Properties

Label 7.49.b.a.6.1
Level $7$
Weight $49$
Character 7.6
Self dual yes
Analytic conductor $102.147$
Analytic rank $0$
Dimension $1$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7,49,Mod(6,7)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7.6"); S:= CuspForms(chi, 49); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 49, names="a")
 
Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 49 \)
Character orbit: \([\chi]\) \(=\) 7.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.146525701\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 6.1
Character \(\chi\) \(=\) 7.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24186e6 q^{2} -2.76449e14 q^{4} +1.91581e20 q^{7} -1.25079e21 q^{8} +7.97664e22 q^{9} +1.85303e25 q^{11} +4.29498e26 q^{14} +7.50094e28 q^{16} +1.78825e29 q^{18} +4.15423e31 q^{22} -9.36422e32 q^{23} +3.55271e33 q^{25} -5.29625e34 q^{28} -2.24415e35 q^{29} +5.20225e35 q^{32} -2.20514e37 q^{36} +8.06089e37 q^{37} +1.49024e39 q^{43} -5.12269e39 q^{44} -2.09933e39 q^{46} +3.67034e40 q^{49} +7.96468e39 q^{50} +1.01363e41 q^{53} -2.39627e41 q^{56} -5.03107e41 q^{58} +1.52818e43 q^{63} -1.99470e43 q^{64} +1.00840e44 q^{67} -5.00741e44 q^{71} -9.97707e43 q^{72} +1.80714e44 q^{74} +3.55006e45 q^{77} -6.38947e45 q^{79} +6.36269e45 q^{81} +3.34090e45 q^{86} -2.31775e46 q^{88} +2.58873e47 q^{92} +8.22837e46 q^{98} +1.47810e48 q^{99} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24186e6 0.133625 0.0668125 0.997766i \(-0.478717\pi\)
0.0668125 + 0.997766i \(0.478717\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −2.76449e14 −0.982144
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 1.91581e20 1.00000
\(8\) −1.25079e21 −0.264864
\(9\) 7.97664e22 1.00000
\(10\) 0 0
\(11\) 1.85303e25 1.88130 0.940651 0.339376i \(-0.110216\pi\)
0.940651 + 0.339376i \(0.110216\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 4.29498e26 0.133625
\(15\) 0 0
\(16\) 7.50094e28 0.946752
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.78825e29 0.133625
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.15423e31 0.251389
\(23\) −9.36422e32 −1.94986 −0.974931 0.222509i \(-0.928575\pi\)
−0.974931 + 0.222509i \(0.928575\pi\)
\(24\) 0 0
\(25\) 3.55271e33 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −5.29625e34 −0.982144
\(29\) −2.24415e35 −1.79267 −0.896335 0.443378i \(-0.853780\pi\)
−0.896335 + 0.443378i \(0.853780\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 5.20225e35 0.391374
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −2.20514e37 −0.982144
\(37\) 8.06089e37 1.86012 0.930062 0.367403i \(-0.119753\pi\)
0.930062 + 0.367403i \(0.119753\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 1.49024e39 0.933280 0.466640 0.884447i \(-0.345464\pi\)
0.466640 + 0.884447i \(0.345464\pi\)
\(44\) −5.12269e39 −1.84771
\(45\) 0 0
\(46\) −2.09933e39 −0.260550
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 3.67034e40 1.00000
\(50\) 7.96468e39 0.133625
\(51\) 0 0
\(52\) 0 0
\(53\) 1.01363e41 0.420008 0.210004 0.977700i \(-0.432652\pi\)
0.210004 + 0.977700i \(0.432652\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.39627e41 −0.264864
\(57\) 0 0
\(58\) −5.03107e41 −0.239546
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 1.52818e43 1.00000
\(64\) −1.99470e43 −0.894454
\(65\) 0 0
\(66\) 0 0
\(67\) 1.00840e44 1.50604 0.753022 0.657995i \(-0.228595\pi\)
0.753022 + 0.657995i \(0.228595\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00741e44 −1.85957 −0.929785 0.368103i \(-0.880007\pi\)
−0.929785 + 0.368103i \(0.880007\pi\)
\(72\) −9.97707e43 −0.264864
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 1.80714e44 0.248559
\(75\) 0 0
\(76\) 0 0
\(77\) 3.55006e45 1.88130
\(78\) 0 0
\(79\) −6.38947e45 −1.82985 −0.914924 0.403627i \(-0.867749\pi\)
−0.914924 + 0.403627i \(0.867749\pi\)
\(80\) 0 0
\(81\) 6.36269e45 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.34090e45 0.124710
\(87\) 0 0
\(88\) −2.31775e46 −0.498289
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.58873e47 1.91505
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 8.22837e46 0.133625
\(99\) 1.47810e48 1.88130
\(100\) −9.82144e47 −0.982144
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.27241e47 0.0561237
\(107\) 1.00289e49 1.97717 0.988586 0.150657i \(-0.0481390\pi\)
0.988586 + 0.150657i \(0.0481390\pi\)
\(108\) 0 0
\(109\) 1.46955e49 1.85759 0.928794 0.370597i \(-0.120847\pi\)
0.928794 + 0.370597i \(0.120847\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.43704e49 0.946752
\(113\) −7.10553e48 −0.378193 −0.189097 0.981958i \(-0.560556\pi\)
−0.189097 + 0.981958i \(0.560556\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.20394e49 1.76066
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.46355e50 2.53929
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 3.42595e49 0.133625
\(127\) 6.08860e50 1.96439 0.982197 0.187856i \(-0.0601537\pi\)
0.982197 + 0.187856i \(0.0601537\pi\)
\(128\) −1.91149e50 −0.510896
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.26069e50 0.201245
\(135\) 0 0
\(136\) 0 0
\(137\) −2.64824e51 −1.38568 −0.692841 0.721091i \(-0.743641\pi\)
−0.692841 + 0.721091i \(0.743641\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.12259e51 −0.248485
\(143\) 0 0
\(144\) 5.98323e51 0.946752
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −2.22843e52 −1.82691
\(149\) −2.55732e52 −1.78367 −0.891834 0.452362i \(-0.850581\pi\)
−0.891834 + 0.452362i \(0.850581\pi\)
\(150\) 0 0
\(151\) −2.16151e52 −1.09474 −0.547370 0.836891i \(-0.684371\pi\)
−0.547370 + 0.836891i \(0.684371\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 7.95873e51 0.251389
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −1.43243e52 −0.244514
\(159\) 0 0
\(160\) 0 0
\(161\) −1.79401e53 −1.94986
\(162\) 1.42642e52 0.133625
\(163\) 1.74636e53 1.41134 0.705669 0.708541i \(-0.250646\pi\)
0.705669 + 0.708541i \(0.250646\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 2.94633e53 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −4.11974e53 −0.916616
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 6.80633e53 1.00000
\(176\) 1.38995e54 1.78113
\(177\) 0 0
\(178\) 0 0
\(179\) 1.42007e54 1.21293 0.606466 0.795109i \(-0.292587\pi\)
0.606466 + 0.795109i \(0.292587\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.17126e54 0.516449
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.76297e53 0.0857190 0.0428595 0.999081i \(-0.486353\pi\)
0.0428595 + 0.999081i \(0.486353\pi\)
\(192\) 0 0
\(193\) −1.06322e55 −1.49021 −0.745107 0.666945i \(-0.767602\pi\)
−0.745107 + 0.666945i \(0.767602\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.01466e55 −0.982144
\(197\) 2.23399e55 1.91378 0.956888 0.290456i \(-0.0938070\pi\)
0.956888 + 0.290456i \(0.0938070\pi\)
\(198\) 3.31368e54 0.251389
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −4.44368e54 −0.264864
\(201\) 0 0
\(202\) 0 0
\(203\) −4.29937e55 −1.79267
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.46951e55 −1.94986
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.23709e54 −0.0368897 −0.0184448 0.999830i \(-0.505872\pi\)
−0.0184448 + 0.999830i \(0.505872\pi\)
\(212\) −2.80217e55 −0.412509
\(213\) 0 0
\(214\) 2.24835e55 0.264200
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 3.29453e55 0.248220
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 9.96654e55 0.391374
\(225\) 2.83387e56 1.00000
\(226\) −1.59296e55 −0.0505361
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.80695e56 0.474814
\(233\) 7.86572e56 1.20004 0.600021 0.799984i \(-0.295159\pi\)
0.600021 + 0.799984i \(0.295159\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.35527e57 1.12325 0.561623 0.827393i \(-0.310177\pi\)
0.561623 + 0.827393i \(0.310177\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 5.52293e56 0.339313
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −4.22463e57 −0.982144
\(253\) −1.73522e58 −3.66828
\(254\) 1.36498e57 0.262492
\(255\) 0 0
\(256\) 5.18605e57 0.826186
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 1.54432e58 1.86012
\(260\) 0 0
\(261\) −1.79008e58 −1.79267
\(262\) 0 0
\(263\) −2.90032e56 −0.0241829 −0.0120914 0.999927i \(-0.503849\pi\)
−0.0120914 + 0.999927i \(0.503849\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −2.78771e58 −1.47915
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −5.93697e57 −0.185162
\(275\) 6.58329e58 1.88130
\(276\) 0 0
\(277\) −4.06019e58 −0.975062 −0.487531 0.873106i \(-0.662102\pi\)
−0.487531 + 0.873106i \(0.662102\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.21832e58 0.377636 0.188818 0.982012i \(-0.439534\pi\)
0.188818 + 0.982012i \(0.439534\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 1.38429e59 1.82637
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 4.14965e58 0.391374
\(289\) 1.15225e59 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.00825e59 −0.492680
\(297\) 0 0
\(298\) −5.73314e58 −0.238343
\(299\) 0 0
\(300\) 0 0
\(301\) 2.85501e59 0.933280
\(302\) −4.84580e58 −0.146285
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −9.81411e59 −1.84771
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.76636e60 1.79717
\(317\) −7.21709e59 −0.680675 −0.340337 0.940303i \(-0.610541\pi\)
−0.340337 + 0.940303i \(0.610541\pi\)
\(318\) 0 0
\(319\) −4.15848e60 −3.37255
\(320\) 0 0
\(321\) 0 0
\(322\) −4.02191e59 −0.260550
\(323\) 0 0
\(324\) −1.75896e60 −0.982144
\(325\) 0 0
\(326\) 3.91509e59 0.188590
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.49002e60 1.50098 0.750492 0.660880i \(-0.229817\pi\)
0.750492 + 0.660880i \(0.229817\pi\)
\(332\) 0 0
\(333\) 6.42989e60 1.86012
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.17872e60 −0.690454 −0.345227 0.938519i \(-0.612198\pi\)
−0.345227 + 0.938519i \(0.612198\pi\)
\(338\) 6.60524e59 0.133625
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 7.03168e60 1.00000
\(344\) −1.86397e60 −0.247193
\(345\) 0 0
\(346\) 0 0
\(347\) 8.09827e60 0.871937 0.435968 0.899962i \(-0.356406\pi\)
0.435968 + 0.899962i \(0.356406\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.52588e60 0.133625
\(351\) 0 0
\(352\) 9.63994e60 0.736292
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 3.18359e60 0.162078
\(359\) −2.97012e61 −1.41419 −0.707094 0.707120i \(-0.749994\pi\)
−0.707094 + 0.707120i \(0.749994\pi\)
\(360\) 0 0
\(361\) 2.39979e61 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −7.02405e61 −1.84603
\(369\) 0 0
\(370\) 0 0
\(371\) 1.94192e61 0.420008
\(372\) 0 0
\(373\) −7.23753e61 −1.37587 −0.687936 0.725771i \(-0.741483\pi\)
−0.687936 + 0.725771i \(0.741483\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.20985e62 −1.56816 −0.784081 0.620658i \(-0.786865\pi\)
−0.784081 + 0.620658i \(0.786865\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.06779e60 0.0114542
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.38359e61 −0.199130
\(387\) 1.18871e62 0.933280
\(388\) 0 0
\(389\) 2.56860e62 1.78199 0.890996 0.454011i \(-0.150007\pi\)
0.890996 + 0.454011i \(0.150007\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −4.59081e61 −0.264864
\(393\) 0 0
\(394\) 5.00828e61 0.255729
\(395\) 0 0
\(396\) −4.08619e62 −1.84771
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.66487e62 0.946752
\(401\) −1.42653e61 −0.0477327 −0.0238663 0.999715i \(-0.507598\pi\)
−0.0238663 + 0.999715i \(0.507598\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −9.63858e61 −0.239546
\(407\) 1.49371e63 3.49945
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −1.67456e62 −0.260550
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 9.68432e61 0.100762 0.0503812 0.998730i \(-0.483956\pi\)
0.0503812 + 0.998730i \(0.483956\pi\)
\(422\) −5.01524e60 −0.00492939
\(423\) 0 0
\(424\) −1.26783e62 −0.111245
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −2.77249e63 −1.94187
\(429\) 0 0
\(430\) 0 0
\(431\) −5.87787e62 −0.348149 −0.174075 0.984732i \(-0.555693\pi\)
−0.174075 + 0.984732i \(0.555693\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.06257e63 −1.82442
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 2.92770e63 1.00000
\(442\) 0 0
\(443\) 1.31314e63 0.402366 0.201183 0.979554i \(-0.435521\pi\)
0.201183 + 0.979554i \(0.435521\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −3.82147e63 −0.894454
\(449\) −5.77488e63 −1.28124 −0.640620 0.767858i \(-0.721323\pi\)
−0.640620 + 0.767858i \(0.721323\pi\)
\(450\) 6.35314e62 0.133625
\(451\) 0 0
\(452\) 1.96432e63 0.371441
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.22470e64 1.77844 0.889220 0.457479i \(-0.151248\pi\)
0.889220 + 0.457479i \(0.151248\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 1.42199e64 1.50991 0.754956 0.655776i \(-0.227658\pi\)
0.754956 + 0.655776i \(0.227658\pi\)
\(464\) −1.68332e64 −1.69721
\(465\) 0 0
\(466\) 1.76338e63 0.160356
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 1.93191e64 1.50604
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.76145e64 1.75578
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 8.08536e63 0.420008
\(478\) 3.03831e63 0.150094
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −6.81047e64 −2.49395
\(485\) 0 0
\(486\) 0 0
\(487\) −4.93391e64 −1.55774 −0.778872 0.627183i \(-0.784208\pi\)
−0.778872 + 0.627183i \(0.784208\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.61891e64 1.71724 0.858619 0.512615i \(-0.171323\pi\)
0.858619 + 0.512615i \(0.171323\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.59325e64 −1.85957
\(498\) 0 0
\(499\) 6.19454e64 1.09043 0.545213 0.838298i \(-0.316449\pi\)
0.545213 + 0.838298i \(0.316449\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −1.91142e64 −0.264864
\(505\) 0 0
\(506\) −3.89012e64 −0.490174
\(507\) 0 0
\(508\) −1.68319e65 −1.92932
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 6.54300e64 0.621295
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 3.46214e64 0.248559
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −4.01310e64 −0.239546
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −6.50211e62 −0.00323144
\(527\) 0 0
\(528\) 0 0
\(529\) 6.46246e65 2.80196
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −1.26129e65 −0.398897
\(537\) 0 0
\(538\) 0 0
\(539\) 6.80125e65 1.88130
\(540\) 0 0
\(541\) −5.67627e64 −0.143658 −0.0718289 0.997417i \(-0.522884\pi\)
−0.0718289 + 0.997417i \(0.522884\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6.30351e65 −1.22430 −0.612148 0.790743i \(-0.709694\pi\)
−0.612148 + 0.790743i \(0.709694\pi\)
\(548\) 7.32103e65 1.36094
\(549\) 0 0
\(550\) 1.47588e65 0.251389
\(551\) 0 0
\(552\) 0 0
\(553\) −1.22410e66 −1.82985
\(554\) −9.10237e64 −0.130293
\(555\) 0 0
\(556\) 0 0
\(557\) −2.24022e65 −0.281687 −0.140843 0.990032i \(-0.544981\pi\)
−0.140843 + 0.990032i \(0.544981\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 4.97316e64 0.0504616
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.21897e66 1.00000
\(568\) 6.26319e65 0.492534
\(569\) −1.40090e66 −1.05612 −0.528058 0.849208i \(-0.677080\pi\)
−0.528058 + 0.849208i \(0.677080\pi\)
\(570\) 0 0
\(571\) −1.83751e66 −1.27340 −0.636698 0.771113i \(-0.719700\pi\)
−0.636698 + 0.771113i \(0.719700\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.32684e66 −1.94986
\(576\) −1.59110e66 −0.894454
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 2.58319e65 0.133625
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.87829e66 0.790162
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 6.04643e66 1.76108
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.06968e66 1.75182
\(597\) 0 0
\(598\) 0 0
\(599\) −8.53210e66 −1.87418 −0.937092 0.349081i \(-0.886494\pi\)
−0.937092 + 0.349081i \(0.886494\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 6.40053e65 0.124710
\(603\) 8.04365e66 1.50604
\(604\) 5.97548e66 1.07519
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −6.49326e66 −0.819241 −0.409620 0.912256i \(-0.634339\pi\)
−0.409620 + 0.912256i \(0.634339\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −4.44037e66 −0.498289
\(617\) 4.86447e66 0.525039 0.262520 0.964927i \(-0.415447\pi\)
0.262520 + 0.964927i \(0.415447\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.26218e67 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −3.13919e67 −1.97749 −0.988743 0.149627i \(-0.952193\pi\)
−0.988743 + 0.149627i \(0.952193\pi\)
\(632\) 7.99186e66 0.484661
\(633\) 0 0
\(634\) −1.61797e66 −0.0909552
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −9.32273e66 −0.450657
\(639\) −3.99423e67 −1.85957
\(640\) 0 0
\(641\) −1.27735e67 −0.551718 −0.275859 0.961198i \(-0.588962\pi\)
−0.275859 + 0.961198i \(0.588962\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 4.95952e67 1.91505
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −7.95836e66 −0.264864
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −4.82780e67 −1.38614
\(653\) −6.01652e67 −1.66506 −0.832528 0.553983i \(-0.813107\pi\)
−0.832528 + 0.553983i \(0.813107\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.91665e67 1.31470 0.657348 0.753587i \(-0.271678\pi\)
0.657348 + 0.753587i \(0.271678\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 1.00660e67 0.200569
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.44149e67 0.248559
\(667\) 2.10147e68 3.49546
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −3.71247e67 −0.498083 −0.249041 0.968493i \(-0.580116\pi\)
−0.249041 + 0.968493i \(0.580116\pi\)
\(674\) −7.12624e66 −0.0922620
\(675\) 0 0
\(676\) −8.14509e67 −0.982144
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.28553e67 0.309391 0.154696 0.987962i \(-0.450560\pi\)
0.154696 + 0.987962i \(0.450560\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.57640e67 0.133625
\(687\) 0 0
\(688\) 1.11782e68 0.883585
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 2.83176e68 1.88130
\(694\) 1.81552e67 0.116513
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.88160e68 −0.982144
\(701\) −9.52428e67 −0.480396 −0.240198 0.970724i \(-0.577212\pi\)
−0.240198 + 0.970724i \(0.577212\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −3.69624e68 −1.68274
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.38246e68 1.29934 0.649671 0.760215i \(-0.274907\pi\)
0.649671 + 0.760215i \(0.274907\pi\)
\(710\) 0 0
\(711\) −5.09666e68 −1.82985
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −3.92577e68 −1.19127
\(717\) 0 0
\(718\) −6.65858e67 −0.188971
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 5.37998e67 0.133625
\(723\) 0 0
\(724\) 0 0
\(725\) −7.97283e68 −1.79267
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 5.07529e68 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −4.87151e68 −0.763125
\(737\) 1.86860e69 2.83332
\(738\) 0 0
\(739\) −1.19352e68 −0.169576 −0.0847878 0.996399i \(-0.527021\pi\)
−0.0847878 + 0.996399i \(0.527021\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.35351e67 0.0561237
\(743\) −4.30796e68 −0.537700 −0.268850 0.963182i \(-0.586644\pi\)
−0.268850 + 0.963182i \(0.586644\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.62255e68 −0.183851
\(747\) 0 0
\(748\) 0 0
\(749\) 1.92136e69 1.97717
\(750\) 0 0
\(751\) 1.20165e69 1.15989 0.579946 0.814655i \(-0.303074\pi\)
0.579946 + 0.814655i \(0.303074\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.48507e69 −1.98170 −0.990848 0.134986i \(-0.956901\pi\)
−0.990848 + 0.134986i \(0.956901\pi\)
\(758\) −2.71231e68 −0.209546
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 2.81539e69 1.85759
\(764\) −1.31672e68 −0.0841884
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.93927e69 1.46361
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 2.66491e68 0.124710
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 5.75843e68 0.238119
\(779\) 0 0
\(780\) 0 0
\(781\) −9.27888e69 −3.49841
\(782\) 0 0
\(783\) 0 0
\(784\) 2.75310e69 0.946752
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −6.17584e69 −1.87960
\(789\) 0 0
\(790\) 0 0
\(791\) −1.36129e69 −0.378193
\(792\) −1.84878e69 −0.498289
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.84821e69 0.391374
\(801\) 0 0
\(802\) −3.19808e67 −0.00637829
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.04953e70 −1.69914 −0.849570 0.527477i \(-0.823138\pi\)
−0.849570 + 0.527477i \(0.823138\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 1.18856e70 1.76066
\(813\) 0 0
\(814\) 3.34868e69 0.467615
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.75547e70 1.99599 0.997993 0.0633190i \(-0.0201686\pi\)
0.997993 + 0.0633190i \(0.0201686\pi\)
\(822\) 0 0
\(823\) −1.85034e70 −1.98452 −0.992260 0.124176i \(-0.960371\pi\)
−0.992260 + 0.124176i \(0.960371\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.18356e70 −1.12995 −0.564974 0.825108i \(-0.691114\pi\)
−0.564974 + 0.825108i \(0.691114\pi\)
\(828\) 2.06494e70 1.91505
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 3.46909e70 2.21366
\(842\) 2.17109e68 0.0134644
\(843\) 0 0
\(844\) 6.18442e68 0.0362310
\(845\) 0 0
\(846\) 0 0
\(847\) 4.71971e70 2.53929
\(848\) 7.60317e69 0.397644
\(849\) 0 0
\(850\) 0 0
\(851\) −7.54840e70 −3.62698
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.25441e70 −0.523682
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.31773e69 −0.0465215
\(863\) 5.60929e70 1.92597 0.962983 0.269560i \(-0.0868784\pi\)
0.962983 + 0.269560i \(0.0868784\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.18399e71 −3.44249
\(870\) 0 0
\(871\) 0 0
\(872\) −1.83810e70 −0.492009
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.74477e70 −0.873845 −0.436923 0.899499i \(-0.643932\pi\)
−0.436923 + 0.899499i \(0.643932\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 6.56348e69 0.133625
\(883\) −9.53575e70 −1.88929 −0.944644 0.328098i \(-0.893592\pi\)
−0.944644 + 0.328098i \(0.893592\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.94387e69 0.0537662
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 1.16646e71 1.96439
\(890\) 0 0
\(891\) 1.17903e71 1.88130
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −3.66205e70 −0.510896
\(897\) 0 0
\(898\) −1.29464e70 −0.171206
\(899\) 0 0
\(900\) −7.83422e70 −0.982144
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 8.88750e69 0.100170
\(905\) 0 0
\(906\) 0 0
\(907\) −9.04422e70 −0.941448 −0.470724 0.882281i \(-0.656007\pi\)
−0.470724 + 0.882281i \(0.656007\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.03358e71 1.90467 0.952334 0.305056i \(-0.0986753\pi\)
0.952334 + 0.305056i \(0.0986753\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.74559e70 0.237644
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.61130e71 1.98282 0.991411 0.130784i \(-0.0417493\pi\)
0.991411 + 0.130784i \(0.0417493\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 2.86380e71 1.86012
\(926\) 3.18789e70 0.201762
\(927\) 0 0
\(928\) −1.16746e71 −0.701604
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2.17447e71 −1.17861
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 4.33106e70 0.201245
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 6.19079e70 0.234616
\(947\) −5.32700e71 −1.96826 −0.984132 0.177439i \(-0.943219\pi\)
−0.984132 + 0.177439i \(0.943219\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.92475e71 −0.928664 −0.464332 0.885661i \(-0.653706\pi\)
−0.464332 + 0.885661i \(0.653706\pi\)
\(954\) 1.81262e70 0.0561237
\(955\) 0 0
\(956\) −3.74662e71 −1.10319
\(957\) 0 0
\(958\) 0 0
\(959\) −5.07353e71 −1.38568
\(960\) 0 0
\(961\) 3.84912e71 1.00000
\(962\) 0 0
\(963\) 7.99973e71 1.97717
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4.64708e71 −1.03979 −0.519894 0.854231i \(-0.674029\pi\)
−0.519894 + 0.854231i \(0.674029\pi\)
\(968\) −3.08138e71 −0.672568
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.10611e71 −0.208154
\(975\) 0 0
\(976\) 0 0
\(977\) −4.67867e71 −0.817812 −0.408906 0.912577i \(-0.634090\pi\)
−0.408906 + 0.912577i \(0.634090\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.17221e72 1.85759
\(982\) 1.48386e71 0.229466
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.39549e72 −1.81977
\(990\) 0 0
\(991\) 1.60507e72 1.99401 0.997004 0.0773547i \(-0.0246474\pi\)
0.997004 + 0.0773547i \(0.0246474\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −2.15067e71 −0.248485
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 1.38873e71 0.145708
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7.49.b.a.6.1 1
7.6 odd 2 CM 7.49.b.a.6.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.49.b.a.6.1 1 1.1 even 1 trivial
7.49.b.a.6.1 1 7.6 odd 2 CM