Properties

Label 7.24.a.b
Level $7$
Weight $24$
Character orbit 7.a
Self dual yes
Analytic conductor $23.464$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7,24,Mod(1,7)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7.1"); S:= CuspForms(chi, 24); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 24, names="a")
 
Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4642826142\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3 x^{5} - 27997302 x^{4} - 8334207232 x^{3} + 155343730039680 x^{2} + \cdots - 52\!\cdots\!92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{11}\cdot 3^{4}\cdot 5\cdot 7^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 352) q^{2} + (\beta_{2} - 65 \beta_1 + 21591) q^{3} + (\beta_{3} - \beta_{2} + \cdots + 1067506) q^{4} + (11 \beta_{5} + 9 \beta_{4} + \cdots + 11904922) q^{5} + (12 \beta_{5} + 37 \beta_{4} + \cdots + 597921166) q^{6}+ \cdots + ( - 65\!\cdots\!53 \beta_{5} + \cdots - 15\!\cdots\!57) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2115 q^{2} + 129352 q^{3} + 6408501 q^{4} + 71437860 q^{5} + 3587653778 q^{6} - 11863960458 q^{7} - 49163897313 q^{8} + 379016247310 q^{9} - 181303960020 q^{10} - 1168850705976 q^{11} - 4703061003298 q^{12}+ \cdots - 90\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3 x^{5} - 27997302 x^{4} - 8334207232 x^{3} + 155343730039680 x^{2} + \cdots - 52\!\cdots\!92 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 5384921 \nu^{5} + 47470977237 \nu^{4} - 306117999883302 \nu^{3} + \cdots + 37\!\cdots\!28 ) / 91\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5384921 \nu^{5} + 47470977237 \nu^{4} - 306117999883302 \nu^{3} + \cdots - 82\!\cdots\!32 ) / 91\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 895595161 \nu^{5} + 2308020934251 \nu^{4} + \cdots + 51\!\cdots\!80 ) / 91\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 1666574431 \nu^{5} + 1680075892605 \nu^{4} + \cdots - 36\!\cdots\!96 ) / 91\!\cdots\!76 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} + 451\beta _1 + 9332210 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -1004\beta_{5} + 1611\beta_{4} - 18\beta_{3} - 42775\beta_{2} + 16907685\beta _1 + 4200652260 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 2642380 \beta_{5} + 5140977 \beta_{4} + 22741304 \beta_{3} + 14494373 \beta_{2} + \cdots + 157731853492144 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 33780646188 \beta_{5} + 46260455013 \beta_{4} + 7208346460 \beta_{3} - 1060821568939 \beta_{2} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4647.62
2888.78
324.641
−1242.12
−2186.42
−4429.50
−4999.62 −458525. 1.66076e7 1.79255e8 2.29245e9 −1.97733e9 −4.10921e10 1.16102e11 −8.96207e11
1.2 −3240.78 −36314.3 2.11404e6 −6.24332e7 1.17686e8 −1.97733e9 2.03345e10 −9.28245e10 2.02332e11
1.3 −676.641 513256. −7.93077e6 −1.76618e8 −3.47290e8 −1.97733e9 1.10424e10 1.69289e11 1.19507e11
1.4 890.125 −64762.8 −7.59629e6 1.51631e8 −5.76470e7 −1.97733e9 −1.42285e10 −8.99490e10 1.34970e11
1.5 1834.42 −386098. −5.02351e6 −1.52140e8 −7.08266e8 −1.97733e9 −2.46035e10 5.49283e10 −2.79088e11
1.6 4077.50 561795. 8.23738e6 1.31743e8 2.29072e9 −1.97733e9 −6.16637e8 2.21471e11 5.37182e11
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7.24.a.b 6
3.b odd 2 1 63.24.a.e 6
7.b odd 2 1 49.24.a.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.24.a.b 6 1.a even 1 1 trivial
49.24.a.d 6 7.b odd 2 1
63.24.a.e 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 2115 T_{2}^{5} - 26133462 T_{2}^{4} - 30209992704 T_{2}^{3} + 143562378079104 T_{2}^{2} + \cdots - 72\!\cdots\!80 \) acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(7))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + \cdots - 72\!\cdots\!80 \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots + 12\!\cdots\!96 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 60\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T + 1977326743)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 81\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 49\!\cdots\!20 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 43\!\cdots\!08 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 55\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 26\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 30\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 46\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 31\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 85\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 86\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 84\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 97\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 15\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 23\!\cdots\!52 \) Copy content Toggle raw display
show more
show less