Newspace parameters
| Level: | \( N \) | \(=\) | \( 7 \) |
| Weight: | \( k \) | \(=\) | \( 24 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7.c (of order \(3\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(23.4642826142\) |
| Analytic rank: | \(0\) |
| Dimension: | \(28\) |
| Relative dimension: | \(14\) over \(\Q(\zeta_{3})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2.1 | −2850.44 | + | 4937.11i | −209916. | − | 363586.i | −1.20557e7 | − | 2.08812e7i | −3.17471e7 | + | 5.49875e7i | 2.39342e9 | 3.14280e8 | + | 5.22207e9i | 8.96344e10 | −4.10583e10 | + | 7.11150e10i | −1.80986e11 | − | 3.13478e11i | ||||
| 2.2 | −2240.10 | + | 3879.97i | 84864.7 | + | 146990.i | −5.84181e6 | − | 1.01183e7i | 4.26595e7 | − | 7.38885e7i | −7.60422e8 | −4.40176e9 | − | 2.82723e9i | 1.47623e10 | 3.26676e10 | − | 5.65819e10i | 1.91123e11 | + | 3.31035e11i | ||||
| 2.3 | −2080.04 | + | 3602.74i | 152288. | + | 263771.i | −4.45884e6 | − | 7.72294e6i | −5.11115e7 | + | 8.85278e7i | −1.26706e9 | 5.23125e9 | + | 5.27080e7i | 2.20102e9 | 6.88244e8 | − | 1.19207e9i | −2.12628e11 | − | 3.68283e11i | ||||
| 2.4 | −1286.90 | + | 2228.97i | −134187. | − | 232418.i | 882091. | + | 1.52783e6i | 8.56874e7 | − | 1.48415e8i | 6.90739e8 | 3.36174e9 | + | 4.00842e9i | −2.61312e10 | 1.10594e10 | − | 1.91554e10i | 2.20542e11 | + | 3.81990e11i | ||||
| 2.5 | −1256.79 | + | 2176.82i | −192681. | − | 333734.i | 1.03526e6 | + | 1.79313e6i | −3.60011e7 | + | 6.23558e7i | 9.68640e8 | −1.43544e9 | − | 5.03073e9i | −2.62899e10 | −2.71807e10 | + | 4.70783e10i | −9.04917e10 | − | 1.56736e11i | ||||
| 2.6 | −643.722 | + | 1114.96i | 268410. | + | 464900.i | 3.36555e6 | + | 5.82930e6i | 2.50795e7 | − | 4.34389e7i | −6.91126e8 | −3.38128e9 | + | 3.99196e9i | −1.94658e10 | −9.70166e10 | + | 1.68038e11i | 3.22884e10 | + | 5.59251e10i | ||||
| 2.7 | −409.258 | + | 708.856i | −13709.4 | − | 23745.5i | 3.85932e6 | + | 6.68454e6i | −9.14709e7 | + | 1.58432e8i | 2.24428e7 | −2.59623e9 | + | 4.54184e9i | −1.31840e10 | 4.66957e10 | − | 8.08793e10i | −7.48705e10 | − | 1.29679e11i | ||||
| 2.8 | 354.185 | − | 613.466i | 99138.9 | + | 171714.i | 3.94341e6 | + | 6.83019e6i | 1.81832e7 | − | 3.14943e7i | 1.40454e8 | 3.51978e9 | − | 3.87038e9i | 1.15290e10 | 2.74145e10 | − | 4.74834e10i | −1.28804e10 | − | 2.23096e10i | ||||
| 2.9 | 1014.57 | − | 1757.29i | −116452. | − | 201701.i | 2.13559e6 | + | 3.69896e6i | 4.66998e7 | − | 8.08863e7i | −4.72597e8 | −5.17266e9 | + | 7.82494e8i | 2.56885e10 | 1.99493e10 | − | 3.45533e10i | −9.47605e10 | − | 1.64130e11i | ||||
| 2.10 | 1150.44 | − | 1992.62i | −293195. | − | 507829.i | 1.54728e6 | + | 2.67997e6i | −2.34581e7 | + | 4.06307e7i | −1.34921e9 | 5.21199e9 | + | 4.51604e8i | 2.64214e10 | −1.24855e11 | + | 2.16256e11i | 5.39743e10 | + | 9.34863e10i | ||||
| 2.11 | 1838.54 | − | 3184.45i | 232883. | + | 403365.i | −2.56619e6 | − | 4.44477e6i | −6.91642e7 | + | 1.19796e8i | 1.71266e9 | −3.84342e9 | − | 3.54920e9i | 1.19734e10 | −6.13975e10 | + | 1.06344e11i | 2.54323e11 | + | 4.40500e11i | ||||
| 2.12 | 1989.65 | − | 3446.18i | −12284.6 | − | 21277.5i | −3.72314e6 | − | 6.44867e6i | −5.96803e7 | + | 1.03369e8i | −9.77681e7 | 3.21228e9 | + | 4.12917e9i | 3.74979e9 | 4.67698e10 | − | 8.10076e10i | 2.37486e11 | + | 4.11339e11i | ||||
| 2.13 | 2256.55 | − | 3908.45i | 176588. | + | 305860.i | −5.98971e6 | − | 1.03745e7i | 9.71323e7 | − | 1.68238e8i | 1.59392e9 | 2.22602e9 | + | 4.73430e9i | −1.62057e10 | −1.52953e10 | + | 2.64922e10i | −4.38367e11 | − | 7.59274e11i | ||||
| 2.14 | 2646.31 | − | 4583.55i | −130321. | − | 225723.i | −9.81164e6 | − | 1.69943e7i | 9.80623e6 | − | 1.69849e7i | −1.37948e9 | −1.91940e9 | − | 4.86669e9i | −5.94609e10 | 1.31044e10 | − | 2.26975e10i | −5.19007e10 | − | 8.98947e10i | ||||
| 4.1 | −2850.44 | − | 4937.11i | −209916. | + | 363586.i | −1.20557e7 | + | 2.08812e7i | −3.17471e7 | − | 5.49875e7i | 2.39342e9 | 3.14280e8 | − | 5.22207e9i | 8.96344e10 | −4.10583e10 | − | 7.11150e10i | −1.80986e11 | + | 3.13478e11i | ||||
| 4.2 | −2240.10 | − | 3879.97i | 84864.7 | − | 146990.i | −5.84181e6 | + | 1.01183e7i | 4.26595e7 | + | 7.38885e7i | −7.60422e8 | −4.40176e9 | + | 2.82723e9i | 1.47623e10 | 3.26676e10 | + | 5.65819e10i | 1.91123e11 | − | 3.31035e11i | ||||
| 4.3 | −2080.04 | − | 3602.74i | 152288. | − | 263771.i | −4.45884e6 | + | 7.72294e6i | −5.11115e7 | − | 8.85278e7i | −1.26706e9 | 5.23125e9 | − | 5.27080e7i | 2.20102e9 | 6.88244e8 | + | 1.19207e9i | −2.12628e11 | + | 3.68283e11i | ||||
| 4.4 | −1286.90 | − | 2228.97i | −134187. | + | 232418.i | 882091. | − | 1.52783e6i | 8.56874e7 | + | 1.48415e8i | 6.90739e8 | 3.36174e9 | − | 4.00842e9i | −2.61312e10 | 1.10594e10 | + | 1.91554e10i | 2.20542e11 | − | 3.81990e11i | ||||
| 4.5 | −1256.79 | − | 2176.82i | −192681. | + | 333734.i | 1.03526e6 | − | 1.79313e6i | −3.60011e7 | − | 6.23558e7i | 9.68640e8 | −1.43544e9 | + | 5.03073e9i | −2.62899e10 | −2.71807e10 | − | 4.70783e10i | −9.04917e10 | + | 1.56736e11i | ||||
| 4.6 | −643.722 | − | 1114.96i | 268410. | − | 464900.i | 3.36555e6 | − | 5.82930e6i | 2.50795e7 | + | 4.34389e7i | −6.91126e8 | −3.38128e9 | − | 3.99196e9i | −1.94658e10 | −9.70166e10 | − | 1.68038e11i | 3.22884e10 | − | 5.59251e10i | ||||
| See all 28 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.c | even | 3 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 7.24.c.a | ✓ | 28 |
| 7.c | even | 3 | 1 | inner | 7.24.c.a | ✓ | 28 |
| 7.c | even | 3 | 1 | 49.24.a.g | 14 | ||
| 7.d | odd | 6 | 1 | 49.24.a.f | 14 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 7.24.c.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
| 7.24.c.a | ✓ | 28 | 7.c | even | 3 | 1 | inner |
| 49.24.a.f | 14 | 7.d | odd | 6 | 1 | ||
| 49.24.a.g | 14 | 7.c | even | 3 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{24}^{\mathrm{new}}(7, [\chi])\).