Properties

Label 70.5.f.a.43.3
Level $70$
Weight $5$
Character 70.43
Analytic conductor $7.236$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,5,Mod(43,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.43"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 70.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.23589741587\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 334x^{10} + 34233x^{8} + 1144512x^{6} + 13607616x^{4} + 38549504x^{2} + 31360000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5^{2}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.3
Root \(-1.27116i\) of defining polynomial
Character \(\chi\) \(=\) 70.43
Dual form 70.5.f.a.57.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 2.00000i) q^{2} +(-6.14353 - 6.14353i) q^{3} -8.00000i q^{4} +(22.5891 + 10.7113i) q^{5} +24.5741 q^{6} +(-13.0958 + 13.0958i) q^{7} +(16.0000 + 16.0000i) q^{8} -5.51396i q^{9} +(-66.6008 + 23.7557i) q^{10} -107.742 q^{11} +(-49.1483 + 49.1483i) q^{12} +(-156.484 - 156.484i) q^{13} -52.3832i q^{14} +(-72.9719 - 204.582i) q^{15} -64.0000 q^{16} +(-345.450 + 345.450i) q^{17} +(11.0279 + 11.0279i) q^{18} -553.780i q^{19} +(85.6903 - 180.713i) q^{20} +160.909 q^{21} +(215.483 - 215.483i) q^{22} +(-313.375 - 313.375i) q^{23} -196.593i q^{24} +(395.537 + 483.917i) q^{25} +625.937 q^{26} +(-531.502 + 531.502i) q^{27} +(104.766 + 104.766i) q^{28} -154.098i q^{29} +(555.108 + 263.221i) q^{30} -1056.04 q^{31} +(128.000 - 128.000i) q^{32} +(661.915 + 661.915i) q^{33} -1381.80i q^{34} +(-436.096 + 155.550i) q^{35} -44.1117 q^{36} +(-1009.72 + 1009.72i) q^{37} +(1107.56 + 1107.56i) q^{38} +1922.73i q^{39} +(190.045 + 532.807i) q^{40} +2590.16 q^{41} +(-321.818 + 321.818i) q^{42} +(-826.179 - 826.179i) q^{43} +861.934i q^{44} +(59.0617 - 124.556i) q^{45} +1253.50 q^{46} +(1700.19 - 1700.19i) q^{47} +(393.186 + 393.186i) q^{48} -343.000i q^{49} +(-1758.91 - 176.761i) q^{50} +4244.57 q^{51} +(-1251.87 + 1251.87i) q^{52} +(770.758 + 770.758i) q^{53} -2126.01i q^{54} +(-2433.79 - 1154.05i) q^{55} -419.066 q^{56} +(-3402.17 + 3402.17i) q^{57} +(308.197 + 308.197i) q^{58} -5567.45i q^{59} +(-1636.66 + 583.775i) q^{60} +3899.53 q^{61} +(2112.09 - 2112.09i) q^{62} +(72.2098 + 72.2098i) q^{63} +512.000i q^{64} +(-1858.69 - 5210.99i) q^{65} -2647.66 q^{66} +(-3509.44 + 3509.44i) q^{67} +(2763.60 + 2763.60i) q^{68} +3850.46i q^{69} +(561.092 - 1183.29i) q^{70} -3076.44 q^{71} +(88.2234 - 88.2234i) q^{72} +(-2473.70 - 2473.70i) q^{73} -4038.87i q^{74} +(542.969 - 5402.95i) q^{75} -4430.24 q^{76} +(1410.96 - 1410.96i) q^{77} +(-3845.46 - 3845.46i) q^{78} +4246.96i q^{79} +(-1445.70 - 685.522i) q^{80} +6083.97 q^{81} +(-5180.32 + 5180.32i) q^{82} +(572.593 + 572.593i) q^{83} -1287.27i q^{84} +(-11503.6 + 4103.20i) q^{85} +3304.72 q^{86} +(-946.709 + 946.709i) q^{87} +(-1723.87 - 1723.87i) q^{88} +3337.76i q^{89} +(130.988 + 367.235i) q^{90} +4098.57 q^{91} +(-2507.00 + 2507.00i) q^{92} +(6487.83 + 6487.83i) q^{93} +6800.75i q^{94} +(5931.70 - 12509.4i) q^{95} -1572.74 q^{96} +(6884.42 - 6884.42i) q^{97} +(686.000 + 686.000i) q^{98} +594.084i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{2} - 20 q^{3} + 8 q^{5} + 80 q^{6} + 192 q^{8} - 144 q^{10} + 4 q^{11} - 160 q^{12} - 180 q^{13} - 736 q^{15} - 768 q^{16} - 236 q^{17} - 464 q^{18} + 512 q^{20} - 196 q^{21} - 8 q^{22} - 1232 q^{23}+ \cdots + 8232 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 + 2.00000i −0.500000 + 0.500000i
\(3\) −6.14353 6.14353i −0.682615 0.682615i 0.277974 0.960589i \(-0.410337\pi\)
−0.960589 + 0.277974i \(0.910337\pi\)
\(4\) 8.00000i 0.500000i
\(5\) 22.5891 + 10.7113i 0.903565 + 0.428452i
\(6\) 24.5741 0.682615
\(7\) −13.0958 + 13.0958i −0.267261 + 0.267261i
\(8\) 16.0000 + 16.0000i 0.250000 + 0.250000i
\(9\) 5.51396i 0.0680736i
\(10\) −66.6008 + 23.7557i −0.666008 + 0.237557i
\(11\) −107.742 −0.890427 −0.445214 0.895424i \(-0.646872\pi\)
−0.445214 + 0.895424i \(0.646872\pi\)
\(12\) −49.1483 + 49.1483i −0.341307 + 0.341307i
\(13\) −156.484 156.484i −0.925942 0.925942i 0.0714989 0.997441i \(-0.477222\pi\)
−0.997441 + 0.0714989i \(0.977222\pi\)
\(14\) 52.3832i 0.267261i
\(15\) −72.9719 204.582i −0.324319 0.909254i
\(16\) −64.0000 −0.250000
\(17\) −345.450 + 345.450i −1.19533 + 1.19533i −0.219781 + 0.975549i \(0.570534\pi\)
−0.975549 + 0.219781i \(0.929466\pi\)
\(18\) 11.0279 + 11.0279i 0.0340368 + 0.0340368i
\(19\) 553.780i 1.53402i −0.641637 0.767009i \(-0.721744\pi\)
0.641637 0.767009i \(-0.278256\pi\)
\(20\) 85.6903 180.713i 0.214226 0.451782i
\(21\) 160.909 0.364873
\(22\) 215.483 215.483i 0.445214 0.445214i
\(23\) −313.375 313.375i −0.592391 0.592391i 0.345886 0.938277i \(-0.387579\pi\)
−0.938277 + 0.345886i \(0.887579\pi\)
\(24\) 196.593i 0.341307i
\(25\) 395.537 + 483.917i 0.632859 + 0.774267i
\(26\) 625.937 0.925942
\(27\) −531.502 + 531.502i −0.729083 + 0.729083i
\(28\) 104.766 + 104.766i 0.133631 + 0.133631i
\(29\) 154.098i 0.183232i −0.995794 0.0916162i \(-0.970797\pi\)
0.995794 0.0916162i \(-0.0292033\pi\)
\(30\) 555.108 + 263.221i 0.616787 + 0.292467i
\(31\) −1056.04 −1.09890 −0.549450 0.835527i \(-0.685163\pi\)
−0.549450 + 0.835527i \(0.685163\pi\)
\(32\) 128.000 128.000i 0.125000 0.125000i
\(33\) 661.915 + 661.915i 0.607819 + 0.607819i
\(34\) 1381.80i 1.19533i
\(35\) −436.096 + 155.550i −0.355996 + 0.126979i
\(36\) −44.1117 −0.0340368
\(37\) −1009.72 + 1009.72i −0.737559 + 0.737559i −0.972105 0.234546i \(-0.924640\pi\)
0.234546 + 0.972105i \(0.424640\pi\)
\(38\) 1107.56 + 1107.56i 0.767009 + 0.767009i
\(39\) 1922.73i 1.26412i
\(40\) 190.045 + 532.807i 0.118778 + 0.333004i
\(41\) 2590.16 1.54084 0.770422 0.637534i \(-0.220045\pi\)
0.770422 + 0.637534i \(0.220045\pi\)
\(42\) −321.818 + 321.818i −0.182437 + 0.182437i
\(43\) −826.179 826.179i −0.446825 0.446825i 0.447473 0.894298i \(-0.352324\pi\)
−0.894298 + 0.447473i \(0.852324\pi\)
\(44\) 861.934i 0.445214i
\(45\) 59.0617 124.556i 0.0291663 0.0615089i
\(46\) 1253.50 0.592391
\(47\) 1700.19 1700.19i 0.769664 0.769664i −0.208383 0.978047i \(-0.566820\pi\)
0.978047 + 0.208383i \(0.0668201\pi\)
\(48\) 393.186 + 393.186i 0.170654 + 0.170654i
\(49\) 343.000i 0.142857i
\(50\) −1758.91 176.761i −0.703563 0.0707044i
\(51\) 4244.57 1.63190
\(52\) −1251.87 + 1251.87i −0.462971 + 0.462971i
\(53\) 770.758 + 770.758i 0.274389 + 0.274389i 0.830864 0.556475i \(-0.187847\pi\)
−0.556475 + 0.830864i \(0.687847\pi\)
\(54\) 2126.01i 0.729083i
\(55\) −2433.79 1154.05i −0.804559 0.381505i
\(56\) −419.066 −0.133631
\(57\) −3402.17 + 3402.17i −1.04714 + 1.04714i
\(58\) 308.197 + 308.197i 0.0916162 + 0.0916162i
\(59\) 5567.45i 1.59938i −0.600411 0.799692i \(-0.704996\pi\)
0.600411 0.799692i \(-0.295004\pi\)
\(60\) −1636.66 + 583.775i −0.454627 + 0.162160i
\(61\) 3899.53 1.04798 0.523990 0.851725i \(-0.324443\pi\)
0.523990 + 0.851725i \(0.324443\pi\)
\(62\) 2112.09 2112.09i 0.549450 0.549450i
\(63\) 72.2098 + 72.2098i 0.0181934 + 0.0181934i
\(64\) 512.000i 0.125000i
\(65\) −1858.69 5210.99i −0.439927 1.23337i
\(66\) −2647.66 −0.607819
\(67\) −3509.44 + 3509.44i −0.781786 + 0.781786i −0.980132 0.198346i \(-0.936443\pi\)
0.198346 + 0.980132i \(0.436443\pi\)
\(68\) 2763.60 + 2763.60i 0.597665 + 0.597665i
\(69\) 3850.46i 0.808750i
\(70\) 561.092 1183.29i 0.114508 0.241488i
\(71\) −3076.44 −0.610284 −0.305142 0.952307i \(-0.598704\pi\)
−0.305142 + 0.952307i \(0.598704\pi\)
\(72\) 88.2234 88.2234i 0.0170184 0.0170184i
\(73\) −2473.70 2473.70i −0.464196 0.464196i 0.435832 0.900028i \(-0.356454\pi\)
−0.900028 + 0.435832i \(0.856454\pi\)
\(74\) 4038.87i 0.737559i
\(75\) 542.969 5402.95i 0.0965278 0.960525i
\(76\) −4430.24 −0.767009
\(77\) 1410.96 1410.96i 0.237977 0.237977i
\(78\) −3845.46 3845.46i −0.632062 0.632062i
\(79\) 4246.96i 0.680493i 0.940336 + 0.340246i \(0.110511\pi\)
−0.940336 + 0.340246i \(0.889489\pi\)
\(80\) −1445.70 685.522i −0.225891 0.107113i
\(81\) 6083.97 0.927292
\(82\) −5180.32 + 5180.32i −0.770422 + 0.770422i
\(83\) 572.593 + 572.593i 0.0831169 + 0.0831169i 0.747443 0.664326i \(-0.231281\pi\)
−0.664326 + 0.747443i \(0.731281\pi\)
\(84\) 1287.27i 0.182437i
\(85\) −11503.6 + 4103.20i −1.59220 + 0.567917i
\(86\) 3304.72 0.446825
\(87\) −946.709 + 946.709i −0.125077 + 0.125077i
\(88\) −1723.87 1723.87i −0.222607 0.222607i
\(89\) 3337.76i 0.421381i 0.977553 + 0.210691i \(0.0675713\pi\)
−0.977553 + 0.210691i \(0.932429\pi\)
\(90\) 130.988 + 367.235i 0.0161713 + 0.0453376i
\(91\) 4098.57 0.494937
\(92\) −2507.00 + 2507.00i −0.296196 + 0.296196i
\(93\) 6487.83 + 6487.83i 0.750125 + 0.750125i
\(94\) 6800.75i 0.769664i
\(95\) 5931.70 12509.4i 0.657252 1.38608i
\(96\) −1572.74 −0.170654
\(97\) 6884.42 6884.42i 0.731684 0.731684i −0.239269 0.970953i \(-0.576908\pi\)
0.970953 + 0.239269i \(0.0769078\pi\)
\(98\) 686.000 + 686.000i 0.0714286 + 0.0714286i
\(99\) 594.084i 0.0606146i
\(100\) 3871.34 3164.29i 0.387134 0.316429i
\(101\) −8844.81 −0.867053 −0.433527 0.901141i \(-0.642731\pi\)
−0.433527 + 0.901141i \(0.642731\pi\)
\(102\) −8489.15 + 8489.15i −0.815950 + 0.815950i
\(103\) 5142.53 + 5142.53i 0.484732 + 0.484732i 0.906639 0.421907i \(-0.138639\pi\)
−0.421907 + 0.906639i \(0.638639\pi\)
\(104\) 5007.49i 0.462971i
\(105\) 3634.79 + 1723.54i 0.329686 + 0.156330i
\(106\) −3083.03 −0.274389
\(107\) 6900.66 6900.66i 0.602731 0.602731i −0.338306 0.941036i \(-0.609854\pi\)
0.941036 + 0.338306i \(0.109854\pi\)
\(108\) 4252.01 + 4252.01i 0.364542 + 0.364542i
\(109\) 3830.12i 0.322373i 0.986924 + 0.161187i \(0.0515321\pi\)
−0.986924 + 0.161187i \(0.948468\pi\)
\(110\) 7175.69 2559.48i 0.593032 0.211527i
\(111\) 12406.5 1.00694
\(112\) 838.131 838.131i 0.0668153 0.0668153i
\(113\) 6819.26 + 6819.26i 0.534048 + 0.534048i 0.921775 0.387726i \(-0.126739\pi\)
−0.387726 + 0.921775i \(0.626739\pi\)
\(114\) 13608.7i 1.04714i
\(115\) −3722.21 10435.5i −0.281453 0.789075i
\(116\) −1232.79 −0.0916162
\(117\) −862.848 + 862.848i −0.0630322 + 0.0630322i
\(118\) 11134.9 + 11134.9i 0.799692 + 0.799692i
\(119\) 9047.90i 0.638931i
\(120\) 2105.77 4440.87i 0.146234 0.308393i
\(121\) −3032.73 −0.207139
\(122\) −7799.06 + 7799.06i −0.523990 + 0.523990i
\(123\) −15912.7 15912.7i −1.05180 1.05180i
\(124\) 8448.34i 0.549450i
\(125\) 3751.45 + 15168.0i 0.240093 + 0.970750i
\(126\) −288.839 −0.0181934
\(127\) −16078.4 + 16078.4i −0.996864 + 0.996864i −0.999995 0.00313125i \(-0.999003\pi\)
0.00313125 + 0.999995i \(0.499003\pi\)
\(128\) −1024.00 1024.00i −0.0625000 0.0625000i
\(129\) 10151.3i 0.610018i
\(130\) 14139.4 + 6704.59i 0.836648 + 0.396721i
\(131\) 20737.3 1.20840 0.604198 0.796834i \(-0.293494\pi\)
0.604198 + 0.796834i \(0.293494\pi\)
\(132\) 5295.32 5295.32i 0.303909 0.303909i
\(133\) 7252.20 + 7252.20i 0.409983 + 0.409983i
\(134\) 14037.7i 0.781786i
\(135\) −17699.2 + 6313.09i −0.971150 + 0.346397i
\(136\) −11054.4 −0.597665
\(137\) 64.1999 64.1999i 0.00342053 0.00342053i −0.705394 0.708815i \(-0.749230\pi\)
0.708815 + 0.705394i \(0.249230\pi\)
\(138\) −7700.92 7700.92i −0.404375 0.404375i
\(139\) 12074.6i 0.624949i −0.949926 0.312475i \(-0.898842\pi\)
0.949926 0.312475i \(-0.101158\pi\)
\(140\) 1244.40 + 3488.76i 0.0634897 + 0.177998i
\(141\) −20890.3 −1.05077
\(142\) 6152.88 6152.88i 0.305142 0.305142i
\(143\) 16859.9 + 16859.9i 0.824484 + 0.824484i
\(144\) 352.894i 0.0170184i
\(145\) 1650.59 3480.95i 0.0785062 0.165562i
\(146\) 9894.80 0.464196
\(147\) −2107.23 + 2107.23i −0.0975164 + 0.0975164i
\(148\) 8077.74 + 8077.74i 0.368779 + 0.368779i
\(149\) 14865.6i 0.669590i 0.942291 + 0.334795i \(0.108667\pi\)
−0.942291 + 0.334795i \(0.891333\pi\)
\(150\) 9719.97 + 11891.8i 0.431999 + 0.528527i
\(151\) −32311.0 −1.41709 −0.708544 0.705666i \(-0.750648\pi\)
−0.708544 + 0.705666i \(0.750648\pi\)
\(152\) 8860.48 8860.48i 0.383504 0.383504i
\(153\) 1904.80 + 1904.80i 0.0813705 + 0.0813705i
\(154\) 5643.86i 0.237977i
\(155\) −23855.1 11311.6i −0.992927 0.470825i
\(156\) 15381.9 0.632062
\(157\) 20962.0 20962.0i 0.850420 0.850420i −0.139765 0.990185i \(-0.544635\pi\)
0.990185 + 0.139765i \(0.0446347\pi\)
\(158\) −8493.91 8493.91i −0.340246 0.340246i
\(159\) 9470.35i 0.374604i
\(160\) 4262.45 1520.36i 0.166502 0.0593892i
\(161\) 8207.79 0.316646
\(162\) −12167.9 + 12167.9i −0.463646 + 0.463646i
\(163\) −4876.07 4876.07i −0.183525 0.183525i 0.609365 0.792890i \(-0.291424\pi\)
−0.792890 + 0.609365i \(0.791424\pi\)
\(164\) 20721.3i 0.770422i
\(165\) 7862.11 + 22042.0i 0.288783 + 0.809625i
\(166\) −2290.37 −0.0831169
\(167\) 17701.4 17701.4i 0.634711 0.634711i −0.314535 0.949246i \(-0.601849\pi\)
0.949246 + 0.314535i \(0.101849\pi\)
\(168\) 2574.54 + 2574.54i 0.0912183 + 0.0912183i
\(169\) 20413.6i 0.714736i
\(170\) 14800.9 31213.7i 0.512141 1.08006i
\(171\) −3053.52 −0.104426
\(172\) −6609.43 + 6609.43i −0.223412 + 0.223412i
\(173\) −37244.1 37244.1i −1.24442 1.24442i −0.958150 0.286265i \(-0.907586\pi\)
−0.286265 0.958150i \(-0.592414\pi\)
\(174\) 3786.84i 0.125077i
\(175\) −11517.2 1157.41i −0.376070 0.0377931i
\(176\) 6895.47 0.222607
\(177\) −34203.8 + 34203.8i −1.09176 + 1.09176i
\(178\) −6675.52 6675.52i −0.210691 0.210691i
\(179\) 9674.30i 0.301935i 0.988539 + 0.150968i \(0.0482389\pi\)
−0.988539 + 0.150968i \(0.951761\pi\)
\(180\) −996.445 472.493i −0.0307545 0.0145831i
\(181\) −29963.0 −0.914593 −0.457297 0.889314i \(-0.651182\pi\)
−0.457297 + 0.889314i \(0.651182\pi\)
\(182\) −8197.14 + 8197.14i −0.247468 + 0.247468i
\(183\) −23956.9 23956.9i −0.715366 0.715366i
\(184\) 10028.0i 0.296196i
\(185\) −33624.0 + 11993.3i −0.982440 + 0.350424i
\(186\) −25951.3 −0.750125
\(187\) 37219.4 37219.4i 1.06435 1.06435i
\(188\) −13601.5 13601.5i −0.384832 0.384832i
\(189\) 13920.9i 0.389711i
\(190\) 13155.4 + 36882.2i 0.364416 + 1.02167i
\(191\) −12935.5 −0.354581 −0.177291 0.984159i \(-0.556733\pi\)
−0.177291 + 0.984159i \(0.556733\pi\)
\(192\) 3145.49 3145.49i 0.0853269 0.0853269i
\(193\) −51445.6 51445.6i −1.38113 1.38113i −0.842621 0.538507i \(-0.818988\pi\)
−0.538507 0.842621i \(-0.681012\pi\)
\(194\) 27537.7i 0.731684i
\(195\) −20594.9 + 43432.8i −0.541616 + 1.14222i
\(196\) −2744.00 −0.0714286
\(197\) 51874.5 51874.5i 1.33666 1.33666i 0.437387 0.899273i \(-0.355904\pi\)
0.899273 0.437387i \(-0.144096\pi\)
\(198\) −1188.17 1188.17i −0.0303073 0.0303073i
\(199\) 6717.24i 0.169623i 0.996397 + 0.0848115i \(0.0270288\pi\)
−0.996397 + 0.0848115i \(0.972971\pi\)
\(200\) −1414.09 + 14071.3i −0.0353522 + 0.351781i
\(201\) 43120.7 1.06732
\(202\) 17689.6 17689.6i 0.433527 0.433527i
\(203\) 2018.04 + 2018.04i 0.0489709 + 0.0489709i
\(204\) 33956.6i 0.815950i
\(205\) 58509.4 + 27744.0i 1.39225 + 0.660177i
\(206\) −20570.1 −0.484732
\(207\) −1727.94 + 1727.94i −0.0403262 + 0.0403262i
\(208\) 10015.0 + 10015.0i 0.231485 + 0.231485i
\(209\) 59665.2i 1.36593i
\(210\) −10716.7 + 3822.50i −0.243008 + 0.0866780i
\(211\) 66873.2 1.50206 0.751030 0.660269i \(-0.229558\pi\)
0.751030 + 0.660269i \(0.229558\pi\)
\(212\) 6166.06 6166.06i 0.137194 0.137194i
\(213\) 18900.2 + 18900.2i 0.416589 + 0.416589i
\(214\) 27602.6i 0.602731i
\(215\) −9813.21 27512.1i −0.212292 0.595178i
\(216\) −17008.0 −0.364542
\(217\) 13829.7 13829.7i 0.293693 0.293693i
\(218\) −7660.24 7660.24i −0.161187 0.161187i
\(219\) 30394.5i 0.633734i
\(220\) −9232.42 + 19470.3i −0.190752 + 0.402279i
\(221\) 108115. 2.21361
\(222\) −24812.9 + 24812.9i −0.503469 + 0.503469i
\(223\) −16066.1 16066.1i −0.323073 0.323073i 0.526872 0.849945i \(-0.323365\pi\)
−0.849945 + 0.526872i \(0.823365\pi\)
\(224\) 3352.53i 0.0668153i
\(225\) 2668.30 2180.97i 0.0527072 0.0430810i
\(226\) −27277.1 −0.534048
\(227\) 49867.3 49867.3i 0.967752 0.967752i −0.0317436 0.999496i \(-0.510106\pi\)
0.999496 + 0.0317436i \(0.0101060\pi\)
\(228\) 27217.3 + 27217.3i 0.523572 + 0.523572i
\(229\) 55646.5i 1.06113i 0.847645 + 0.530563i \(0.178020\pi\)
−0.847645 + 0.530563i \(0.821980\pi\)
\(230\) 28315.5 + 13426.6i 0.535264 + 0.253811i
\(231\) −17336.6 −0.324893
\(232\) 2465.57 2465.57i 0.0458081 0.0458081i
\(233\) −478.359 478.359i −0.00881134 0.00881134i 0.702687 0.711499i \(-0.251983\pi\)
−0.711499 + 0.702687i \(0.751983\pi\)
\(234\) 3451.39i 0.0630322i
\(235\) 56616.9 20194.5i 1.02521 0.365678i
\(236\) −44539.6 −0.799692
\(237\) 26091.3 26091.3i 0.464515 0.464515i
\(238\) 18095.8 + 18095.8i 0.319465 + 0.319465i
\(239\) 46240.3i 0.809515i 0.914424 + 0.404758i \(0.132644\pi\)
−0.914424 + 0.404758i \(0.867356\pi\)
\(240\) 4670.20 + 13093.3i 0.0810798 + 0.227314i
\(241\) −43109.0 −0.742221 −0.371111 0.928589i \(-0.621023\pi\)
−0.371111 + 0.928589i \(0.621023\pi\)
\(242\) 6065.45 6065.45i 0.103570 0.103570i
\(243\) 5674.57 + 5674.57i 0.0960994 + 0.0960994i
\(244\) 31196.2i 0.523990i
\(245\) 3673.97 7748.07i 0.0612074 0.129081i
\(246\) 63651.0 1.05180
\(247\) −86657.8 + 86657.8i −1.42041 + 1.42041i
\(248\) −16896.7 16896.7i −0.274725 0.274725i
\(249\) 7035.48i 0.113474i
\(250\) −37838.8 22833.0i −0.605421 0.365329i
\(251\) −81263.7 −1.28988 −0.644940 0.764233i \(-0.723118\pi\)
−0.644940 + 0.764233i \(0.723118\pi\)
\(252\) 577.678 577.678i 0.00909672 0.00909672i
\(253\) 33763.5 + 33763.5i 0.527481 + 0.527481i
\(254\) 64313.7i 0.996864i
\(255\) 95881.2 + 45464.8i 1.47453 + 0.699190i
\(256\) 4096.00 0.0625000
\(257\) −50040.6 + 50040.6i −0.757628 + 0.757628i −0.975890 0.218262i \(-0.929961\pi\)
0.218262 + 0.975890i \(0.429961\pi\)
\(258\) −20302.6 20302.6i −0.305009 0.305009i
\(259\) 26446.1i 0.394242i
\(260\) −41687.9 + 14869.5i −0.616685 + 0.219964i
\(261\) −849.693 −0.0124733
\(262\) −41474.6 + 41474.6i −0.604198 + 0.604198i
\(263\) 44007.7 + 44007.7i 0.636235 + 0.636235i 0.949625 0.313390i \(-0.101465\pi\)
−0.313390 + 0.949625i \(0.601465\pi\)
\(264\) 21181.3i 0.303909i
\(265\) 9154.93 + 25666.5i 0.130366 + 0.365490i
\(266\) −29008.8 −0.409983
\(267\) 20505.7 20505.7i 0.287641 0.287641i
\(268\) 28075.5 + 28075.5i 0.390893 + 0.390893i
\(269\) 83460.6i 1.15339i −0.816959 0.576696i \(-0.804342\pi\)
0.816959 0.576696i \(-0.195658\pi\)
\(270\) 22772.3 48024.6i 0.312377 0.658774i
\(271\) 23355.4 0.318016 0.159008 0.987277i \(-0.449170\pi\)
0.159008 + 0.987277i \(0.449170\pi\)
\(272\) 22108.8 22108.8i 0.298833 0.298833i
\(273\) −25179.7 25179.7i −0.337851 0.337851i
\(274\) 256.800i 0.00342053i
\(275\) −42615.8 52138.1i −0.563515 0.689429i
\(276\) 30803.7 0.404375
\(277\) 70680.6 70680.6i 0.921173 0.921173i −0.0759399 0.997112i \(-0.524196\pi\)
0.997112 + 0.0759399i \(0.0241957\pi\)
\(278\) 24149.3 + 24149.3i 0.312475 + 0.312475i
\(279\) 5822.98i 0.0748061i
\(280\) −9466.32 4488.73i −0.120744 0.0572542i
\(281\) −90444.8 −1.14544 −0.572718 0.819752i \(-0.694111\pi\)
−0.572718 + 0.819752i \(0.694111\pi\)
\(282\) 41780.7 41780.7i 0.525384 0.525384i
\(283\) −17338.8 17338.8i −0.216494 0.216494i 0.590525 0.807019i \(-0.298921\pi\)
−0.807019 + 0.590525i \(0.798921\pi\)
\(284\) 24611.5i 0.305142i
\(285\) −113294. + 40410.4i −1.39481 + 0.497512i
\(286\) −67439.5 −0.824484
\(287\) −33920.2 + 33920.2i −0.411808 + 0.411808i
\(288\) −705.787 705.787i −0.00850920 0.00850920i
\(289\) 155151.i 1.85763i
\(290\) 3660.71 + 10263.1i 0.0435281 + 0.122034i
\(291\) −84589.3 −0.998917
\(292\) −19789.6 + 19789.6i −0.232098 + 0.232098i
\(293\) −57740.9 57740.9i −0.672587 0.672587i 0.285725 0.958312i \(-0.407766\pi\)
−0.958312 + 0.285725i \(0.907766\pi\)
\(294\) 8428.93i 0.0975164i
\(295\) 59634.6 125764.i 0.685258 1.44515i
\(296\) −32311.0 −0.368779
\(297\) 57264.9 57264.9i 0.649195 0.649195i
\(298\) −29731.1 29731.1i −0.334795 0.334795i
\(299\) 98076.4i 1.09704i
\(300\) −43223.6 4343.75i −0.480263 0.0482639i
\(301\) 21638.9 0.238838
\(302\) 64622.1 64622.1i 0.708544 0.708544i
\(303\) 54338.4 + 54338.4i 0.591864 + 0.591864i
\(304\) 35441.9i 0.383504i
\(305\) 88087.0 + 41769.0i 0.946917 + 0.449008i
\(306\) −7619.20 −0.0813705
\(307\) −21949.4 + 21949.4i −0.232887 + 0.232887i −0.813897 0.581010i \(-0.802658\pi\)
0.581010 + 0.813897i \(0.302658\pi\)
\(308\) −11287.7 11287.7i −0.118988 0.118988i
\(309\) 63186.6i 0.661771i
\(310\) 70333.3 25087.0i 0.731876 0.261051i
\(311\) −19879.8 −0.205538 −0.102769 0.994705i \(-0.532770\pi\)
−0.102769 + 0.994705i \(0.532770\pi\)
\(312\) −30763.7 + 30763.7i −0.316031 + 0.316031i
\(313\) −127683. 127683.i −1.30330 1.30330i −0.926155 0.377143i \(-0.876906\pi\)
−0.377143 0.926155i \(-0.623094\pi\)
\(314\) 83848.0i 0.850420i
\(315\) 857.696 + 2404.62i 0.00864395 + 0.0242340i
\(316\) 33975.7 0.340246
\(317\) −82092.3 + 82092.3i −0.816928 + 0.816928i −0.985662 0.168734i \(-0.946032\pi\)
0.168734 + 0.985662i \(0.446032\pi\)
\(318\) 18940.7 + 18940.7i 0.187302 + 0.187302i
\(319\) 16602.8i 0.163155i
\(320\) −5484.18 + 11565.6i −0.0535564 + 0.112946i
\(321\) −84788.9 −0.822866
\(322\) −16415.6 + 16415.6i −0.158323 + 0.158323i
\(323\) 191304. + 191304.i 1.83366 + 1.83366i
\(324\) 48671.7i 0.463646i
\(325\) 13830.2 137621.i 0.130936 1.30292i
\(326\) 19504.3 0.183525
\(327\) 23530.5 23530.5i 0.220057 0.220057i
\(328\) 41442.6 + 41442.6i 0.385211 + 0.385211i
\(329\) 44530.6i 0.411403i
\(330\) −59808.3 28359.8i −0.549204 0.260421i
\(331\) −51918.8 −0.473880 −0.236940 0.971524i \(-0.576144\pi\)
−0.236940 + 0.971524i \(0.576144\pi\)
\(332\) 4580.74 4580.74i 0.0415585 0.0415585i
\(333\) 5567.55 + 5567.55i 0.0502083 + 0.0502083i
\(334\) 70805.8i 0.634711i
\(335\) −116866. + 41684.5i −1.04135 + 0.371437i
\(336\) −10298.2 −0.0912183
\(337\) −99346.7 + 99346.7i −0.874770 + 0.874770i −0.992988 0.118218i \(-0.962282\pi\)
0.118218 + 0.992988i \(0.462282\pi\)
\(338\) −40827.2 40827.2i −0.357368 0.357368i
\(339\) 83788.8i 0.729099i
\(340\) 32825.6 + 92029.1i 0.283959 + 0.796100i
\(341\) 113780. 0.978490
\(342\) 6107.05 6107.05i 0.0522131 0.0522131i
\(343\) 4491.86 + 4491.86i 0.0381802 + 0.0381802i
\(344\) 26437.7i 0.223412i
\(345\) −41243.4 + 86978.5i −0.346510 + 0.730758i
\(346\) 148976. 1.24442
\(347\) −87398.0 + 87398.0i −0.725843 + 0.725843i −0.969789 0.243946i \(-0.921558\pi\)
0.243946 + 0.969789i \(0.421558\pi\)
\(348\) 7573.67 + 7573.67i 0.0625386 + 0.0625386i
\(349\) 44483.3i 0.365213i −0.983186 0.182606i \(-0.941547\pi\)
0.983186 0.182606i \(-0.0584534\pi\)
\(350\) 25349.1 20719.5i 0.206932 0.169139i
\(351\) 166343. 1.35018
\(352\) −13790.9 + 13790.9i −0.111303 + 0.111303i
\(353\) 58237.1 + 58237.1i 0.467359 + 0.467359i 0.901058 0.433699i \(-0.142792\pi\)
−0.433699 + 0.901058i \(0.642792\pi\)
\(354\) 136815.i 1.09176i
\(355\) −69494.1 32952.6i −0.551431 0.261477i
\(356\) 26702.1 0.210691
\(357\) −55586.1 + 55586.1i −0.436144 + 0.436144i
\(358\) −19348.6 19348.6i −0.150968 0.150968i
\(359\) 28354.8i 0.220008i 0.993931 + 0.110004i \(0.0350863\pi\)
−0.993931 + 0.110004i \(0.964914\pi\)
\(360\) 2937.88 1047.90i 0.0226688 0.00808567i
\(361\) −176352. −1.35321
\(362\) 59926.0 59926.0i 0.457297 0.457297i
\(363\) 18631.7 + 18631.7i 0.141396 + 0.141396i
\(364\) 32788.6i 0.247468i
\(365\) −29382.2 82375.2i −0.220546 0.618316i
\(366\) 95827.6 0.715366
\(367\) −118283. + 118283.i −0.878191 + 0.878191i −0.993347 0.115157i \(-0.963263\pi\)
0.115157 + 0.993347i \(0.463263\pi\)
\(368\) 20056.0 + 20056.0i 0.148098 + 0.148098i
\(369\) 14282.1i 0.104891i
\(370\) 43261.5 91234.5i 0.316008 0.666432i
\(371\) −20187.4 −0.146667
\(372\) 51902.7 51902.7i 0.375063 0.375063i
\(373\) 13634.2 + 13634.2i 0.0979971 + 0.0979971i 0.754406 0.656409i \(-0.227925\pi\)
−0.656409 + 0.754406i \(0.727925\pi\)
\(374\) 148878.i 1.06435i
\(375\) 70137.8 116232.i 0.498758 0.826539i
\(376\) 54406.0 0.384832
\(377\) −24114.0 + 24114.0i −0.169662 + 0.169662i
\(378\) 27841.8 + 27841.8i 0.194856 + 0.194856i
\(379\) 219026.i 1.52482i 0.647097 + 0.762408i \(0.275983\pi\)
−0.647097 + 0.762408i \(0.724017\pi\)
\(380\) −100075. 47453.6i −0.693042 0.328626i
\(381\) 197557. 1.36095
\(382\) 25870.9 25870.9i 0.177291 0.177291i
\(383\) 38144.2 + 38144.2i 0.260034 + 0.260034i 0.825068 0.565034i \(-0.191137\pi\)
−0.565034 + 0.825068i \(0.691137\pi\)
\(384\) 12582.0i 0.0853269i
\(385\) 46985.7 16759.2i 0.316989 0.113066i
\(386\) 205783. 1.38113
\(387\) −4555.52 + 4555.52i −0.0304170 + 0.0304170i
\(388\) −55075.3 55075.3i −0.365842 0.365842i
\(389\) 157406.i 1.04021i −0.854101 0.520107i \(-0.825892\pi\)
0.854101 0.520107i \(-0.174108\pi\)
\(390\) −45675.8 128055.i −0.300301 0.841916i
\(391\) 216511. 1.41621
\(392\) 5488.00 5488.00i 0.0357143 0.0357143i
\(393\) −127400. 127400.i −0.824869 0.824869i
\(394\) 207498.i 1.33666i
\(395\) −45490.4 + 95935.0i −0.291558 + 0.614869i
\(396\) 4752.67 0.0303073
\(397\) 131252. 131252.i 0.832772 0.832772i −0.155123 0.987895i \(-0.549577\pi\)
0.987895 + 0.155123i \(0.0495774\pi\)
\(398\) −13434.5 13434.5i −0.0848115 0.0848115i
\(399\) 89108.2i 0.559722i
\(400\) −25314.3 30970.7i −0.158215 0.193567i
\(401\) 102718. 0.638789 0.319394 0.947622i \(-0.396521\pi\)
0.319394 + 0.947622i \(0.396521\pi\)
\(402\) −86241.4 + 86241.4i −0.533659 + 0.533659i
\(403\) 165254. + 165254.i 1.01752 + 1.01752i
\(404\) 70758.5i 0.433527i
\(405\) 137431. + 65167.1i 0.837869 + 0.397300i
\(406\) −8072.17 −0.0489709
\(407\) 108789. 108789.i 0.656742 0.656742i
\(408\) 67913.2 + 67913.2i 0.407975 + 0.407975i
\(409\) 141379.i 0.845157i −0.906326 0.422578i \(-0.861125\pi\)
0.906326 0.422578i \(-0.138875\pi\)
\(410\) −172507. + 61531.0i −1.02622 + 0.366038i
\(411\) −788.829 −0.00466981
\(412\) 41140.2 41140.2i 0.242366 0.242366i
\(413\) 72910.3 + 72910.3i 0.427453 + 0.427453i
\(414\) 6911.75i 0.0403262i
\(415\) 6801.16 + 19067.6i 0.0394900 + 0.110713i
\(416\) −40059.9 −0.231485
\(417\) −74181.0 + 74181.0i −0.426600 + 0.426600i
\(418\) −119330. 119330.i −0.682965 0.682965i
\(419\) 166898.i 0.950657i 0.879808 + 0.475328i \(0.157671\pi\)
−0.879808 + 0.475328i \(0.842329\pi\)
\(420\) 13788.3 29078.3i 0.0781652 0.164843i
\(421\) 82494.6 0.465438 0.232719 0.972544i \(-0.425238\pi\)
0.232719 + 0.972544i \(0.425238\pi\)
\(422\) −133746. + 133746.i −0.751030 + 0.751030i
\(423\) −9374.77 9374.77i −0.0523938 0.0523938i
\(424\) 24664.2i 0.137194i
\(425\) −303808. 30531.1i −1.68198 0.169030i
\(426\) −75600.9 −0.416589
\(427\) −51067.5 + 51067.5i −0.280084 + 0.280084i
\(428\) −55205.3 55205.3i −0.301365 0.301365i
\(429\) 207158.i 1.12561i
\(430\) 74650.6 + 35397.8i 0.403735 + 0.191443i
\(431\) −196664. −1.05869 −0.529346 0.848406i \(-0.677563\pi\)
−0.529346 + 0.848406i \(0.677563\pi\)
\(432\) 34016.1 34016.1i 0.182271 0.182271i
\(433\) −60507.3 60507.3i −0.322725 0.322725i 0.527087 0.849811i \(-0.323284\pi\)
−0.849811 + 0.527087i \(0.823284\pi\)
\(434\) 55318.9i 0.293693i
\(435\) −31525.8 + 11244.8i −0.166605 + 0.0594258i
\(436\) 30641.0 0.161187
\(437\) −173541. + 173541.i −0.908738 + 0.908738i
\(438\) −60789.0 60789.0i −0.316867 0.316867i
\(439\) 251676.i 1.30591i −0.757397 0.652954i \(-0.773529\pi\)
0.757397 0.652954i \(-0.226471\pi\)
\(440\) −20475.8 57405.5i −0.105763 0.296516i
\(441\) −1891.29 −0.00972480
\(442\) −216230. + 216230.i −1.10681 + 1.10681i
\(443\) −40354.8 40354.8i −0.205630 0.205630i 0.596777 0.802407i \(-0.296448\pi\)
−0.802407 + 0.596777i \(0.796448\pi\)
\(444\) 99251.8i 0.503469i
\(445\) −35751.7 + 75397.1i −0.180541 + 0.380745i
\(446\) 64264.3 0.323073
\(447\) 91327.1 91327.1i 0.457072 0.457072i
\(448\) −6705.05 6705.05i −0.0334077 0.0334077i
\(449\) 35102.5i 0.174119i −0.996203 0.0870594i \(-0.972253\pi\)
0.996203 0.0870594i \(-0.0277470\pi\)
\(450\) −974.654 + 9698.55i −0.00481311 + 0.0478941i
\(451\) −279068. −1.37201
\(452\) 54554.1 54554.1i 0.267024 0.267024i
\(453\) 198504. + 198504.i 0.967326 + 0.967326i
\(454\) 199469.i 0.967752i
\(455\) 92583.1 + 43901.0i 0.447207 + 0.212056i
\(456\) −108869. −0.523572
\(457\) −17668.8 + 17668.8i −0.0846007 + 0.0846007i −0.748141 0.663540i \(-0.769053\pi\)
0.663540 + 0.748141i \(0.269053\pi\)
\(458\) −111293. 111293.i −0.530563 0.530563i
\(459\) 367215.i 1.74299i
\(460\) −83484.1 + 29777.7i −0.394537 + 0.140726i
\(461\) 311286. 1.46473 0.732365 0.680912i \(-0.238417\pi\)
0.732365 + 0.680912i \(0.238417\pi\)
\(462\) 34673.2 34673.2i 0.162446 0.162446i
\(463\) −68332.5 68332.5i −0.318761 0.318761i 0.529530 0.848291i \(-0.322368\pi\)
−0.848291 + 0.529530i \(0.822368\pi\)
\(464\) 9862.30i 0.0458081i
\(465\) 77061.4 + 216048.i 0.356395 + 0.999179i
\(466\) 1913.44 0.00881134
\(467\) −17162.8 + 17162.8i −0.0786962 + 0.0786962i −0.745359 0.666663i \(-0.767722\pi\)
0.666663 + 0.745359i \(0.267722\pi\)
\(468\) 6902.78 + 6902.78i 0.0315161 + 0.0315161i
\(469\) 91917.8i 0.417882i
\(470\) −72844.8 + 153623.i −0.329764 + 0.695441i
\(471\) −257562. −1.16102
\(472\) 89079.3 89079.3i 0.399846 0.399846i
\(473\) 89013.9 + 89013.9i 0.397865 + 0.397865i
\(474\) 104365.i 0.464515i
\(475\) 267984. 219040.i 1.18774 0.970816i
\(476\) −72383.2 −0.319465
\(477\) 4249.93 4249.93i 0.0186786 0.0186786i
\(478\) −92480.6 92480.6i −0.404758 0.404758i
\(479\) 26855.2i 0.117046i 0.998286 + 0.0585230i \(0.0186391\pi\)
−0.998286 + 0.0585230i \(0.981361\pi\)
\(480\) −35526.9 16846.1i −0.154197 0.0731169i
\(481\) 316010. 1.36587
\(482\) 86217.9 86217.9i 0.371111 0.371111i
\(483\) −50424.8 50424.8i −0.216148 0.216148i
\(484\) 24261.8i 0.103570i
\(485\) 229254. 81771.9i 0.974615 0.347633i
\(486\) −22698.3 −0.0960994
\(487\) −148045. + 148045.i −0.624216 + 0.624216i −0.946607 0.322391i \(-0.895513\pi\)
0.322391 + 0.946607i \(0.395513\pi\)
\(488\) 62392.5 + 62392.5i 0.261995 + 0.261995i
\(489\) 59912.7i 0.250554i
\(490\) 8148.19 + 22844.1i 0.0339367 + 0.0951440i
\(491\) −265155. −1.09986 −0.549930 0.835211i \(-0.685346\pi\)
−0.549930 + 0.835211i \(0.685346\pi\)
\(492\) −127302. + 127302.i −0.525902 + 0.525902i
\(493\) 53233.4 + 53233.4i 0.219023 + 0.219023i
\(494\) 346631.i 1.42041i
\(495\) −6363.40 + 13419.8i −0.0259704 + 0.0547692i
\(496\) 67586.7 0.274725
\(497\) 40288.5 40288.5i 0.163105 0.163105i
\(498\) 14071.0 + 14071.0i 0.0567369 + 0.0567369i
\(499\) 362831.i 1.45715i −0.684968 0.728574i \(-0.740184\pi\)
0.684968 0.728574i \(-0.259816\pi\)
\(500\) 121344. 30011.6i 0.485375 0.120046i
\(501\) −217499. −0.866526
\(502\) 162527. 162527.i 0.644940 0.644940i
\(503\) −315242. 315242.i −1.24597 1.24597i −0.957484 0.288486i \(-0.906848\pi\)
−0.288486 0.957484i \(-0.593152\pi\)
\(504\) 2310.71i 0.00909672i
\(505\) −199796. 94739.3i −0.783439 0.371490i
\(506\) −135054. −0.527481
\(507\) 125412. 125412.i 0.487890 0.487890i
\(508\) 128627. + 128627.i 0.498432 + 0.498432i
\(509\) 405092.i 1.56357i 0.623546 + 0.781786i \(0.285691\pi\)
−0.623546 + 0.781786i \(0.714309\pi\)
\(510\) −282692. + 100833.i −1.08686 + 0.387669i
\(511\) 64790.1 0.248123
\(512\) −8192.00 + 8192.00i −0.0312500 + 0.0312500i
\(513\) 294335. + 294335.i 1.11843 + 1.11843i
\(514\) 200162.i 0.757628i
\(515\) 61082.1 + 171248.i 0.230303 + 0.645672i
\(516\) 81210.5 0.305009
\(517\) −183181. + 183181.i −0.685330 + 0.685330i
\(518\) 52892.3 + 52892.3i 0.197121 + 0.197121i
\(519\) 457621.i 1.69891i
\(520\) 53636.7 113115.i 0.198361 0.418324i
\(521\) −214681. −0.790896 −0.395448 0.918488i \(-0.629411\pi\)
−0.395448 + 0.918488i \(0.629411\pi\)
\(522\) 1699.39 1699.39i 0.00623665 0.00623665i
\(523\) −160705. 160705.i −0.587523 0.587523i 0.349437 0.936960i \(-0.386373\pi\)
−0.936960 + 0.349437i \(0.886373\pi\)
\(524\) 165898.i 0.604198i
\(525\) 63645.4 + 77866.6i 0.230913 + 0.282509i
\(526\) −176031. −0.636235
\(527\) 364810. 364810.i 1.31355 1.31355i
\(528\) −42362.6 42362.6i −0.151955 0.151955i
\(529\) 83433.4i 0.298146i
\(530\) −69642.9 33023.2i −0.247928 0.117562i
\(531\) −30698.7 −0.108876
\(532\) 58017.6 58017.6i 0.204992 0.204992i
\(533\) −405319. 405319.i −1.42673 1.42673i
\(534\) 82022.6i 0.287641i
\(535\) 229795. 81964.9i 0.802847 0.286365i
\(536\) −112302. −0.390893
\(537\) 59434.4 59434.4i 0.206105 0.206105i
\(538\) 166921. + 166921.i 0.576696 + 0.576696i
\(539\) 36955.4i 0.127204i
\(540\) 50504.7 + 141594.i 0.173198 + 0.485575i
\(541\) 482776. 1.64950 0.824749 0.565500i \(-0.191317\pi\)
0.824749 + 0.565500i \(0.191317\pi\)
\(542\) −46710.8 + 46710.8i −0.159008 + 0.159008i
\(543\) 184079. + 184079.i 0.624315 + 0.624315i
\(544\) 88435.3i 0.298833i
\(545\) −41025.5 + 86519.0i −0.138121 + 0.291285i
\(546\) 100719. 0.337851
\(547\) 1339.21 1339.21i 0.00447583 0.00447583i −0.704865 0.709341i \(-0.748993\pi\)
0.709341 + 0.704865i \(0.248993\pi\)
\(548\) −513.599 513.599i −0.00171026 0.00171026i
\(549\) 21501.9i 0.0713398i
\(550\) 189508. + 19044.5i 0.626472 + 0.0629572i
\(551\) −85336.6 −0.281082
\(552\) −61607.3 + 61607.3i −0.202188 + 0.202188i
\(553\) −55617.3 55617.3i −0.181869 0.181869i
\(554\) 282723.i 0.921173i
\(555\) 280251. + 132889.i 0.909833 + 0.431424i
\(556\) −96597.1 −0.312475
\(557\) 4068.01 4068.01i 0.0131121 0.0131121i −0.700520 0.713632i \(-0.747049\pi\)
0.713632 + 0.700520i \(0.247049\pi\)
\(558\) −11646.0 11646.0i −0.0374030 0.0374030i
\(559\) 258568.i 0.827467i
\(560\) 27910.1 9955.18i 0.0889991 0.0317448i
\(561\) −457318. −1.45309
\(562\) 180890. 180890.i 0.572718 0.572718i
\(563\) 318929. + 318929.i 1.00618 + 1.00618i 0.999981 + 0.00620147i \(0.00197400\pi\)
0.00620147 + 0.999981i \(0.498026\pi\)
\(564\) 167123.i 0.525384i
\(565\) 80998.1 + 227084.i 0.253733 + 0.711361i
\(566\) 69355.1 0.216494
\(567\) −79674.4 + 79674.4i −0.247829 + 0.247829i
\(568\) −49223.1 49223.1i −0.152571 0.152571i
\(569\) 496680.i 1.53410i −0.641590 0.767048i \(-0.721725\pi\)
0.641590 0.767048i \(-0.278275\pi\)
\(570\) 145766. 307408.i 0.448650 0.946162i
\(571\) 66636.3 0.204380 0.102190 0.994765i \(-0.467415\pi\)
0.102190 + 0.994765i \(0.467415\pi\)
\(572\) 134879. 134879.i 0.412242 0.412242i
\(573\) 79469.5 + 79469.5i 0.242042 + 0.242042i
\(574\) 135681.i 0.411808i
\(575\) 27696.2 275599.i 0.0837694 0.833569i
\(576\) 2823.15 0.00850920
\(577\) −426880. + 426880.i −1.28220 + 1.28220i −0.342780 + 0.939416i \(0.611368\pi\)
−0.939416 + 0.342780i \(0.888632\pi\)
\(578\) 310302. + 310302.i 0.928814 + 0.928814i
\(579\) 632116.i 1.88556i
\(580\) −27847.6 13204.7i −0.0827811 0.0392531i
\(581\) −14997.1 −0.0444279
\(582\) 169179. 169179.i 0.499459 0.499459i
\(583\) −83042.7 83042.7i −0.244323 0.244323i
\(584\) 79158.4i 0.232098i
\(585\) −28733.2 + 10248.8i −0.0839599 + 0.0299474i
\(586\) 230964. 0.672587
\(587\) 270435. 270435.i 0.784849 0.784849i −0.195796 0.980645i \(-0.562729\pi\)
0.980645 + 0.195796i \(0.0627290\pi\)
\(588\) 16857.9 + 16857.9i 0.0487582 + 0.0487582i
\(589\) 584816.i 1.68573i
\(590\) 132259. + 370797.i 0.379944 + 1.06520i
\(591\) −637385. −1.82485
\(592\) 64621.9 64621.9i 0.184390 0.184390i
\(593\) 154567. + 154567.i 0.439550 + 0.439550i 0.891860 0.452311i \(-0.149400\pi\)
−0.452311 + 0.891860i \(0.649400\pi\)
\(594\) 229060.i 0.649195i
\(595\) 96914.7 204384.i 0.273751 0.577315i
\(596\) 118924. 0.334795
\(597\) 41267.6 41267.6i 0.115787 0.115787i
\(598\) −196153. 196153.i −0.548520 0.548520i
\(599\) 234959.i 0.654844i 0.944878 + 0.327422i \(0.106180\pi\)
−0.944878 + 0.327422i \(0.893820\pi\)
\(600\) 95134.8 77759.8i 0.264263 0.215999i
\(601\) 427818. 1.18443 0.592216 0.805779i \(-0.298253\pi\)
0.592216 + 0.805779i \(0.298253\pi\)
\(602\) −43277.9 + 43277.9i −0.119419 + 0.119419i
\(603\) 19350.9 + 19350.9i 0.0532190 + 0.0532190i
\(604\) 258488.i 0.708544i
\(605\) −68506.6 32484.4i −0.187164 0.0887491i
\(606\) −217354. −0.591864
\(607\) 409993. 409993.i 1.11275 1.11275i 0.119979 0.992776i \(-0.461717\pi\)
0.992776 0.119979i \(-0.0382826\pi\)
\(608\) −70883.9 70883.9i −0.191752 0.191752i
\(609\) 24795.8i 0.0668565i
\(610\) −259712. + 92635.9i −0.697963 + 0.248954i
\(611\) −532105. −1.42533
\(612\) 15238.4 15238.4i 0.0406852 0.0406852i
\(613\) −416750. 416750.i −1.10906 1.10906i −0.993274 0.115784i \(-0.963062\pi\)
−0.115784 0.993274i \(-0.536938\pi\)
\(614\) 87797.5i 0.232887i
\(615\) −189009. 529901.i −0.499726 1.40102i
\(616\) 45150.8 0.118988
\(617\) −77539.7 + 77539.7i −0.203683 + 0.203683i −0.801576 0.597893i \(-0.796005\pi\)
0.597893 + 0.801576i \(0.296005\pi\)
\(618\) 126373. + 126373.i 0.330886 + 0.330886i
\(619\) 423255.i 1.10464i 0.833632 + 0.552320i \(0.186257\pi\)
−0.833632 + 0.552320i \(0.813743\pi\)
\(620\) −90492.6 + 190841.i −0.235413 + 0.496464i
\(621\) 333118. 0.863805
\(622\) 39759.6 39759.6i 0.102769 0.102769i
\(623\) −43710.7 43710.7i −0.112619 0.112619i
\(624\) 123055.i 0.316031i
\(625\) −77726.6 + 382814.i −0.198980 + 0.980004i
\(626\) 510731. 1.30330
\(627\) 366555. 366555.i 0.932405 0.932405i
\(628\) −167696. 167696.i −0.425210 0.425210i
\(629\) 697615.i 1.76325i
\(630\) −6524.62 3093.84i −0.0164390 0.00779501i
\(631\) 232217. 0.583225 0.291612 0.956537i \(-0.405808\pi\)
0.291612 + 0.956537i \(0.405808\pi\)
\(632\) −67951.3 + 67951.3i −0.170123 + 0.170123i
\(633\) −410838. 410838.i −1.02533 1.02533i
\(634\) 328369.i 0.816928i
\(635\) −535418. + 190977.i −1.32784 + 0.473623i
\(636\) −75762.8 −0.187302
\(637\) −53674.1 + 53674.1i −0.132277 + 0.132277i
\(638\) −33205.6 33205.6i −0.0815775 0.0815775i
\(639\) 16963.4i 0.0415442i
\(640\) −12162.9 34099.6i −0.0296946 0.0832510i
\(641\) 182295. 0.443668 0.221834 0.975084i \(-0.428796\pi\)
0.221834 + 0.975084i \(0.428796\pi\)
\(642\) 169578. 169578.i 0.411433 0.411433i
\(643\) −37597.7 37597.7i −0.0909367 0.0909367i 0.660175 0.751112i \(-0.270482\pi\)
−0.751112 + 0.660175i \(0.770482\pi\)
\(644\) 65662.3i 0.158323i
\(645\) −108734. + 229309.i −0.261363 + 0.551191i
\(646\) −765214. −1.83366
\(647\) 119710. 119710.i 0.285970 0.285970i −0.549514 0.835484i \(-0.685187\pi\)
0.835484 + 0.549514i \(0.185187\pi\)
\(648\) 97343.4 + 97343.4i 0.231823 + 0.231823i
\(649\) 599847.i 1.42413i
\(650\) 247581. + 302901.i 0.585990 + 0.716927i
\(651\) −169927. −0.400959
\(652\) −39008.6 + 39008.6i −0.0917625 + 0.0917625i
\(653\) 151891. + 151891.i 0.356210 + 0.356210i 0.862414 0.506204i \(-0.168952\pi\)
−0.506204 + 0.862414i \(0.668952\pi\)
\(654\) 94121.9i 0.220057i
\(655\) 468437. + 222123.i 1.09186 + 0.517739i
\(656\) −165770. −0.385211
\(657\) −13639.9 + 13639.9i −0.0315995 + 0.0315995i
\(658\) −89061.3 89061.3i −0.205701 0.205701i
\(659\) 477726.i 1.10004i −0.835152 0.550019i \(-0.814620\pi\)
0.835152 0.550019i \(-0.185380\pi\)
\(660\) 176336. 62896.9i 0.404812 0.144391i
\(661\) −246683. −0.564593 −0.282297 0.959327i \(-0.591096\pi\)
−0.282297 + 0.959327i \(0.591096\pi\)
\(662\) 103838. 103838.i 0.236940 0.236940i
\(663\) −664208. 664208.i −1.51104 1.51104i
\(664\) 18323.0i 0.0415585i
\(665\) 86140.3 + 241501.i 0.194789 + 0.546104i
\(666\) −22270.2 −0.0502083
\(667\) −48290.6 + 48290.6i −0.108545 + 0.108545i
\(668\) −141612. 141612.i −0.317355 0.317355i
\(669\) 197405.i 0.441068i
\(670\) 150362. 317100.i 0.334957 0.706394i
\(671\) −420142. −0.933149
\(672\) 20596.4 20596.4i 0.0456091 0.0456091i
\(673\) −595935. 595935.i −1.31574 1.31574i −0.917116 0.398620i \(-0.869489\pi\)
−0.398620 0.917116i \(-0.630511\pi\)
\(674\) 397387.i 0.874770i
\(675\) −467431. 46974.4i −1.02591 0.103099i
\(676\) 163309. 0.357368
\(677\) 631754. 631754.i 1.37839 1.37839i 0.531039 0.847347i \(-0.321802\pi\)
0.847347 0.531039i \(-0.178198\pi\)
\(678\) 167578. + 167578.i 0.364549 + 0.364549i
\(679\) 180314.i 0.391102i
\(680\) −249709. 118407.i −0.540029 0.256071i
\(681\) −612723. −1.32120
\(682\) −227560. + 227560.i −0.489245 + 0.489245i
\(683\) −178850. 178850.i −0.383397 0.383397i 0.488928 0.872324i \(-0.337388\pi\)
−0.872324 + 0.488928i \(0.837388\pi\)
\(684\) 24428.2i 0.0522131i
\(685\) 2137.88 762.556i 0.00455620 0.00162514i
\(686\) −17967.4 −0.0381802
\(687\) 341866. 341866.i 0.724341 0.724341i
\(688\) 52875.4 + 52875.4i 0.111706 + 0.111706i
\(689\) 241223.i 0.508136i
\(690\) −91470.2 256444.i −0.192124 0.538634i
\(691\) −280026. −0.586466 −0.293233 0.956041i \(-0.594731\pi\)
−0.293233 + 0.956041i \(0.594731\pi\)
\(692\) −297953. + 297953.i −0.622208 + 0.622208i
\(693\) −7780.00 7780.00i −0.0161999 0.0161999i
\(694\) 349592.i 0.725843i
\(695\) 129335. 272756.i 0.267760 0.564682i
\(696\) −30294.7 −0.0625386
\(697\) −894772. + 894772.i −1.84182 + 1.84182i
\(698\) 88966.6 + 88966.6i 0.182606 + 0.182606i
\(699\) 5877.63i 0.0120295i
\(700\) −9259.31 + 92137.2i −0.0188966 + 0.188035i
\(701\) 752353. 1.53104 0.765519 0.643414i \(-0.222482\pi\)
0.765519 + 0.643414i \(0.222482\pi\)
\(702\) −332686. + 332686.i −0.675088 + 0.675088i
\(703\) 559162. + 559162.i 1.13143 + 1.13143i
\(704\) 55163.8i 0.111303i
\(705\) −471894. 223762.i −0.949437 0.450203i
\(706\) −232948. −0.467359
\(707\) 115830. 115830.i 0.231730 0.231730i
\(708\) 273631. + 273631.i 0.545881 + 0.545881i
\(709\) 752530.i 1.49703i 0.663116 + 0.748517i \(0.269234\pi\)
−0.663116 + 0.748517i \(0.730766\pi\)
\(710\) 204893. 73082.9i 0.406454 0.144977i
\(711\) 23417.6 0.0463236
\(712\) −53404.2 + 53404.2i −0.105345 + 0.105345i
\(713\) 330937. + 330937.i 0.650978 + 0.650978i
\(714\) 222344.i 0.436144i
\(715\) 200259. + 561441.i 0.391723 + 1.09823i
\(716\) 77394.4 0.150968
\(717\) 284079. 284079.i 0.552587 0.552587i
\(718\) −56709.6 56709.6i −0.110004 0.110004i
\(719\) 384030.i 0.742860i 0.928461 + 0.371430i \(0.121132\pi\)
−0.928461 + 0.371430i \(0.878868\pi\)
\(720\) −3779.95 + 7971.56i −0.00729156 + 0.0153772i
\(721\) −134691. −0.259100
\(722\) 352703. 352703.i 0.676604 0.676604i
\(723\) 264841. + 264841.i 0.506651 + 0.506651i
\(724\) 239704.i 0.457297i
\(725\) 74570.9 60951.6i 0.141871 0.115960i
\(726\) −74526.6 −0.141396
\(727\) −237063. + 237063.i −0.448533 + 0.448533i −0.894867 0.446334i \(-0.852729\pi\)
0.446334 + 0.894867i \(0.352729\pi\)
\(728\) 65577.1 + 65577.1i 0.123734 + 0.123734i
\(729\) 562525.i 1.05849i
\(730\) 223515. + 105986.i 0.419431 + 0.198885i
\(731\) 570808. 1.06821
\(732\) −191655. + 191655.i −0.357683 + 0.357683i
\(733\) −10628.5 10628.5i −0.0197817 0.0197817i 0.697147 0.716928i \(-0.254453\pi\)
−0.716928 + 0.697147i \(0.754453\pi\)
\(734\) 473130.i 0.878191i
\(735\) −70171.7 + 25029.3i −0.129893 + 0.0463313i
\(736\) −80224.0 −0.148098
\(737\) 378113. 378113.i 0.696123 0.696123i
\(738\) 28564.1 + 28564.1i 0.0524455 + 0.0524455i
\(739\) 932369.i 1.70726i −0.520882 0.853629i \(-0.674397\pi\)
0.520882 0.853629i \(-0.325603\pi\)
\(740\) 95946.1 + 268992.i 0.175212 + 0.491220i
\(741\) 1.06477e6 1.93919
\(742\) 40374.8 40374.8i 0.0733334 0.0733334i
\(743\) 518896. + 518896.i 0.939946 + 0.939946i 0.998296 0.0583506i \(-0.0185841\pi\)
−0.0583506 + 0.998296i \(0.518584\pi\)
\(744\) 207611.i 0.375063i
\(745\) −159229. + 335800.i −0.286887 + 0.605018i
\(746\) −54537.0 −0.0979971
\(747\) 3157.25 3157.25i 0.00565807 0.00565807i
\(748\) −297755. 297755.i −0.532177 0.532177i
\(749\) 180739.i 0.322173i
\(750\) 92188.6 + 372740.i 0.163891 + 0.662648i
\(751\) 636485. 1.12852 0.564259 0.825598i \(-0.309162\pi\)
0.564259 + 0.825598i \(0.309162\pi\)
\(752\) −108812. + 108812.i −0.192416 + 0.192416i
\(753\) 499247. + 499247.i 0.880492 + 0.880492i
\(754\) 96455.8i 0.169662i
\(755\) −729878. 346093.i −1.28043 0.607154i
\(756\) −111367. −0.194856
\(757\) −83206.5 + 83206.5i −0.145200 + 0.145200i −0.775970 0.630770i \(-0.782739\pi\)
0.630770 + 0.775970i \(0.282739\pi\)
\(758\) −438052. 438052.i −0.762408 0.762408i
\(759\) 414855.i 0.720133i
\(760\) 295058. 105243.i 0.510834 0.182208i
\(761\) 861240. 1.48715 0.743575 0.668653i \(-0.233129\pi\)
0.743575 + 0.668653i \(0.233129\pi\)
\(762\) −395113. + 395113.i −0.680474 + 0.680474i
\(763\) −50158.5 50158.5i −0.0861579 0.0861579i
\(764\) 103484.i 0.177291i
\(765\) 22624.9 + 63430.7i 0.0386602 + 0.108387i
\(766\) −152577. −0.260034
\(767\) −871218. + 871218.i −1.48094 + 1.48094i
\(768\) −25163.9 25163.9i −0.0426634 0.0426634i
\(769\) 805835.i 1.36268i 0.731968 + 0.681339i \(0.238602\pi\)
−0.731968 + 0.681339i \(0.761398\pi\)
\(770\) −60453.0 + 127490.i −0.101961 + 0.215027i
\(771\) 614852. 1.03434
\(772\) −411565. + 411565.i −0.690564 + 0.690564i
\(773\) 526804. + 526804.i 0.881638 + 0.881638i 0.993701 0.112064i \(-0.0357460\pi\)
−0.112064 + 0.993701i \(0.535746\pi\)
\(774\) 18222.1i 0.0304170i
\(775\) −417704. 511037.i −0.695448 0.850842i
\(776\) 220301. 0.365842
\(777\) −162473. + 162473.i −0.269115 + 0.269115i
\(778\) 314812. + 314812.i 0.520107 + 0.520107i
\(779\) 1.43438e6i 2.36368i
\(780\) 347463. + 164759.i 0.571109 + 0.270808i
\(781\) 331461. 0.543413
\(782\) −433022. + 433022.i −0.708103 + 0.708103i
\(783\) 81903.5 + 81903.5i 0.133592 + 0.133592i
\(784\) 21952.0i 0.0357143i
\(785\) 698043. 248983.i 1.13277 0.404046i
\(786\) 509601. 0.824869
\(787\) 772636. 772636.i 1.24746 1.24746i 0.290618 0.956839i \(-0.406139\pi\)
0.956839 0.290618i \(-0.0938609\pi\)
\(788\) −414996. 414996.i −0.668330 0.668330i
\(789\) 540726.i 0.868607i
\(790\) −100889. 282851.i −0.161656 0.453214i
\(791\) −178607. −0.285461
\(792\) −9505.34 + 9505.34i −0.0151537 + 0.0151537i
\(793\) −610215. 610215.i −0.970368 0.970368i
\(794\) 525010.i 0.832772i
\(795\) 101440. 213927.i 0.160499 0.338479i
\(796\) 53737.9 0.0848115
\(797\) 163306. 163306.i 0.257091 0.257091i −0.566779 0.823870i \(-0.691811\pi\)
0.823870 + 0.566779i \(0.191811\pi\)
\(798\) 178216. + 178216.i 0.279861 + 0.279861i
\(799\) 1.17466e6i 1.84001i
\(800\) 112570. + 11312.7i 0.175891 + 0.0176761i
\(801\) 18404.3 0.0286850
\(802\) −205436. + 205436.i −0.319394 + 0.319394i
\(803\) 266521. + 266521.i 0.413333 + 0.413333i
\(804\) 344965.i 0.533659i
\(805\) 185407. + 87916.0i 0.286110 + 0.135668i
\(806\) −661016. −1.01752
\(807\) −512743. + 512743.i −0.787323 + 0.787323i
\(808\) −141517. 141517.i −0.216763 0.216763i
\(809\) 147585.i 0.225499i 0.993623 + 0.112750i \(0.0359658\pi\)
−0.993623 + 0.112750i \(0.964034\pi\)
\(810\) −405197. + 144529.i −0.617584 + 0.220284i
\(811\) −698858. −1.06255 −0.531273 0.847201i \(-0.678286\pi\)
−0.531273 + 0.847201i \(0.678286\pi\)
\(812\) 16144.3 16144.3i 0.0244855 0.0244855i
\(813\) −143485. 143485.i −0.217083 0.217083i
\(814\) 435155.i 0.656742i
\(815\) −57917.2 162375.i −0.0871951 0.244458i
\(816\) −271653. −0.407975
\(817\) −457521. + 457521.i −0.685437 + 0.685437i
\(818\) 282757. + 282757.i 0.422578 + 0.422578i
\(819\) 22599.4i 0.0336921i
\(820\) 221952. 468076.i 0.330089 0.696127i
\(821\) −704426. −1.04508 −0.522540 0.852615i \(-0.675015\pi\)
−0.522540 + 0.852615i \(0.675015\pi\)
\(822\) 1577.66 1577.66i 0.00233490 0.00233490i
\(823\) −111438. 111438.i −0.164525 0.164525i 0.620043 0.784568i \(-0.287115\pi\)
−0.784568 + 0.620043i \(0.787115\pi\)
\(824\) 164561.i 0.242366i
\(825\) −58500.4 + 582124.i −0.0859510 + 0.855278i
\(826\) −291641. −0.427453
\(827\) 214175. 214175.i 0.313154 0.313154i −0.532976 0.846130i \(-0.678926\pi\)
0.846130 + 0.532976i \(0.178926\pi\)
\(828\) 13823.5 + 13823.5i 0.0201631 + 0.0201631i
\(829\) 1.24165e6i 1.80671i −0.428890 0.903357i \(-0.641095\pi\)
0.428890 0.903357i \(-0.358905\pi\)
\(830\) −51737.4 24532.8i −0.0751015 0.0356116i
\(831\) −868458. −1.25761
\(832\) 80119.9 80119.9i 0.115743 0.115743i
\(833\) 118489. + 118489.i 0.170761 + 0.170761i
\(834\) 296724.i 0.426600i
\(835\) 589465. 210255.i 0.845445 0.301559i
\(836\) 477322. 0.682965
\(837\) 561288. 561288.i 0.801189 0.801189i
\(838\) −333797. 333797.i −0.475328 0.475328i
\(839\) 69636.9i 0.0989271i −0.998776 0.0494635i \(-0.984249\pi\)
0.998776 0.0494635i \(-0.0157512\pi\)
\(840\) 30580.0 + 85733.4i 0.0433390 + 0.121504i
\(841\) 683535. 0.966426
\(842\) −164989. + 164989.i −0.232719 + 0.232719i
\(843\) 555651. + 555651.i 0.781892 + 0.781892i
\(844\) 534985.i 0.751030i
\(845\) −218656. + 461125.i −0.306230 + 0.645811i
\(846\) 37499.1 0.0523938
\(847\) 39716.0 39716.0i 0.0553603 0.0553603i
\(848\) −49328.5 49328.5i −0.0685972 0.0685972i
\(849\) 213043.i 0.295564i
\(850\) 668677. 546553.i 0.925505 0.756475i
\(851\) 632840. 0.873846
\(852\) 151202. 151202.i 0.208294 0.208294i
\(853\) −49839.7 49839.7i −0.0684980 0.0684980i 0.672028 0.740526i \(-0.265423\pi\)
−0.740526 + 0.672028i \(0.765423\pi\)
\(854\) 204270.i 0.280084i
\(855\) −68976.4 32707.2i −0.0943558 0.0447415i
\(856\) 220821. 0.301365
\(857\) −241696. + 241696.i −0.329085 + 0.329085i −0.852239 0.523153i \(-0.824755\pi\)
0.523153 + 0.852239i \(0.324755\pi\)
\(858\) 414317. + 414317.i 0.562805 + 0.562805i
\(859\) 623485.i 0.844967i 0.906371 + 0.422484i \(0.138842\pi\)
−0.906371 + 0.422484i \(0.861158\pi\)
\(860\) −220097. + 78505.7i −0.297589 + 0.106146i
\(861\) 416780. 0.562213
\(862\) 393327. 393327.i 0.529346 0.529346i
\(863\) −510908. 510908.i −0.685995 0.685995i 0.275349 0.961344i \(-0.411207\pi\)
−0.961344 + 0.275349i \(0.911207\pi\)
\(864\) 136064.i 0.182271i
\(865\) −442379. 1.24024e6i −0.591238 1.65758i
\(866\) 242029. 0.322725
\(867\) −953175. + 953175.i −1.26804 + 1.26804i
\(868\) −110638. 110638.i −0.146847 0.146847i
\(869\) 457574.i 0.605929i
\(870\) 40561.9 85541.3i 0.0535895 0.113015i
\(871\) 1.09834e6 1.44778
\(872\) −61281.9 + 61281.9i −0.0805934 + 0.0805934i
\(873\) −37960.4 37960.4i −0.0498084 0.0498084i
\(874\) 694163.i 0.908738i
\(875\) −247765. 149508.i −0.323611 0.195276i
\(876\) 243156. 0.316867
\(877\) 25852.8 25852.8i 0.0336131 0.0336131i −0.690100 0.723714i \(-0.742434\pi\)
0.723714 + 0.690100i \(0.242434\pi\)
\(878\) 503352. + 503352.i 0.652954 + 0.652954i
\(879\) 709466.i 0.918236i
\(880\) 155763. + 73859.4i 0.201140 + 0.0953762i
\(881\) −580513. −0.747929 −0.373965 0.927443i \(-0.622002\pi\)
−0.373965 + 0.927443i \(0.622002\pi\)
\(882\) 3782.58 3782.58i 0.00486240 0.00486240i
\(883\) 144540. + 144540.i 0.185382 + 0.185382i 0.793696 0.608314i \(-0.208154\pi\)
−0.608314 + 0.793696i \(0.708154\pi\)
\(884\) 864920.i 1.10681i
\(885\) −1.13900e6 + 406267.i −1.45425 + 0.518711i
\(886\) 161419. 0.205630
\(887\) −636225. + 636225.i −0.808656 + 0.808656i −0.984430 0.175774i \(-0.943757\pi\)
0.175774 + 0.984430i \(0.443757\pi\)
\(888\) 198504. + 198504.i 0.251734 + 0.251734i
\(889\) 421119.i 0.532846i
\(890\) −79290.7 222298.i −0.100102 0.280643i
\(891\) −655497. −0.825686
\(892\) −128529. + 128529.i −0.161536 + 0.161536i
\(893\) −941530. 941530.i −1.18068 1.18068i
\(894\) 365308.i 0.457072i
\(895\) −103624. + 218534.i −0.129365 + 0.272818i
\(896\) 26820.2 0.0334077
\(897\) 602536. 602536.i 0.748855 0.748855i
\(898\) 70205.0 + 70205.0i 0.0870594 + 0.0870594i
\(899\) 162734.i 0.201354i
\(900\) −17447.8 21346.4i −0.0215405 0.0263536i
\(901\) −532517. −0.655970
\(902\) 558137. 558137.i 0.686005 0.686005i
\(903\) −132940. 132940.i −0.163034 0.163034i
\(904\) 218216.i 0.267024i
\(905\) −676837. 320942.i −0.826394 0.391859i
\(906\) −794016. −0.967326
\(907\) −139811. + 139811.i −0.169952 + 0.169952i −0.786958 0.617006i \(-0.788345\pi\)
0.617006 + 0.786958i \(0.288345\pi\)
\(908\) −398939. 398939.i −0.483876 0.483876i
\(909\) 48770.0i 0.0590235i
\(910\) −272968. + 97364.3i −0.329632 + 0.117575i
\(911\) 46524.9 0.0560595 0.0280297 0.999607i \(-0.491077\pi\)
0.0280297 + 0.999607i \(0.491077\pi\)
\(912\) 217739. 217739.i 0.261786 0.261786i
\(913\) −61692.1 61692.1i −0.0740096 0.0740096i
\(914\) 70675.1i 0.0846007i
\(915\) −284556. 797775.i −0.339880 0.952880i
\(916\) 445172. 0.530563
\(917\) −271571. + 271571.i −0.322957 + 0.322957i
\(918\) 734430. + 734430.i 0.871495 + 0.871495i
\(919\) 1.47894e6i 1.75113i 0.483099 + 0.875566i \(0.339511\pi\)
−0.483099 + 0.875566i \(0.660489\pi\)
\(920\) 107413. 226524.i 0.126905 0.267632i
\(921\) 269693. 0.317944
\(922\) −622572. + 622572.i −0.732365 + 0.732365i
\(923\) 481414. + 481414.i 0.565087 + 0.565087i
\(924\) 138693.i 0.162446i
\(925\) −888000. 89239.4i −1.03784 0.104297i
\(926\) 273330. 0.318761
\(927\) 28355.7 28355.7i 0.0329975 0.0329975i
\(928\) −19724.6 19724.6i −0.0229040 0.0229040i
\(929\) 489931.i 0.567679i 0.958872 + 0.283840i \(0.0916084\pi\)
−0.958872 + 0.283840i \(0.908392\pi\)
\(930\) −586218. 277972.i −0.677787 0.321392i
\(931\) −189947. −0.219145
\(932\) −3826.87 + 3826.87i −0.00440567 + 0.00440567i
\(933\) 122132. + 122132.i 0.140303 + 0.140303i
\(934\) 68651.1i 0.0786962i
\(935\) 1.23942e6 442086.i 1.41774 0.505689i
\(936\) −27611.1 −0.0315161
\(937\) −338504. + 338504.i −0.385553 + 0.385553i −0.873098 0.487545i \(-0.837893\pi\)
0.487545 + 0.873098i \(0.337893\pi\)
\(938\) 183836. + 183836.i 0.208941 + 0.208941i
\(939\) 1.56885e6i 1.77930i
\(940\) −161556. 452936.i −0.182839 0.512603i
\(941\) −1.11345e6 −1.25746 −0.628728 0.777625i \(-0.716424\pi\)
−0.628728 + 0.777625i \(0.716424\pi\)
\(942\) 515123. 515123.i 0.580509 0.580509i
\(943\) −811691. 811691.i −0.912783 0.912783i
\(944\) 356317.i 0.399846i
\(945\) 149111. 314460.i 0.166972 0.352129i
\(946\) −356056. −0.397865
\(947\) 12469.5 12469.5i 0.0139043 0.0139043i −0.700120 0.714025i \(-0.746870\pi\)
0.714025 + 0.700120i \(0.246870\pi\)
\(948\) −208731. 208731.i −0.232257 0.232257i
\(949\) 774190.i 0.859637i
\(950\) −97886.8 + 974048.i −0.108462 + 1.07928i
\(951\) 1.00867e6 1.11529
\(952\) 144766. 144766.i 0.159733 0.159733i
\(953\) −352000. 352000.i −0.387576 0.387576i 0.486246 0.873822i \(-0.338366\pi\)
−0.873822 + 0.486246i \(0.838366\pi\)
\(954\) 16999.7i 0.0186786i
\(955\) −292201. 138556.i −0.320387 0.151921i
\(956\) 369923. 0.404758
\(957\) 102000. 102000.i 0.111372 0.111372i
\(958\) −53710.3 53710.3i −0.0585230 0.0585230i
\(959\) 1681.50i 0.00182835i
\(960\) 104746. 37361.6i 0.113657 0.0405399i
\(961\) 191705. 0.207581
\(962\) −632019. + 632019.i −0.682936 + 0.682936i
\(963\) −38050.0 38050.0i −0.0410301 0.0410301i
\(964\) 344872.i 0.371111i
\(965\) −611063. 1.71316e6i −0.656192 1.83969i
\(966\) 201699. 0.216148
\(967\) 218321. 218321.i 0.233476 0.233476i −0.580666 0.814142i \(-0.697208\pi\)
0.814142 + 0.580666i \(0.197208\pi\)
\(968\) −48523.6 48523.6i −0.0517848 0.0517848i
\(969\) 2.35056e6i 2.50336i
\(970\) −294964. + 622052.i −0.313491 + 0.661124i
\(971\) −1.31269e6 −1.39227 −0.696134 0.717912i \(-0.745098\pi\)
−0.696134 + 0.717912i \(0.745098\pi\)
\(972\) 45396.6 45396.6i 0.0480497 0.0480497i
\(973\) 158127. + 158127.i 0.167025 + 0.167025i
\(974\) 592178.i 0.624216i
\(975\) −930443. + 760511.i −0.978770 + 0.800011i
\(976\) −249570. −0.261995
\(977\) 288983. 288983.i 0.302749 0.302749i −0.539339 0.842089i \(-0.681326\pi\)
0.842089 + 0.539339i \(0.181326\pi\)
\(978\) −119825. 119825.i −0.125277 0.125277i
\(979\) 359616.i 0.375209i
\(980\) −61984.5 29391.8i −0.0645403 0.0306037i
\(981\) 21119.1 0.0219451
\(982\) 530311. 530311.i 0.549930 0.549930i
\(983\) 748916. + 748916.i 0.775043 + 0.775043i 0.978983 0.203940i \(-0.0653749\pi\)
−0.203940 + 0.978983i \(0.565375\pi\)
\(984\) 509208.i 0.525902i
\(985\) 1.72744e6 616156.i 1.78045 0.635065i
\(986\) −212933. −0.219023
\(987\) 273576. 273576.i 0.280830 0.280830i
\(988\) 693263. + 693263.i 0.710205 + 0.710205i
\(989\) 517807.i 0.529390i
\(990\) −14112.9 39566.5i −0.0143994 0.0403698i
\(991\) 122183. 0.124412 0.0622062 0.998063i \(-0.480186\pi\)
0.0622062 + 0.998063i \(0.480186\pi\)
\(992\) −135173. + 135173.i −0.137362 + 0.137362i
\(993\) 318965. + 318965.i 0.323477 + 0.323477i
\(994\) 161154.i 0.163105i
\(995\) −71950.3 + 151737.i −0.0726752 + 0.153265i
\(996\) −56283.9 −0.0567369
\(997\) 245978. 245978.i 0.247461 0.247461i −0.572467 0.819928i \(-0.694013\pi\)
0.819928 + 0.572467i \(0.194013\pi\)
\(998\) 725662. + 725662.i 0.728574 + 0.728574i
\(999\) 1.07333e6i 1.07548i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.5.f.a.43.3 12
5.2 odd 4 inner 70.5.f.a.57.3 yes 12
5.3 odd 4 350.5.f.d.57.4 12
5.4 even 2 350.5.f.d.43.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.5.f.a.43.3 12 1.1 even 1 trivial
70.5.f.a.57.3 yes 12 5.2 odd 4 inner
350.5.f.d.43.4 12 5.4 even 2
350.5.f.d.57.4 12 5.3 odd 4