Properties

Label 7.22.a
Level $7$
Weight $22$
Character orbit 7.a
Rep. character $\chi_{7}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $2$
Sturm bound $14$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(14\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(7))\).

Total New Old
Modular forms 15 11 4
Cusp forms 13 11 2
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(7\)\(5\)\(2\)\(6\)\(5\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(8\)\(6\)\(2\)\(7\)\(6\)\(1\)\(1\)\(0\)\(1\)

Trace form

\( 11 q + 287 q^{2} + 257686 q^{3} + 15809161 q^{4} - 63281864 q^{5} + 20290814 q^{6} + 282475249 q^{7} + 4103699055 q^{8} + 50006802667 q^{9} + 44269189204 q^{10} + 53191743976 q^{11} + 206480040662 q^{12}+ \cdots - 48\!\cdots\!48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7
7.22.a.a 7.a 1.a $5$ $19.563$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 7.22.a.a \(-2278\) \(-5810\) \(-60216716\) \(-1412376245\) $+$ $\mathrm{SU}(2)$ \(q+(-456+\beta _{1})q^{2}+(-1155-18\beta _{1}+\cdots)q^{3}+\cdots\)
7.22.a.b 7.a 1.a $6$ $19.563$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 7.22.a.b \(2565\) \(263496\) \(-3065148\) \(1694851494\) $-$ $\mathrm{SU}(2)$ \(q+(428-\beta _{1})q^{2}+(43924-15\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(7))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(7)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)