765218\pi\)
0.672506 + 0.740091i \(0.265218\pi\)
\(354\) 280980.i 2.24217i
\(355\) −16820.5 207355.i −0.133470 1.64535i
\(356\) −3486.09 −0.0275067
\(357\) −46120.0 46120.0i −0.361871 0.361871i
\(358\) 8357.18 8357.18i 0.0652069 0.0652069i
\(359\) 123792.i 0.960516i 0.877127 + 0.480258i \(0.159457\pi\)
−0.877127 + 0.480258i \(0.840543\pi\)
\(360\) 45905.2 54010.3i 0.354207 0.416746i
\(361\) −306095. −2.34878
\(362\) 79821.6 + 79821.6i 0.609121 + 0.609121i
\(363\) −189797. + 189797.i −1.44038 + 1.44038i
\(364\) 2061.88i 0.0155619i
\(365\) 190564. + 161967.i 1.43039 + 1.21574i
\(366\) −216745. −1.61803
\(367\) 175262. + 175262.i 1.30123 + 1.30123i 0.927560 + 0.373674i \(0.121902\pi\)
0.373674 + 0.927560i \(0.378098\pi\)
\(368\) −1448.24 + 1448.24i −0.0106942 + 0.0106942i
\(369\) 169957.i 1.24820i
\(370\) 65877.9 5343.98i 0.481212 0.0390356i
\(371\) −88878.1 −0.645724
\(372\) 30199.5 + 30199.5i 0.218230 + 0.218230i
\(373\) −61179.9 + 61179.9i −0.439735 + 0.439735i −0.891923 0.452188i \(-0.850644\pi\)
0.452188 + 0.891923i \(0.350644\pi\)
\(374\) 126606.i 0.905133i
\(375\) 192195. + 115880.i 1.36672 + 0.824039i
\(376\) −28146.1 −0.199087
\(377\) 5852.33 + 5852.33i 0.0411762 + 0.0411762i
\(378\) 23571.2 23571.2i 0.164967 0.164967i
\(379\) 181324.i 1.26234i −0.775645 0.631170i \(-0.782575\pi\)
0.775645 0.631170i \(-0.217425\pi\)
\(380\) 10682.7 + 131691.i 0.0739799 + 0.911987i
\(381\) −72005.0 −0.496035
\(382\) 48514.5 + 48514.5i 0.332464 + 0.332464i
\(383\) 130690. 130690.i 0.890935 0.890935i −0.103676 0.994611i \(-0.533061\pi\)
0.994611 + 0.103676i \(0.0330605\pi\)
\(384\) 20800.3i 0.141061i
\(385\) 54741.2 64406.4i 0.369312 0.434518i
\(386\) −11464.9 −0.0769477
\(387\) 64987.9 + 64987.9i 0.433921 + 0.433921i
\(388\) −811.608 + 811.608i −0.00539117 + 0.00539117i
\(389\) 125230.i 0.827577i 0.910373 + 0.413788i \(0.135795\pi\)
−0.910373 + 0.413788i \(0.864205\pi\)
\(390\) −10769.6 9153.49i −0.0708063 0.0601807i
\(391\) 7846.57 0.0513247
\(392\) 5488.00 + 5488.00i 0.0357143 + 0.0357143i
\(393\) −67873.1 + 67873.1i −0.439453 + 0.439453i
\(394\) 42594.3i 0.274384i
\(395\) 181397. 14714.9i 1.16262 0.0943109i
\(396\) −183006. −1.16701
\(397\) 172730. + 172730.i 1.09594 + 1.09594i 0.994880 + 0.101063i \(0.0322244\pi\)
0.101063 + 0.994880i \(0.467776\pi\)
\(398\) 83545.3 83545.3i 0.527419 0.527419i
\(399\) 175732.i 1.10384i
\(400\) 39477.0 6447.13i 0.246731 0.0402946i
\(401\) 121758. 0.757198 0.378599 0.925561i \(-0.376406\pi\)
0.378599 + 0.925561i \(0.376406\pi\)
\(402\) −160363. 160363.i −0.992320 0.992320i
\(403\) 3657.49 3657.49i 0.0225202 0.0225202i
\(404\) 33518.5i 0.205363i
\(405\) 2040.37 + 25152.6i 0.0124394 + 0.153346i
\(406\) −31153.6 −0.188998
\(407\) −120662. 120662.i −0.728421 0.728421i
\(408\) −56347.9 + 56347.9i −0.338499 + 0.338499i
\(409\) 104071.i 0.622135i 0.950388 + 0.311067i \(0.100687\pi\)
−0.950388 + 0.311067i \(0.899313\pi\)
\(410\) 62112.0 73078.6i 0.369494 0.434733i
\(411\) 341821. 2.02355
\(412\) −51698.0 51698.0i −0.304565 0.304565i
\(413\) −90575.0 + 90575.0i −0.531017 + 0.531017i
\(414\) 11342.0i 0.0661742i
\(415\) −207887. 176690.i −1.20706 1.02593i
\(416\) −2519.14 −0.0145568
\(417\) 253685. + 253685.i 1.45889 + 1.45889i
\(418\) 241206. 241206.i 1.38050 1.38050i
\(419\) 345504.i 1.96800i −0.178176 0.983999i \(-0.557020\pi\)
0.178176 0.983999i \(-0.442980\pi\)
\(420\) 53028.3 4301.62i 0.300614 0.0243856i
\(421\) −185695. −1.04770 −0.523848 0.851812i \(-0.675504\pi\)
−0.523848 + 0.851812i \(0.675504\pi\)
\(422\) 81382.8 + 81382.8i 0.456991 + 0.456991i
\(423\) −110214. + 110214.i −0.615964 + 0.615964i
\(424\) 108588.i 0.604020i
\(425\) −124408. 89477.7i −0.688765 0.495379i
\(426\) −338064. −1.86286
\(427\) −69868.5 69868.5i −0.383200 0.383200i
\(428\) −28039.5 + 28039.5i −0.153068 + 0.153068i
\(429\) 36491.3i 0.198278i
\(430\) 4193.39 + 51694.0i 0.0226792 + 0.279578i
\(431\) −171043. −0.920766 −0.460383 0.887720i \(-0.652288\pi\)
−0.460383 + 0.887720i \(0.652288\pi\)
\(432\) −28798.5 28798.5i −0.154313 0.154313i
\(433\) 47472.0 47472.0i 0.253199 0.253199i −0.569082 0.822281i \(-0.692701\pi\)
0.822281 + 0.569082i \(0.192701\pi\)
\(434\) 19469.8i 0.103367i
\(435\) −138303. + 162722.i −0.730891 + 0.859938i
\(436\) 30227.4 0.159011
\(437\) −14949.0 14949.0i −0.0782798 0.0782798i
\(438\) 287376. 287376.i 1.49797 1.49797i
\(439\) 29849.3i 0.154883i −0.996997 0.0774417i \(-0.975325\pi\)
0.996997 0.0774417i \(-0.0246752\pi\)
\(440\) −78689.5 66880.9i −0.406454 0.345459i
\(441\) 42979.5 0.220996
\(442\) 6824.33 + 6824.33i 0.0349314 + 0.0349314i
\(443\) 98785.1 98785.1i 0.503366 0.503366i −0.409116 0.912482i \(-0.634163\pi\)
0.912482 + 0.409116i \(0.134163\pi\)
\(444\) 107405.i 0.544826i
\(445\) −10858.4 + 880.826i −0.0548334 + 0.00444805i
\(446\) −1321.83 −0.00664518
\(447\) −209174. 209174.i −1.04687 1.04687i
\(448\) 6705.05 6705.05i 0.0334077 0.0334077i
\(449\) 265025.i 1.31460i −0.753628 0.657301i \(-0.771698\pi\)
0.753628 0.657301i \(-0.228302\pi\)
\(450\) 129337. 179829.i 0.638704 0.888042i
\(451\) −247616. −1.21738
\(452\) −84076.3 84076.3i −0.411526 0.411526i
\(453\) −218241. + 218241.i −1.06351 + 1.06351i
\(454\) 141524.i 0.686625i
\(455\) −520.973 6422.29i −0.00251647 0.0310218i
\(456\) 214704. 1.03255
\(457\) −51886.6 51886.6i −0.248441 0.248441i 0.571890 0.820331i \(-0.306211\pi\)
−0.820331 + 0.571890i \(0.806211\pi\)
\(458\) 100762. 100762.i 0.480358 0.480358i
\(459\) 156030.i 0.740597i
\(460\) −4145.02 + 4876.87i −0.0195890 + 0.0230476i
\(461\) 153316. 0.721414 0.360707 0.932679i \(-0.382535\pi\)
0.360707 + 0.932679i \(0.382535\pi\)
\(462\) −97126.8 97126.8i −0.455046 0.455046i
\(463\) −189418. + 189418.i −0.883605 + 0.883605i −0.993899 0.110294i \(-0.964821\pi\)
0.110294 + 0.993899i \(0.464821\pi\)
\(464\) 38062.4i 0.176791i
\(465\) 101695. + 86434.1i 0.470320 + 0.399741i
\(466\) −82238.4 −0.378706
\(467\) 68596.2 + 68596.2i 0.314533 + 0.314533i 0.846663 0.532130i \(-0.178608\pi\)
−0.532130 + 0.846663i \(0.678608\pi\)
\(468\) −9864.38 + 9864.38i −0.0450379 + 0.0450379i
\(469\) 103387.i 0.470025i
\(470\) −87668.7 + 7111.64i −0.396871 + 0.0321939i
\(471\) 92441.0 0.416699
\(472\) 110661. + 110661.i 0.496721 + 0.496721i
\(473\) 94683.0 94683.0i 0.423204 0.423204i
\(474\) 295743.i 1.31631i
\(475\) 66548.3 + 407488.i 0.294951 + 1.80604i
\(476\) −36327.9 −0.160334
\(477\) 425207. + 425207.i 1.86880 + 1.86880i
\(478\) −199196. + 199196.i −0.871815 + 0.871815i
\(479\) 137180.i 0.597886i 0.954271 + 0.298943i \(0.0966341\pi\)
−0.954271 + 0.298943i \(0.903366\pi\)
\(480\) −5255.58 64788.1i −0.0228107 0.281198i
\(481\) −13007.9 −0.0562232
\(482\) −35730.3 35730.3i −0.153795 0.153795i
\(483\) −6019.55 + 6019.55i −0.0258030 + 0.0258030i
\(484\) 149499.i 0.638188i
\(485\) −2322.90 + 2733.04i −0.00987524 + 0.0116188i
\(486\) 186800. 0.790869
\(487\) 25995.2 + 25995.2i 0.109606 + 0.109606i 0.759783 0.650177i \(-0.225305\pi\)
−0.650177 + 0.759783i \(0.725305\pi\)
\(488\) −85362.9 + 85362.9i −0.358451 + 0.358451i
\(489\) 601488.i 2.51541i
\(490\) 18480.5 + 15707.2i 0.0769700 + 0.0654194i
\(491\) 202705. 0.840817 0.420409 0.907335i \(-0.361887\pi\)
0.420409 + 0.907335i \(0.361887\pi\)
\(492\) −110205. 110205.i −0.455271 0.455271i
\(493\) 103111. 103111.i 0.424239 0.424239i
\(494\) 26002.9i 0.106554i
\(495\) −570021. + 46239.8i −2.32638 + 0.188715i
\(496\) 23787.6 0.0966912
\(497\) −108976. 108976.i −0.441183 0.441183i
\(498\) −313499. + 313499.i −1.26409 + 1.26409i
\(499\) 6346.90i 0.0254894i −0.999919 0.0127447i \(-0.995943\pi\)
0.999919 0.0127447i \(-0.00405688\pi\)
\(500\) 121333. 30055.9i 0.485331 0.120224i
\(501\) −107936. −0.430024
\(502\) −149024. 149024.i −0.591355 0.591355i
\(503\) −279730. + 279730.i −1.10561 + 1.10561i −0.111891 + 0.993721i \(0.535691\pi\)
−0.993721 + 0.111891i \(0.964309\pi\)
\(504\) 52510.9i 0.206723i
\(505\) 8469.07 + 104402.i 0.0332088 + 0.409381i
\(506\) 16524.5 0.0645399
\(507\) −288110. 288110.i −1.12084 1.12084i
\(508\) −28358.5 + 28358.5i −0.109889 + 0.109889i
\(509\) 109772.i 0.423697i −0.977302 0.211849i \(-0.932052\pi\)
0.977302 0.211849i \(-0.0679484\pi\)
\(510\) −161273. + 189748.i −0.620043 + 0.729519i
\(511\) 185273. 0.709531
\(512\) −8192.00 8192.00i −0.0312500 0.0312500i
\(513\) 297262. 297262.i 1.12955 1.12955i
\(514\) 5615.05i 0.0212533i
\(515\) −174090. 147965.i −0.656386 0.557885i
\(516\) 84280.0 0.316537
\(517\) 160574. + 160574.i 0.600752 + 0.600752i
\(518\) 34622.3 34622.3i 0.129032 0.129032i
\(519\) 52988.8i 0.196720i
\(520\) −7846.54 + 636.507i −0.0290183 + 0.00235395i
\(521\) −270686. −0.997217 −0.498609 0.866827i \(-0.666156\pi\)
−0.498609 + 0.866827i \(0.666156\pi\)
\(522\) 149044. + 149044.i 0.546982 + 0.546982i
\(523\) −24130.1 + 24130.1i −0.0882175 + 0.0882175i −0.749838 0.661621i \(-0.769869\pi\)
0.661621 + 0.749838i \(0.269869\pi\)
\(524\) 53462.4i 0.194709i
\(525\) 164084. 26797.1i 0.595316 0.0972231i
\(526\) 182173. 0.658436
\(527\) −64440.4 64440.4i −0.232026 0.232026i
\(528\) −118666. + 118666.i −0.425656 + 0.425656i
\(529\) 278817.i 0.996340i
\(530\) 27436.8 + 338227.i 0.0976747 + 1.20408i
\(531\) 866650. 3.07365
\(532\) 69210.6 + 69210.6i 0.244540 + 0.244540i
\(533\) −13347.0 + 13347.0i −0.0469817 + 0.0469817i
\(534\) 17703.1i 0.0620821i
\(535\) −80252.0 + 94421.4i −0.280381 + 0.329885i
\(536\) −126315. −0.439668
\(537\) −42439.4 42439.4i −0.147170 0.147170i
\(538\) 4627.76 4627.76i 0.0159884 0.0159884i
\(539\) 62618.3i 0.215538i
\(540\) −96977.1 82424.1i −0.332569 0.282662i
\(541\) −292933. −1.00086 −0.500430 0.865777i \(-0.666825\pi\)
−0.500430 + 0.865777i \(0.666825\pi\)
\(542\) −190108. 190108.i −0.647145 0.647145i
\(543\) 405350. 405350.i 1.37477 1.37477i
\(544\) 44384.2i 0.149979i
\(545\) 94151.2 7637.50i 0.316981 0.0257133i
\(546\) −10470.7 −0.0351228
\(547\) 76509.2 + 76509.2i 0.255705 + 0.255705i 0.823305 0.567600i \(-0.192128\pi\)
−0.567600 + 0.823305i \(0.692128\pi\)
\(548\) 134623. 134623.i 0.448289 0.448289i
\(549\) 668524.i 2.21805i
\(550\) −261998. 188436.i −0.866110 0.622930i
\(551\) −392886. −1.29409
\(552\) 7354.47 + 7354.47i 0.0241365 + 0.0241365i
\(553\) 95333.9 95333.9i 0.311743 0.311743i
\(554\) 93549.9i 0.304806i
\(555\) −27137.8 334541.i −0.0881025 1.08608i
\(556\) 199823. 0.646392
\(557\) 66626.6 + 66626.6i 0.214752 + 0.214752i 0.806283 0.591531i \(-0.201476\pi\)
−0.591531 + 0.806283i \(0.701476\pi\)
\(558\) 93146.8 93146.8i 0.299157 0.299157i
\(559\) 10207.2i 0.0326651i
\(560\) 19190.5 22578.8i 0.0611943 0.0719988i
\(561\) 642932. 2.04286
\(562\) 65224.3 + 65224.3i 0.206508 + 0.206508i
\(563\) −263570. + 263570.i −0.831531 + 0.831531i −0.987726 0.156195i \(-0.950077\pi\)
0.156195 + 0.987726i \(0.450077\pi\)
\(564\) 142932.i 0.449335i
\(565\) −283122. 240635.i −0.886903 0.753809i
\(566\) −91851.3 −0.286716
\(567\) 13219.0 + 13219.0i 0.0411181 + 0.0411181i
\(568\) −133143. + 133143.i −0.412688 + 0.412688i
\(569\) 234433.i 0.724091i −0.932160 0.362046i \(-0.882078\pi\)
0.932160 0.362046i \(-0.117922\pi\)
\(570\) 668753. 54248.9i 2.05833 0.166971i
\(571\) 383466. 1.17613 0.588064 0.808815i \(-0.299890\pi\)
0.588064 + 0.808815i \(0.299890\pi\)
\(572\) 14371.7 + 14371.7i 0.0439256 + 0.0439256i
\(573\) 246366. 246366.i 0.750364 0.750364i
\(574\) 71049.8i 0.215645i
\(575\) −11678.6 + 16237.6i −0.0353227 + 0.0491120i
\(576\) −64156.0 −0.193371
\(577\) 103022. + 103022.i 0.309442 + 0.309442i 0.844693 0.535251i \(-0.179783\pi\)
−0.535251 + 0.844693i \(0.679783\pi\)
\(578\) −46805.6 + 46805.6i −0.140101 + 0.140101i
\(579\) 58221.0i 0.173669i
\(580\) 9617.18 + 118556.i 0.0285885 + 0.352425i
\(581\) −202115. −0.598752
\(582\) 4121.51 + 4121.51i 0.0121677 + 0.0121677i
\(583\) 619499. 619499.i 1.82265 1.82265i
\(584\) 226361.i 0.663705i
\(585\) −28232.8 + 33217.7i −0.0824979 + 0.0970638i
\(586\) 328762. 0.957383
\(587\) −110905. 110905.i −0.321867 0.321867i 0.527616 0.849483i \(-0.323086\pi\)
−0.849483 + 0.527616i \(0.823086\pi\)
\(588\) 27869.1 27869.1i 0.0806063 0.0806063i
\(589\) 245539.i 0.707767i
\(590\) 372645. + 316724.i 1.07051 + 0.909865i
\(591\) 216302. 0.619278
\(592\) −42300.3 42300.3i −0.120698 0.120698i
\(593\) −137611. + 137611.i −0.391329 + 0.391329i −0.875161 0.483832i \(-0.839245\pi\)
0.483832 + 0.875161i \(0.339245\pi\)
\(594\) 328592.i 0.931288i
\(595\) −113153. + 9178.91i −0.319619 + 0.0259273i
\(596\) −164762. −0.463837
\(597\) −424259. 424259.i −1.19037 1.19037i
\(598\) 890.706 890.706i 0.00249076 0.00249076i
\(599\) 632914.i 1.76397i 0.471277 + 0.881985i \(0.343793\pi\)
−0.471277 + 0.881985i \(0.656207\pi\)
\(600\) −32739.8 200472.i −0.0909439 0.556867i
\(601\) −622878. −1.72446 −0.862232 0.506514i \(-0.830934\pi\)
−0.862232 + 0.506514i \(0.830934\pi\)
\(602\) 27167.9 + 27167.9i 0.0749659 + 0.0749659i
\(603\) −494620. + 494620.i −1.36031 + 1.36031i
\(604\) 171904.i 0.471208i
\(605\) 37773.8 + 465656.i 0.103200 + 1.27220i
\(606\) 170214. 0.463499
\(607\) 466368. + 466368.i 1.26576 + 1.26576i 0.948258 + 0.317501i \(0.102844\pi\)
0.317501 + 0.948258i \(0.397156\pi\)
\(608\) 84559.1 84559.1i 0.228746 0.228746i
\(609\) 158204.i 0.426564i
\(610\) −244317. + 287454.i −0.656590 + 0.772519i
\(611\) 17310.6 0.0463691
\(612\) 173798. + 173798.i 0.464026 + 0.464026i
\(613\) 266560. 266560.i 0.709371 0.709371i −0.257032 0.966403i \(-0.582744\pi\)
0.966403 + 0.257032i \(0.0827445\pi\)
\(614\) 196873.i 0.522216i
\(615\) −371108. 315417.i −0.981182 0.833940i
\(616\) −76504.9 −0.201617
\(617\) 405635. + 405635.i 1.06553 + 1.06553i 0.997697 + 0.0678322i \(0.0216083\pi\)
0.0678322 + 0.997697i \(0.478392\pi\)
\(618\) −262533. + 262533.i −0.687396 + 0.687396i
\(619\) 232448.i 0.606659i 0.952886 + 0.303330i \(0.0980983\pi\)
−0.952886 + 0.303330i \(0.901902\pi\)
\(620\) 74092.8 6010.37i 0.192749 0.0156357i
\(621\) 20364.9 0.0528078
\(622\) −149549. 149549.i −0.386548 0.386548i
\(623\) −5706.65 + 5706.65i −0.0147030 + 0.0147030i
\(624\) 12792.7i 0.0328543i
\(625\) 370329. 124274.i 0.948043 0.318142i
\(626\) 194155. 0.495449
\(627\) −1.22489e6 1.22489e6i −3.11575 3.11575i
\(628\) 36407.0 36407.0i 0.0923136 0.0923136i
\(629\) 229183.i 0.579269i
\(630\) −13267.8 163559.i −0.0334287 0.412092i
\(631\) −222689. −0.559293 −0.279647 0.960103i \(-0.590217\pi\)
−0.279647 + 0.960103i \(0.590217\pi\)
\(632\) −116476. 116476.i −0.291609 0.291609i
\(633\) 413278. 413278.i 1.03142 1.03142i
\(634\) 19749.2i 0.0491326i
\(635\) −81164.8 + 95495.4i −0.201289 + 0.236829i
\(636\) 551433. 1.36326
\(637\) −3375.25 3375.25i −0.00831816 0.00831816i
\(638\) 217147. 217147.i 0.533473 0.533473i
\(639\) 1.04272e6i 2.55367i
\(640\) −27586.0 23446.3i −0.0673487 0.0572420i
\(641\) 81596.0 0.198588 0.0992940 0.995058i \(-0.468342\pi\)
0.0992940 + 0.995058i \(0.468342\pi\)
\(642\) 142390. + 142390.i 0.345470 + 0.345470i
\(643\) 37940.6 37940.6i 0.0917660 0.0917660i −0.659734 0.751500i \(-0.729331\pi\)
0.751500 + 0.659734i \(0.229331\pi\)
\(644\) 4741.48i 0.0114325i
\(645\) 262513. 21294.9i 0.631002 0.0511865i
\(646\) −458140. −1.09783
\(647\) −511574. 511574.i −1.22208 1.22208i −0.966891 0.255191i \(-0.917862\pi\)
−0.255191 0.966891i \(-0.582138\pi\)
\(648\) 16150.5 16150.5i 0.0384625 0.0384625i
\(649\) 1.26265e6i 2.99774i
\(650\) −24279.3 + 3965.14i −0.0574658 + 0.00938495i
\(651\) 98871.7 0.233298
\(652\) −236890. 236890.i −0.557253 0.557253i
\(653\) −181231. + 181231.i −0.425018 + 0.425018i −0.886927 0.461909i \(-0.847165\pi\)
0.461909 + 0.886927i \(0.347165\pi\)
\(654\) 153500.i 0.358884i
\(655\) 13508.2 + 166523.i 0.0314859 + 0.388143i
\(656\) −86806.2 −0.201717
\(657\) −886377. 886377.i −2.05347 2.05347i
\(658\) −46074.5 + 46074.5i −0.106417 + 0.106417i
\(659\) 393848.i 0.906897i −0.891282 0.453449i \(-0.850194\pi\)
0.891282 0.453449i \(-0.149806\pi\)
\(660\) −339635. + 399601.i −0.779694 + 0.917357i
\(661\) −210811. −0.482492 −0.241246 0.970464i \(-0.577556\pi\)
−0.241246 + 0.970464i \(0.577556\pi\)
\(662\) −156100. 156100.i −0.356193 0.356193i
\(663\) 34655.3 34655.3i 0.0788393 0.0788393i
\(664\) 246938.i 0.560081i
\(665\) 233062. + 198088.i 0.527022 + 0.447934i
\(666\) −331277. −0.746866
\(667\) −13457.9 13457.9i −0.0302501 0.0302501i
\(668\) −42509.7 + 42509.7i −0.0952654 + 0.0952654i
\(669\) 6712.53i 0.0149980i
\(670\) −393441. + 31915.8i −0.876457 + 0.0710977i
\(671\) 973995. 2.16328
\(672\) −34049.6 34049.6i −0.0754003 0.0754003i
\(673\) 419499. 419499.i 0.926190 0.926190i −0.0712668 0.997457i \(-0.522704\pi\)
0.997457 + 0.0712668i \(0.0227042\pi\)
\(674\) 22948.2i 0.0505159i
\(675\) −322887. 232229.i −0.708669 0.509693i
\(676\) −226939. −0.496610
\(677\) −199733. 199733.i −0.435786 0.435786i 0.454805 0.890591i \(-0.349709\pi\)
−0.890591 + 0.454805i \(0.849709\pi\)
\(678\) −426956. + 426956.i −0.928803 + 0.928803i
\(679\) 2657.17i 0.00576340i
\(680\) 11214.5 + 138246.i 0.0242528 + 0.298976i
\(681\) −718689. −1.54970
\(682\) −135709. 135709.i −0.291769 0.291769i
\(683\) −572044. + 572044.i −1.22628 + 1.22628i −0.260913 + 0.965362i \(0.584024\pi\)
−0.965362 + 0.260913i \(0.915976\pi\)
\(684\) 662228.i 1.41545i
\(685\) 385304. 453334.i 0.821150 0.966134i
\(686\) 17967.4 0.0381802
\(687\) −511689. 511689.i −1.08416 1.08416i
\(688\) 33192.9 33192.9i 0.0701242 0.0701242i
\(689\) 66784.4i 0.140681i
\(690\) 24765.7 + 21049.2i 0.0520179 + 0.0442118i
\(691\) 550039. 1.15196 0.575980 0.817464i \(-0.304621\pi\)
0.575980 + 0.817464i \(0.304621\pi\)
\(692\) 20869.1 + 20869.1i 0.0435805 + 0.0435805i
\(693\) −299576. + 299576.i −0.623793 + 0.623793i
\(694\) 214919.i 0.446227i
\(695\) 622402. 50488.9i 1.28855 0.104527i
\(696\) 193289. 0.399014
\(697\) 235157. + 235157.i 0.484053 + 0.484053i
\(698\) −74567.1 + 74567.1i −0.153051 + 0.153051i
\(699\) 417623.i 0.854731i
\(700\) 54069.1 75176.7i 0.110345 0.153422i
\(701\) −192655. −0.392053 −0.196026 0.980599i \(-0.562804\pi\)
−0.196026 + 0.980599i \(0.562804\pi\)
\(702\) 17711.8 + 17711.8i 0.0359408 + 0.0359408i
\(703\) 436631. 436631.i 0.883494 0.883494i
\(704\) 93471.1i 0.188596i
\(705\) 36114.3 + 445199.i 0.0726610 + 0.895728i
\(706\) 33686.9 0.0675851
\(707\) 54869.0 + 54869.0i 0.109771 + 0.109771i
\(708\) 561961. 561961.i 1.12109 1.12109i
\(709\) 54667.1i 0.108751i −0.998521 0.0543755i \(-0.982683\pi\)
0.998521 0.0543755i \(-0.0173168\pi\)
\(710\) −381069. + 448351.i −0.755940 + 0.889410i
\(711\) −912185. −1.80444
\(712\) 6972.19 + 6972.19i 0.0137534 + 0.0137534i
\(713\) −8410.71 + 8410.71i −0.0165445 + 0.0165445i
\(714\) 184480.i 0.361871i
\(715\) 48396.0 + 41133.4i 0.0946667 + 0.0804604i
\(716\) −33428.7 −0.0652069
\(717\) 1.01156e6 + 1.01156e6i 1.96767 + 1.96767i
\(718\) 247585. 247585.i 0.480258 0.480258i
\(719\) 434533.i 0.840553i 0.907396 + 0.420277i \(0.138067\pi\)
−0.907396 + 0.420277i \(0.861933\pi\)
\(720\) −199831. + 16210.2i −0.385477 + 0.0312697i
\(721\) −169257. −0.325593
\(722\) 612190. + 612190.i 1.17439 + 1.17439i
\(723\) −181446. + 181446.i −0.347112 + 0.347112i
\(724\) 319286.i 0.609121i
\(725\) 59910.6 + 366844.i 0.113980 + 0.697919i
\(726\) 759188. 1.44038
\(727\) 296856. + 296856.i 0.561664 + 0.561664i 0.929780 0.368116i \(-0.119997\pi\)
−0.368116 + 0.929780i \(0.619997\pi\)
\(728\) −4123.77 + 4123.77i −0.00778093 + 0.00778093i
\(729\) 866846.i 1.63112i
\(730\) −57194.2 705061.i −0.107326 1.32306i
\(731\) −179839. −0.336549
\(732\) 433490. + 433490.i 0.809015 + 0.809015i
\(733\) 410718. 410718.i 0.764426 0.764426i −0.212693 0.977119i \(-0.568223\pi\)
0.977119 + 0.212693i \(0.0682234\pi\)
\(734\) 701048.i 1.30123i
\(735\) 79764.3 93847.6i 0.147650 0.173719i
\(736\) 5792.98 0.0106942
\(737\) 720629. + 720629.i 1.32671 + 1.32671i
\(738\) −339913. + 339913.i −0.624102 + 0.624102i
\(739\) 299927.i 0.549196i 0.961559 + 0.274598i \(0.0885448\pi\)
−0.961559 + 0.274598i \(0.911455\pi\)
\(740\) −142444. 121068.i −0.260124 0.221088i
\(741\) −132048. −0.240489
\(742\) 177756. + 177756.i 0.322862 + 0.322862i
\(743\) 134510. 134510.i 0.243656 0.243656i −0.574705 0.818361i \(-0.694883\pi\)
0.818361 + 0.574705i \(0.194883\pi\)
\(744\) 120798.i 0.218230i
\(745\) −513197. + 41630.2i −0.924637 + 0.0750060i
\(746\) 244720. 0.439735
\(747\) 966951. + 966951.i 1.73286 + 1.73286i
\(748\) 253213. 253213.i 0.452566 0.452566i
\(749\) 91800.1i 0.163636i
\(750\) −152630. 616152.i −0.271342 1.09538i
\(751\) −762925. −1.35270 −0.676350 0.736580i \(-0.736440\pi\)
−0.676350 + 0.736580i \(0.736440\pi\)
\(752\) 56292.3 + 56292.3i 0.0995436 + 0.0995436i
\(753\) −756773. + 756773.i −1.33468 + 1.33468i
\(754\) 23409.3i 0.0411762i
\(755\) 43434.8 + 535442.i 0.0761980 + 0.939331i
\(756\) −94284.8 −0.164967
\(757\) −319999. 319999.i −0.558414 0.558414i 0.370442 0.928856i \(-0.379206\pi\)
−0.928856 + 0.370442i \(0.879206\pi\)
\(758\) −362647. + 362647.i −0.631170 + 0.631170i
\(759\) 83914.9i 0.145665i
\(760\) 242017. 284747.i 0.419004 0.492984i
\(761\) −237404. −0.409938 −0.204969 0.978768i \(-0.565709\pi\)
−0.204969 + 0.978768i \(0.565709\pi\)
\(762\) 144010. + 144010.i 0.248018 + 0.248018i
\(763\) 49481.4 49481.4i 0.0849950 0.0849950i
\(764\) 194058.i 0.332464i
\(765\) 585255. + 497428.i 1.00005 + 0.849977i
\(766\) −522761. −0.890935
\(767\) −68059.5 68059.5i −0.115691 0.115691i
\(768\) −41600.6 + 41600.6i −0.0705305 + 0.0705305i
\(769\) 834986.i 1.41197i 0.708225 + 0.705987i \(0.249496\pi\)
−0.708225 + 0.705987i \(0.750504\pi\)
\(770\) −238295. + 19330.4i −0.401915 + 0.0326031i
\(771\) −28514.3 −0.0479683
\(772\) 22929.8 + 22929.8i 0.0384739 + 0.0384739i
\(773\) −18652.7 + 18652.7i −0.0312165 + 0.0312165i −0.722543 0.691326i \(-0.757027\pi\)
0.691326 + 0.722543i \(0.257027\pi\)
\(774\) 259951.i 0.433921i
\(775\) 229263. 37441.8i 0.381708 0.0623381i
\(776\) 3246.43 0.00539117
\(777\) −175819. 175819.i −0.291222 0.291222i
\(778\) 250460. 250460.i 0.413788 0.413788i
\(779\) 896027.i 1.47654i
\(780\) 3232.31 + 39846.3i 0.00531280 + 0.0654935i
\(781\) 1.51917e6 2.49060
\(782\) −15693.1 15693.1i −0.0256624 0.0256624i
\(783\) 267612. 267612.i 0.436499 0.436499i
\(784\) 21952.0i 0.0357143i
\(785\) 104201. 122598.i 0.169095 0.198951i
\(786\) 271492. 0.439453
\(787\) 58378.3 + 58378.3i 0.0942545 + 0.0942545i 0.752662 0.658407i \(-0.228770\pi\)
−0.658407 + 0.752662i \(0.728770\pi\)
\(788\) 85188.5 85188.5i 0.137192 0.137192i
\(789\) 925113.i 1.48607i
\(790\) −392225. 333365.i −0.628464 0.534153i
\(791\) −275262. −0.439939
\(792\) 366012. + 366012.i 0.583505 + 0.583505i
\(793\) 52500.3 52500.3i 0.0834863 0.0834863i
\(794\) 690922.i 1.09594i
\(795\) 1.71759e6 139330.i 2.71759 0.220449i
\(796\) −334181. −0.527419
\(797\) 500249. + 500249.i 0.787534 + 0.787534i 0.981089 0.193556i \(-0.0620020\pi\)
−0.193556 + 0.981089i \(0.562002\pi\)
\(798\) 351465. 351465.i 0.551920 0.551920i
\(799\) 304991.i 0.477742i
\(800\) −91848.3 66059.8i −0.143513 0.103218i
\(801\) 54603.0 0.0851043
\(802\) −243516. 243516.i −0.378599 0.378599i
\(803\) −1.29139e6 + 1.29139e6i −2.00275 + 2.00275i
\(804\) 641451.i 0.992320i
\(805\) 1198.02 + 14768.6i 0.00184873 + 0.0227902i
\(806\) −14629.9 −0.0225202
\(807\) −23500.7 23500.7i −0.0360856 0.0360856i
\(808\) 67037.0 67037.0i 0.102681 0.102681i
\(809\) 549171.i 0.839094i −0.907734 0.419547i \(-0.862189\pi\)
0.907734 0.419547i \(-0.137811\pi\)
\(810\) 46224.5 54386.0i 0.0704534 0.0828928i
\(811\) −989845. −1.50496 −0.752481 0.658614i \(-0.771143\pi\)
−0.752481 + 0.658614i \(0.771143\pi\)
\(812\) 62307.3 + 62307.3i 0.0944989 + 0.0944989i
\(813\) −965405. + 965405.i −1.46059 + 1.46059i
\(814\) 482649.i 0.728421i
\(815\) −797713. 678004.i −1.20097 1.02074i
\(816\) 225392. 0.338499
\(817\) 342622. + 342622.i 0.513300 + 0.513300i
\(818\) 208143. 208143.i 0.311067 0.311067i
\(819\) 32295.5i 0.0481475i
\(820\) −270381. + 21933.2i −0.402114 + 0.0326192i
\(821\) 1.02524e6 1.52104 0.760519 0.649316i \(-0.224945\pi\)
0.760519 + 0.649316i \(0.224945\pi\)
\(822\) −683642. 683642.i −1.01178 1.01178i
\(823\) 50602.6 50602.6i 0.0747090 0.0747090i −0.668765 0.743474i \(-0.733177\pi\)
0.743474 + 0.668765i \(0.233177\pi\)
\(824\) 206792.i 0.304565i
\(825\) −956917. + 1.33048e6i −1.40594 + 1.95479i
\(826\) 362300. 0.531017
\(827\) −605066. 605066.i −0.884691 0.884691i 0.109316 0.994007i \(-0.465134\pi\)
−0.994007 + 0.109316i \(0.965134\pi\)
\(828\) 22684.0 22684.0i 0.0330871 0.0330871i
\(829\) 206397.i 0.300327i 0.988661 + 0.150163i \(0.0479800\pi\)
−0.988661 + 0.150163i \(0.952020\pi\)
\(830\) 62393.3 + 769153.i 0.0905695 + 1.11650i
\(831\) 475065. 0.687940
\(832\) 5038.28 + 5038.28i 0.00727839 + 0.00727839i
\(833\) −59467.8 + 59467.8i −0.0857022 + 0.0857022i
\(834\) 1.01474e6i 1.45889i
\(835\) −121667. + 143149.i −0.174502 + 0.205312i
\(836\) −964823. −1.38050
\(837\) −167248. 167248.i −0.238731 0.238731i
\(838\) −691007. + 691007.i −0.983999 + 0.983999i
\(839\) 52450.5i 0.0745120i −0.999306 0.0372560i \(-0.988138\pi\)
0.999306 0.0372560i \(-0.0118617\pi\)
\(840\) −114660. 97453.3i −0.162500 0.138114i
\(841\) 353582. 0.499918
\(842\) 371389. + 371389.i 0.523848 + 0.523848i
\(843\) 331222. 331222.i 0.466084 0.466084i
\(844\) 325531.i 0.456991i
\(845\) −706861. + 57340.2i −0.989967 + 0.0803056i
\(846\) 440856. 0.615964
\(847\) 244727. + 244727.i 0.341126 + 0.341126i
\(848\) 217177. 217177.i 0.302010 0.302010i
\(849\) 466439.i 0.647112i
\(850\) 69861.0 + 427772.i 0.0966934 + 0.592072i
\(851\) 29912.7 0.0413044
\(852\) 676127. + 676127.i 0.931428 + 0.931428i
\(853\) 820301. 820301.i 1.12739 1.12739i 0.136793 0.990600i \(-0.456321\pi\)
0.990600 0.136793i \(-0.0436795\pi\)
\(854\) 279474.i 0.383200i
\(855\) −167324. 2.06269e6i −0.228890 2.82164i
\(856\) 112158. 0.153068
\(857\) −459514. 459514.i −0.625658 0.625658i 0.321315 0.946972i \(-0.395875\pi\)
−0.946972 + 0.321315i \(0.895875\pi\)
\(858\) 72982.6 72982.6i 0.0991390 0.0991390i
\(859\) 1.12778e6i 1.52841i 0.644974 + 0.764204i \(0.276868\pi\)
−0.644974 + 0.764204i \(0.723132\pi\)
\(860\) 95001.3 111775.i 0.128450 0.151129i
\(861\) −360805. −0.486705
\(862\) 342085. + 342085.i 0.460383 + 0.460383i
\(863\) 448152. 448152.i 0.601733 0.601733i −0.339039 0.940772i \(-0.610102\pi\)
0.940772 + 0.339039i \(0.110102\pi\)
\(864\) 115194.i 0.154313i
\(865\) 70275.4 + 59729.5i 0.0939229 + 0.0798283i
\(866\) −189888. −0.253199
\(867\) 237688. + 237688.i 0.316205 + 0.316205i
\(868\) 38939.7 38939.7i 0.0516836 0.0516836i
\(869\) 1.32899e6i 1.75988i
\(870\) 602049. 48837.9i 0.795415 0.0645236i
\(871\) 77686.7 0.102402
\(872\) −60454.7 60454.7i −0.0795055 0.0795055i
\(873\) 12712.3 12712.3i 0.0166800 0.0166800i
\(874\) 59796.0i 0.0782798i
\(875\) 149418. 247820.i 0.195158 0.323683i
\(876\) −1.14950e6 −1.49797
\(877\) −236768. 236768.i −0.307839 0.307839i 0.536232 0.844071i \(-0.319847\pi\)
−0.844071 + 0.536232i \(0.819847\pi\)
\(878\) −59698.6 + 59698.6i −0.0774417 + 0.0774417i
\(879\) 1.66952e6i 2.16079i
\(880\) 23617.2 + 291141.i 0.0304974 + 0.375957i
\(881\) −1.08333e6 −1.39576 −0.697880 0.716215i \(-0.745873\pi\)
−0.697880 + 0.716215i \(0.745873\pi\)
\(882\) −85959.0 85959.0i −0.110498 0.110498i
\(883\) −606099. + 606099.i −0.777360 + 0.777360i −0.979381 0.202021i \(-0.935249\pi\)
0.202021 + 0.979381i \(0.435249\pi\)
\(884\) 27297.3i 0.0349314i
\(885\) 1.60839e6 1.89237e6i 2.05354 2.41612i
\(886\) −395140. −0.503366
\(887\) −333719. 333719.i −0.424163 0.424163i 0.462471 0.886634i \(-0.346963\pi\)
−0.886634 + 0.462471i \(0.846963\pi\)
\(888\) −214809. + 214809.i −0.272413 + 0.272413i
\(889\) 92844.3i 0.117477i
\(890\) 23478.4 + 19955.1i 0.0296407 + 0.0251927i
\(891\) −184279. −0.232124
\(892\) 2643.67 + 2643.67i 0.00332259 + 0.00332259i
\(893\) −581058. + 581058.i −0.728646 + 0.728646i
\(894\) 836696.i 1.04687i
\(895\) −104123. + 8446.38i −0.129987 + 0.0105445i
\(896\) −26820.2 −0.0334077
\(897\) −4523.18 4523.18i −0.00562159 0.00562159i
\(898\) −530051. + 530051.i −0.657301 + 0.657301i
\(899\) 221048.i 0.273507i
\(900\) −618332. + 100982.i −0.763373 + 0.124669i
\(901\) −1.17666e6 −1.44944
\(902\) 495231. + 495231.i 0.608688 + 0.608688i
\(903\) 137964. 137964.i 0.169196 0.169196i
\(904\) 336305.i 0.411526i
\(905\) −80673.6 994503.i −0.0984995 1.21425i
\(906\) 872964. 1.06351
\(907\) −489718. 489718.i −0.595294 0.595294i 0.343762 0.939057i \(-0.388298\pi\)
−0.939057 + 0.343762i \(0.888298\pi\)
\(908\) −283049. + 283049.i −0.343313 + 0.343313i
\(909\) 525004.i 0.635381i
\(910\) −11802.6 + 13886.5i −0.0142527 + 0.0167691i
\(911\) 450265. 0.542540 0.271270 0.962503i \(-0.412556\pi\)
0.271270 + 0.962503i \(0.412556\pi\)
\(912\) −429408. 429408.i −0.516274 0.516274i
\(913\) 1.40878e6 1.40878e6i 1.69006 1.69006i
\(914\) 207546.i 0.248441i
\(915\) 1.45975e6 + 1.24069e6i 1.74356 + 1.48191i
\(916\) −403047. −0.480358
\(917\) 87516.6 + 87516.6i 0.104076 + 0.104076i
\(918\) 312060. 312060.i 0.370299 0.370299i
\(919\) 943056.i 1.11662i 0.829631 + 0.558312i \(0.188551\pi\)
−0.829631 + 0.558312i \(0.811449\pi\)
\(920\) 18043.8 1463.70i 0.0213183 0.00172933i
\(921\) −999762. −1.17863
\(922\) −306631. 306631.i −0.360707 0.360707i
\(923\) 81886.3 81886.3i 0.0961187 0.0961187i
\(924\) 388507.i 0.455046i
\(925\) −474269. 341107.i −0.554296 0.398664i
\(926\) 757670. 0.883605
\(927\) 809751. + 809751.i 0.942306 + 0.942306i
\(928\) 76124.9 76124.9i 0.0883956 0.0883956i
\(929\) 325160.i 0.376761i −0.982096 0.188380i \(-0.939676\pi\)
0.982096 0.188380i \(-0.0603238\pi\)
\(930\) −30521.9 376258.i −0.0352895 0.435031i
\(931\) 226592. 0.261424
\(932\) 164477. + 164477.i 0.189353 + 0.189353i
\(933\) −759440. + 759440.i −0.872429 + 0.872429i
\(934\) 274385.i 0.314533i
\(935\) 724720. 852678.i 0.828986 0.975353i
\(936\) 39457.5 0.0450379
\(937\) −658350. 658350.i −0.749855 0.749855i 0.224597 0.974452i \(-0.427894\pi\)
−0.974452 + 0.224597i \(0.927894\pi\)
\(938\) −206774. + 206774.i −0.235012 + 0.235012i
\(939\) 985956.i 1.11822i
\(940\) 189561. + 161114.i 0.214532 + 0.182338i
\(941\) −1.00630e6 −1.13645 −0.568223 0.822875i \(-0.692369\pi\)
−0.568223 + 0.822875i \(0.692369\pi\)
\(942\) −184882. 184882.i −0.208350 0.208350i
\(943\) 30692.5 30692.5i 0.0345151 0.0345151i
\(944\) 442646.i 0.496721i
\(945\) −293675. + 23822.8i −0.328855 + 0.0266765i
\(946\) −378732. −0.423204
\(947\) −201846. 201846.i −0.225072 0.225072i 0.585558 0.810630i \(-0.300875\pi\)
−0.810630 + 0.585558i \(0.800875\pi\)
\(948\) −591487. + 591487.i −0.658155 + 0.658155i
\(949\) 139217.i 0.154583i
\(950\) 681879. 948072.i 0.755545 1.05050i
\(951\) 100290. 0.110891
\(952\) 72655.8 + 72655.8i 0.0801671 + 0.0801671i
\(953\) 645353. 645353.i 0.710578 0.710578i −0.256078 0.966656i \(-0.582430\pi\)
0.966656 + 0.256078i \(0.0824304\pi\)
\(954\) 1.70083e6i 1.86880i
\(955\) −49032.3 604446.i −0.0537620 0.662751i
\(956\) 796783. 0.871815
\(957\) −1.10272e6 1.10272e6i −1.20404 1.20404i
\(958\) 274359. 274359.i 0.298943 0.298943i
\(959\) 440749.i 0.479241i
\(960\) −119065. + 140087.i −0.129194 + 0.152005i
\(961\) −785374. −0.850413
\(962\) 26015.7 + 26015.7i 0.0281116 + 0.0281116i
\(963\) 439186. 439186.i 0.473583 0.473583i
\(964\) 142921.i 0.153795i
\(965\) 77214.7 + 65627.4i 0.0829173 + 0.0704743i
\(966\) 24078.2 0.0258030
\(967\) 832299. + 832299.i 0.890075 + 0.890075i 0.994530 0.104455i \(-0.0333097\pi\)
−0.104455 + 0.994530i \(0.533310\pi\)
\(968\) 298999. 298999.i 0.319094 0.319094i
\(969\) 2.32653e6i 2.47777i
\(970\) 10111.9 820.271i 0.0107470 0.000871794i
\(971\) 248487. 0.263552 0.131776 0.991280i \(-0.457932\pi\)
0.131776 + 0.991280i \(0.457932\pi\)
\(972\) −373600. 373600.i −0.395435 0.395435i
\(973\) 327105. 327105.i 0.345511 0.345511i
\(974\) 103981.i 0.109606i
\(975\) 20135.8 + 123295.i 0.0211816 + 0.129699i
\(976\) 341452. 0.358451
\(977\) −513339. 513339.i −0.537793 0.537793i 0.385088 0.922880i \(-0.374171\pi\)
−0.922880 + 0.385088i \(0.874171\pi\)
\(978\) −1.20298e6 + 1.20298e6i −1.25771 + 1.25771i
\(979\) 79553.0i 0.0830025i
\(980\) −5546.58 68375.4i −0.00577528 0.0711947i
\(981\) −473454. −0.491971
\(982\) −405410. 405410.i −0.420409 0.420409i
\(983\) 420714. 420714.i 0.435392 0.435392i −0.455066 0.890458i \(-0.650384\pi\)
0.890458 + 0.455066i \(0.150384\pi\)
\(984\) 440819.i 0.455271i
\(985\) 243818. 286867.i 0.251301 0.295671i
\(986\) −412444. −0.424239
\(987\) 233976. + 233976.i 0.240180 + 0.240180i
\(988\) −52005.9 + 52005.9i −0.0532769 + 0.0532769i
\(989\) 23472.4i 0.0239974i
\(990\) 1.23252e6 + 1.04756e6i 1.25755 + 1.06883i
\(991\) 340086. 0.346292 0.173146 0.984896i \(-0.444607\pi\)
0.173146 + 0.984896i \(0.444607\pi\)
\(992\) −47575.2 47575.2i −0.0483456 0.0483456i
\(993\) −792705. + 792705.i −0.803920 + 0.803920i
\(994\) 435904.i 0.441183i
\(995\) −1.04090e6 + 84437.0i −1.05138 + 0.0852877i
\(996\) 1.25400e6 1.26409
\(997\) −759217. 759217.i −0.763793 0.763793i 0.213213 0.977006i \(-0.431607\pi\)
−0.977006 + 0.213213i \(0.931607\pi\)
\(998\) −12693.8 + 12693.8i −0.0127447 + 0.0127447i
\(999\) 594817.i 0.596009i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.5.f.a.57.1 yes 12
5.2 odd 4 350.5.f.d.43.6 12
5.3 odd 4 inner 70.5.f.a.43.1 12
5.4 even 2 350.5.f.d.57.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.5.f.a.43.1 12 5.3 odd 4 inner
70.5.f.a.57.1 yes 12 1.1 even 1 trivial
350.5.f.d.43.6 12 5.2 odd 4
350.5.f.d.57.6 12 5.4 even 2