Defining parameters
| Level: | \( N \) | \(=\) | \( 7 \) |
| Weight: | \( k \) | \(=\) | \( 22 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(14\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(7))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 15 | 11 | 4 |
| Cusp forms | 13 | 11 | 2 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(7\) | \(5\) | \(2\) | \(6\) | \(5\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(8\) | \(6\) | \(2\) | \(7\) | \(6\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | |||||||
| 7.22.a.a | $5$ | $19.563$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(-2278\) | \(-5810\) | \(-60216716\) | \(-1412376245\) | $+$ | \(q+(-456+\beta _{1})q^{2}+(-1155-18\beta _{1}+\cdots)q^{3}+\cdots\) | |
| 7.22.a.b | $6$ | $19.563$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(2565\) | \(263496\) | \(-3065148\) | \(1694851494\) | $-$ | \(q+(428-\beta _{1})q^{2}+(43924-15\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\) | |
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(7))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(7)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)