gp: [N,k,chi] = [6975,2,Mod(1,6975)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6975.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6975, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [1,0,0,-2,0,0,0,0,0,0,-5,0,0,0,0,4,5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
31 31 3 1
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 6975 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(6975)) S 2 n e w ( Γ 0 ( 6 9 7 5 ) ) :
T 2 T_{2} T 2
T2
T 7 T_{7} T 7
T7
T 11 + 5 T_{11} + 5 T 1 1 + 5
T11 + 5
T 13 T_{13} T 1 3
T13
T 17 − 5 T_{17} - 5 T 1 7 − 5
T17 - 5
T 29 + 5 T_{29} + 5 T 2 9 + 5
T29 + 5
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T T T
T
5 5 5
T T T
T
7 7 7
T T T
T
11 11 1 1
T + 5 T + 5 T + 5
T + 5
13 13 1 3
T T T
T
17 17 1 7
T − 5 T - 5 T − 5
T - 5
19 19 1 9
T + 1 T + 1 T + 1
T + 1
23 23 2 3
T − 5 T - 5 T − 5
T - 5
29 29 2 9
T + 5 T + 5 T + 5
T + 5
31 31 3 1
T + 1 T + 1 T + 1
T + 1
37 37 3 7
T + 10 T + 10 T + 1 0
T + 10
41 41 4 1
T T T
T
43 43 4 3
T − 10 T - 10 T − 1 0
T - 10
47 47 4 7
T T T
T
53 53 5 3
T − 5 T - 5 T − 5
T - 5
59 59 5 9
T − 10 T - 10 T − 1 0
T - 10
61 61 6 1
T − 12 T - 12 T − 1 2
T - 12
67 67 6 7
T − 5 T - 5 T − 5
T - 5
71 71 7 1
T T T
T
73 73 7 3
T T T
T
79 79 7 9
T + 4 T + 4 T + 4
T + 4
83 83 8 3
T + 15 T + 15 T + 1 5
T + 15
89 89 8 9
T + 15 T + 15 T + 1 5
T + 15
97 97 9 7
T − 5 T - 5 T − 5
T - 5
show more
show less