Newspace parameters
| Level: | \( N \) | \(=\) | \( 7 \) |
| Weight: | \( k \) | \(=\) | \( 73 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7.d (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(229.811218987\) |
| Analytic rank: | \(0\) |
| Dimension: | \(94\) |
| Relative dimension: | \(47\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.1 | −6.73181e10 | − | 1.16598e11i | 9.92736e16 | + | 5.73157e16i | −6.70228e21 | + | 1.16087e22i | −5.62149e24 | + | 3.24557e24i | − | 1.54335e28i | 2.39748e30 | − | 1.13304e30i | 1.16894e33 | −4.69403e33 | − | 8.13030e33i | 7.56857e35 | + | 4.36972e35i | |||
| 3.2 | −6.45949e10 | − | 1.11882e11i | −2.06821e17 | − | 1.19408e17i | −5.98382e21 | + | 1.03643e22i | −1.83518e25 | + | 1.05954e25i | 3.08527e28i | −2.49376e30 | + | 9.01579e29i | 9.36017e32 | 1.72525e34 | + | 2.98822e34i | 2.37087e36 | + | 1.36882e36i | ||||
| 3.3 | −6.33615e10 | − | 1.09745e11i | −2.08729e17 | − | 1.20510e17i | −5.66819e21 | + | 9.81759e21i | 2.40344e25 | − | 1.38763e25i | 3.05427e28i | 2.56584e30 | − | 6.69453e29i | 8.38147e32 | 1.77810e34 | + | 3.07976e34i | −3.04572e36 | − | 1.75845e36i | ||||
| 3.4 | −5.95630e10 | − | 1.03166e11i | 3.67605e16 | + | 2.12237e16i | −4.73432e21 | + | 8.20008e21i | 7.35030e24 | − | 4.24370e24i | − | 5.05659e27i | −2.36696e30 | − | 1.19548e30i | 5.65404e32 | −1.03633e34 | − | 1.79498e34i | −8.75612e35 | − | 5.05535e35i | |||
| 3.5 | −5.69777e10 | − | 9.86883e10i | −5.98994e16 | − | 3.45830e16i | −4.13174e21 | + | 7.15638e21i | 4.41304e23 | − | 2.54787e23i | 7.88183e27i | 8.31430e29 | + | 2.51802e30i | 4.03528e32 | −8.87224e33 | − | 1.53672e34i | −5.02890e34 | − | 2.90344e34i | ||||
| 3.6 | −5.68332e10 | − | 9.84380e10i | 2.13954e17 | + | 1.23526e17i | −4.09884e21 | + | 7.09941e21i | 1.94955e25 | − | 1.12557e25i | − | 2.80816e28i | −1.19895e30 | + | 2.36521e30i | 3.95028e32 | 1.92532e34 | + | 3.33476e34i | −2.21598e36 | − | 1.27940e36i | |||
| 3.7 | −5.40647e10 | − | 9.36427e10i | 1.43064e17 | + | 8.25981e16i | −3.48479e21 | + | 6.03583e21i | −2.26065e25 | + | 1.30519e25i | − | 1.78625e28i | −7.15525e29 | + | 2.55337e30i | 2.42990e32 | 2.38069e33 | + | 4.12348e33i | 2.44443e36 | + | 1.41129e36i | |||
| 3.8 | −5.19047e10 | − | 8.99016e10i | −1.35838e17 | − | 7.84263e16i | −3.02702e21 | + | 5.24295e21i | −6.66349e24 | + | 3.84717e24i | 1.62828e28i | 4.70173e29 | − | 2.60972e30i | 1.38240e32 | 1.03717e33 | + | 1.79643e33i | 6.91733e35 | + | 3.99372e35i | ||||
| 3.9 | −4.91517e10 | − | 8.51332e10i | 2.34372e17 | + | 1.35315e17i | −2.47059e21 | + | 4.27918e21i | 6.29003e23 | − | 3.63155e23i | − | 2.66038e28i | 1.95924e30 | − | 1.78691e30i | 2.15097e31 | 2.53560e34 | + | 4.39179e34i | −6.18331e34 | − | 3.56993e34i | |||
| 3.10 | −4.26066e10 | − | 7.37968e10i | −9.31537e16 | − | 5.37823e16i | −1.26946e21 | + | 2.19877e21i | −1.89205e25 | + | 1.09237e25i | 9.16592e27i | 2.46490e30 | − | 9.77727e29i | −1.86058e32 | −5.47913e33 | − | 9.49012e33i | 1.61227e36 | + | 9.30847e35i | ||||
| 3.11 | −4.21026e10 | − | 7.29239e10i | −1.63894e17 | − | 9.46244e16i | −1.18408e21 | + | 2.05088e21i | 1.06660e25 | − | 6.15803e24i | 1.59357e28i | −2.14341e30 | + | 1.56125e30i | −1.98237e32 | 6.64336e33 | + | 1.15066e34i | −8.98134e35 | − | 5.18538e35i | ||||
| 3.12 | −4.12816e10 | − | 7.15018e10i | 8.55669e15 | + | 4.94020e15i | −1.04715e21 | + | 1.81372e21i | 9.17502e24 | − | 5.29720e24i | − | 8.15758e26i | 2.04067e30 | + | 1.69333e30i | −2.16981e32 | −1.12154e34 | − | 1.94256e34i | −7.57518e35 | − | 4.37353e35i | |||
| 3.13 | −4.10314e10 | − | 7.10684e10i | 1.65207e17 | + | 9.53821e16i | −1.00596e21 | + | 1.74238e21i | −1.33118e25 | + | 7.68557e24i | − | 1.56546e28i | −1.69176e30 | − | 2.04197e30i | −2.22426e32 | 6.93130e33 | + | 1.20054e34i | 1.09240e36 | + | 6.30698e35i | |||
| 3.14 | −3.40245e10 | − | 5.89322e10i | 6.33477e16 | + | 3.65738e16i | 4.58501e19 | − | 7.94147e19i | 2.35800e25 | − | 1.36139e25i | − | 4.97763e27i | 6.36491e29 | − | 2.57421e30i | −3.27592e32 | −8.58891e33 | − | 1.48764e34i | −1.60459e36 | − | 9.26412e35i | |||
| 3.15 | −2.79302e10 | − | 4.83765e10i | −8.49540e15 | − | 4.90482e15i | 8.00990e20 | − | 1.38736e21i | −1.05772e25 | + | 6.10674e24i | 5.47971e26i | −2.51894e30 | − | 8.28638e29i | −3.53281e32 | −1.12161e34 | − | 1.94268e34i | 5.90846e35 | + | 3.41125e35i | ||||
| 3.16 | −2.76945e10 | − | 4.79682e10i | −2.49335e17 | − | 1.43954e17i | 8.27215e20 | − | 1.43278e21i | −9.81207e24 | + | 5.66500e24i | 1.59469e28i | 1.42891e30 | + | 2.23381e30i | −3.53204e32 | 3.01812e34 | + | 5.22754e34i | 5.43481e35 | + | 3.13779e35i | ||||
| 3.17 | −2.62943e10 | − | 4.55431e10i | −1.95303e17 | − | 1.12758e17i | 9.78400e20 | − | 1.69464e21i | 8.15167e24 | − | 4.70637e24i | 1.18596e28i | −6.80614e29 | − | 2.56290e30i | −3.51248e32 | 1.41645e34 | + | 2.45337e34i | −4.28685e35 | − | 2.47502e35i | ||||
| 3.18 | −2.50499e10 | − | 4.33877e10i | 1.30422e17 | + | 7.52990e16i | 1.10619e21 | − | 1.91597e21i | −9.42167e23 | + | 5.43961e23i | − | 7.54493e27i | 2.59301e30 | + | 5.54945e29i | −3.47429e32 | 7.56699e31 | + | 1.31064e32i | 4.72024e34 | + | 2.72523e34i | |||
| 3.19 | −1.83735e10 | − | 3.18238e10i | 1.60301e17 | + | 9.25500e16i | 1.68601e21 | − | 2.92026e21i | 3.72525e24 | − | 2.15078e24i | − | 6.80186e27i | −1.55243e30 | + | 2.14980e30i | −2.97444e32 | 5.86680e33 | + | 1.01616e34i | −1.36892e35 | − | 7.90345e34i | |||
| 3.20 | −1.31988e10 | − | 2.28611e10i | −6.77581e16 | − | 3.91202e16i | 2.01276e21 | − | 3.48621e21i | −1.91507e25 | + | 1.10566e25i | 2.06536e27i | −5.93295e29 | + | 2.58451e30i | −2.30924e32 | −8.20343e33 | − | 1.42087e34i | 5.05533e35 | + | 2.91870e35i | ||||
| See all 94 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.d | odd | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 7.73.d.a | ✓ | 94 |
| 7.d | odd | 6 | 1 | inner | 7.73.d.a | ✓ | 94 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 7.73.d.a | ✓ | 94 | 1.a | even | 1 | 1 | trivial |
| 7.73.d.a | ✓ | 94 | 7.d | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{73}^{\mathrm{new}}(7, [\chi])\).