Properties

Label 6900.2.f.i.6349.3
Level $6900$
Weight $2$
Character 6900.6349
Analytic conductor $55.097$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6900,2,Mod(6349,6900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6900.6349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,-4,0,0,0,0,0,0,0,4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 6349.3
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 6900.6349
Dual form 6900.2.f.i.6349.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -2.46410i q^{7} -1.00000 q^{9} +4.19615 q^{11} +3.26795i q^{13} -7.73205i q^{17} -0.732051 q^{19} +2.46410 q^{21} +1.00000i q^{23} -1.00000i q^{27} -7.19615 q^{29} -1.00000 q^{31} +4.19615i q^{33} -11.3923i q^{37} -3.26795 q^{39} -7.73205 q^{41} -3.46410i q^{43} +0.732051i q^{47} +0.928203 q^{49} +7.73205 q^{51} -6.66025i q^{53} -0.732051i q^{57} +7.19615 q^{59} -10.7321 q^{61} +2.46410i q^{63} +5.00000i q^{67} -1.00000 q^{69} -14.1244 q^{71} +11.2679i q^{73} -10.3397i q^{77} -4.00000 q^{79} +1.00000 q^{81} +6.66025i q^{83} -7.19615i q^{87} +16.3923 q^{89} +8.05256 q^{91} -1.00000i q^{93} +4.00000i q^{97} -4.19615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 4 q^{11} + 4 q^{19} - 4 q^{21} - 8 q^{29} - 4 q^{31} - 20 q^{39} - 24 q^{41} - 24 q^{49} + 24 q^{51} + 8 q^{59} - 36 q^{61} - 4 q^{69} - 8 q^{71} - 16 q^{79} + 4 q^{81} + 24 q^{89} - 44 q^{91}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6900\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1201\) \(3451\) \(4601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.46410i − 0.931343i −0.884958 0.465671i \(-0.845813\pi\)
0.884958 0.465671i \(-0.154187\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.19615 1.26519 0.632594 0.774484i \(-0.281990\pi\)
0.632594 + 0.774484i \(0.281990\pi\)
\(12\) 0 0
\(13\) 3.26795i 0.906366i 0.891417 + 0.453183i \(0.149712\pi\)
−0.891417 + 0.453183i \(0.850288\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 7.73205i − 1.87530i −0.347584 0.937649i \(-0.612998\pi\)
0.347584 0.937649i \(-0.387002\pi\)
\(18\) 0 0
\(19\) −0.732051 −0.167944 −0.0839720 0.996468i \(-0.526761\pi\)
−0.0839720 + 0.996468i \(0.526761\pi\)
\(20\) 0 0
\(21\) 2.46410 0.537711
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) −7.19615 −1.33629 −0.668146 0.744030i \(-0.732912\pi\)
−0.668146 + 0.744030i \(0.732912\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) 4.19615i 0.730456i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 11.3923i − 1.87288i −0.350823 0.936442i \(-0.614098\pi\)
0.350823 0.936442i \(-0.385902\pi\)
\(38\) 0 0
\(39\) −3.26795 −0.523291
\(40\) 0 0
\(41\) −7.73205 −1.20754 −0.603772 0.797157i \(-0.706336\pi\)
−0.603772 + 0.797157i \(0.706336\pi\)
\(42\) 0 0
\(43\) − 3.46410i − 0.528271i −0.964486 0.264135i \(-0.914913\pi\)
0.964486 0.264135i \(-0.0850865\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.732051i 0.106781i 0.998574 + 0.0533903i \(0.0170027\pi\)
−0.998574 + 0.0533903i \(0.982997\pi\)
\(48\) 0 0
\(49\) 0.928203 0.132600
\(50\) 0 0
\(51\) 7.73205 1.08270
\(52\) 0 0
\(53\) − 6.66025i − 0.914856i −0.889247 0.457428i \(-0.848771\pi\)
0.889247 0.457428i \(-0.151229\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 0.732051i − 0.0969625i
\(58\) 0 0
\(59\) 7.19615 0.936859 0.468430 0.883501i \(-0.344820\pi\)
0.468430 + 0.883501i \(0.344820\pi\)
\(60\) 0 0
\(61\) −10.7321 −1.37410 −0.687049 0.726611i \(-0.741094\pi\)
−0.687049 + 0.726611i \(0.741094\pi\)
\(62\) 0 0
\(63\) 2.46410i 0.310448i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.00000i 0.610847i 0.952217 + 0.305424i \(0.0987981\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −14.1244 −1.67625 −0.838126 0.545476i \(-0.816349\pi\)
−0.838126 + 0.545476i \(0.816349\pi\)
\(72\) 0 0
\(73\) 11.2679i 1.31881i 0.751786 + 0.659407i \(0.229193\pi\)
−0.751786 + 0.659407i \(0.770807\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 10.3397i − 1.17832i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.66025i 0.731058i 0.930800 + 0.365529i \(0.119112\pi\)
−0.930800 + 0.365529i \(0.880888\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 7.19615i − 0.771509i
\(88\) 0 0
\(89\) 16.3923 1.73758 0.868790 0.495180i \(-0.164898\pi\)
0.868790 + 0.495180i \(0.164898\pi\)
\(90\) 0 0
\(91\) 8.05256 0.844138
\(92\) 0 0
\(93\) − 1.00000i − 0.103695i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.00000i 0.406138i 0.979164 + 0.203069i \(0.0650917\pi\)
−0.979164 + 0.203069i \(0.934908\pi\)
\(98\) 0 0
\(99\) −4.19615 −0.421729
\(100\) 0 0
\(101\) −2.80385 −0.278993 −0.139497 0.990223i \(-0.544548\pi\)
−0.139497 + 0.990223i \(0.544548\pi\)
\(102\) 0 0
\(103\) − 16.9282i − 1.66799i −0.551775 0.833993i \(-0.686049\pi\)
0.551775 0.833993i \(-0.313951\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.19615i 0.115636i 0.998327 + 0.0578182i \(0.0184144\pi\)
−0.998327 + 0.0578182i \(0.981586\pi\)
\(108\) 0 0
\(109\) −3.66025 −0.350589 −0.175294 0.984516i \(-0.556088\pi\)
−0.175294 + 0.984516i \(0.556088\pi\)
\(110\) 0 0
\(111\) 11.3923 1.08131
\(112\) 0 0
\(113\) 15.1962i 1.42953i 0.699363 + 0.714767i \(0.253467\pi\)
−0.699363 + 0.714767i \(0.746533\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.26795i − 0.302122i
\(118\) 0 0
\(119\) −19.0526 −1.74655
\(120\) 0 0
\(121\) 6.60770 0.600700
\(122\) 0 0
\(123\) − 7.73205i − 0.697176i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.1244i 0.987127i 0.869710 + 0.493563i \(0.164306\pi\)
−0.869710 + 0.493563i \(0.835694\pi\)
\(128\) 0 0
\(129\) 3.46410 0.304997
\(130\) 0 0
\(131\) −21.8564 −1.90960 −0.954802 0.297244i \(-0.903933\pi\)
−0.954802 + 0.297244i \(0.903933\pi\)
\(132\) 0 0
\(133\) 1.80385i 0.156413i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 12.0000i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) −7.00000 −0.593732 −0.296866 0.954919i \(-0.595942\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) −0.732051 −0.0616498
\(142\) 0 0
\(143\) 13.7128i 1.14672i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.928203i 0.0765569i
\(148\) 0 0
\(149\) −5.80385 −0.475470 −0.237735 0.971330i \(-0.576405\pi\)
−0.237735 + 0.971330i \(0.576405\pi\)
\(150\) 0 0
\(151\) −2.39230 −0.194683 −0.0973415 0.995251i \(-0.531034\pi\)
−0.0973415 + 0.995251i \(0.531034\pi\)
\(152\) 0 0
\(153\) 7.73205i 0.625099i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.3205i 0.983284i 0.870798 + 0.491642i \(0.163603\pi\)
−0.870798 + 0.491642i \(0.836397\pi\)
\(158\) 0 0
\(159\) 6.66025 0.528193
\(160\) 0 0
\(161\) 2.46410 0.194198
\(162\) 0 0
\(163\) 3.85641i 0.302057i 0.988529 + 0.151029i \(0.0482585\pi\)
−0.988529 + 0.151029i \(0.951741\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 5.80385i − 0.449115i −0.974461 0.224558i \(-0.927906\pi\)
0.974461 0.224558i \(-0.0720937\pi\)
\(168\) 0 0
\(169\) 2.32051 0.178501
\(170\) 0 0
\(171\) 0.732051 0.0559813
\(172\) 0 0
\(173\) − 17.8564i − 1.35760i −0.734324 0.678799i \(-0.762501\pi\)
0.734324 0.678799i \(-0.237499\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.19615i 0.540896i
\(178\) 0 0
\(179\) −11.4641 −0.856867 −0.428434 0.903573i \(-0.640934\pi\)
−0.428434 + 0.903573i \(0.640934\pi\)
\(180\) 0 0
\(181\) −12.3923 −0.921113 −0.460556 0.887630i \(-0.652350\pi\)
−0.460556 + 0.887630i \(0.652350\pi\)
\(182\) 0 0
\(183\) − 10.7321i − 0.793336i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 32.4449i − 2.37260i
\(188\) 0 0
\(189\) −2.46410 −0.179237
\(190\) 0 0
\(191\) 5.80385 0.419952 0.209976 0.977707i \(-0.432661\pi\)
0.209976 + 0.977707i \(0.432661\pi\)
\(192\) 0 0
\(193\) − 24.3923i − 1.75580i −0.478847 0.877898i \(-0.658945\pi\)
0.478847 0.877898i \(-0.341055\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 7.46410i − 0.531795i −0.964001 0.265898i \(-0.914332\pi\)
0.964001 0.265898i \(-0.0856683\pi\)
\(198\) 0 0
\(199\) 4.53590 0.321541 0.160771 0.986992i \(-0.448602\pi\)
0.160771 + 0.986992i \(0.448602\pi\)
\(200\) 0 0
\(201\) −5.00000 −0.352673
\(202\) 0 0
\(203\) 17.7321i 1.24455i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.00000i − 0.0695048i
\(208\) 0 0
\(209\) −3.07180 −0.212481
\(210\) 0 0
\(211\) −17.9282 −1.23423 −0.617114 0.786874i \(-0.711698\pi\)
−0.617114 + 0.786874i \(0.711698\pi\)
\(212\) 0 0
\(213\) − 14.1244i − 0.967785i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.46410i 0.167274i
\(218\) 0 0
\(219\) −11.2679 −0.761417
\(220\) 0 0
\(221\) 25.2679 1.69971
\(222\) 0 0
\(223\) − 14.0000i − 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 22.9282i − 1.52180i −0.648870 0.760899i \(-0.724758\pi\)
0.648870 0.760899i \(-0.275242\pi\)
\(228\) 0 0
\(229\) −17.4641 −1.15406 −0.577030 0.816723i \(-0.695788\pi\)
−0.577030 + 0.816723i \(0.695788\pi\)
\(230\) 0 0
\(231\) 10.3397 0.680305
\(232\) 0 0
\(233\) − 20.7846i − 1.36165i −0.732448 0.680823i \(-0.761622\pi\)
0.732448 0.680823i \(-0.238378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 4.00000i − 0.259828i
\(238\) 0 0
\(239\) −2.12436 −0.137413 −0.0687066 0.997637i \(-0.521887\pi\)
−0.0687066 + 0.997637i \(0.521887\pi\)
\(240\) 0 0
\(241\) −14.5885 −0.939725 −0.469863 0.882740i \(-0.655697\pi\)
−0.469863 + 0.882740i \(0.655697\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 2.39230i − 0.152219i
\(248\) 0 0
\(249\) −6.66025 −0.422076
\(250\) 0 0
\(251\) 23.8564 1.50580 0.752902 0.658133i \(-0.228654\pi\)
0.752902 + 0.658133i \(0.228654\pi\)
\(252\) 0 0
\(253\) 4.19615i 0.263810i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.12436i 0.569162i 0.958652 + 0.284581i \(0.0918544\pi\)
−0.958652 + 0.284581i \(0.908146\pi\)
\(258\) 0 0
\(259\) −28.0718 −1.74430
\(260\) 0 0
\(261\) 7.19615 0.445431
\(262\) 0 0
\(263\) 11.3397i 0.699239i 0.936892 + 0.349619i \(0.113689\pi\)
−0.936892 + 0.349619i \(0.886311\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 16.3923i 1.00319i
\(268\) 0 0
\(269\) 1.73205 0.105605 0.0528025 0.998605i \(-0.483185\pi\)
0.0528025 + 0.998605i \(0.483185\pi\)
\(270\) 0 0
\(271\) 23.3923 1.42098 0.710491 0.703707i \(-0.248473\pi\)
0.710491 + 0.703707i \(0.248473\pi\)
\(272\) 0 0
\(273\) 8.05256i 0.487363i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 4.14359i − 0.248964i −0.992222 0.124482i \(-0.960273\pi\)
0.992222 0.124482i \(-0.0397270\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 15.5167 0.925646 0.462823 0.886451i \(-0.346836\pi\)
0.462823 + 0.886451i \(0.346836\pi\)
\(282\) 0 0
\(283\) − 30.8564i − 1.83422i −0.398631 0.917111i \(-0.630515\pi\)
0.398631 0.917111i \(-0.369485\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 19.0526i 1.12464i
\(288\) 0 0
\(289\) −42.7846 −2.51674
\(290\) 0 0
\(291\) −4.00000 −0.234484
\(292\) 0 0
\(293\) 24.6603i 1.44067i 0.693628 + 0.720334i \(0.256011\pi\)
−0.693628 + 0.720334i \(0.743989\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 4.19615i − 0.243485i
\(298\) 0 0
\(299\) −3.26795 −0.188990
\(300\) 0 0
\(301\) −8.53590 −0.492001
\(302\) 0 0
\(303\) − 2.80385i − 0.161077i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3.66025i 0.208902i 0.994530 + 0.104451i \(0.0333085\pi\)
−0.994530 + 0.104451i \(0.966692\pi\)
\(308\) 0 0
\(309\) 16.9282 0.963012
\(310\) 0 0
\(311\) 22.9282 1.30014 0.650070 0.759875i \(-0.274740\pi\)
0.650070 + 0.759875i \(0.274740\pi\)
\(312\) 0 0
\(313\) − 22.3205i − 1.26163i −0.775933 0.630815i \(-0.782721\pi\)
0.775933 0.630815i \(-0.217279\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 13.5167i − 0.759171i −0.925157 0.379586i \(-0.876067\pi\)
0.925157 0.379586i \(-0.123933\pi\)
\(318\) 0 0
\(319\) −30.1962 −1.69066
\(320\) 0 0
\(321\) −1.19615 −0.0667627
\(322\) 0 0
\(323\) 5.66025i 0.314945i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 3.66025i − 0.202413i
\(328\) 0 0
\(329\) 1.80385 0.0994493
\(330\) 0 0
\(331\) −27.2487 −1.49772 −0.748862 0.662726i \(-0.769400\pi\)
−0.748862 + 0.662726i \(0.769400\pi\)
\(332\) 0 0
\(333\) 11.3923i 0.624294i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.0718i 0.821013i 0.911858 + 0.410507i \(0.134648\pi\)
−0.911858 + 0.410507i \(0.865352\pi\)
\(338\) 0 0
\(339\) −15.1962 −0.825342
\(340\) 0 0
\(341\) −4.19615 −0.227234
\(342\) 0 0
\(343\) − 19.5359i − 1.05484i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.60770i 0.408402i 0.978929 + 0.204201i \(0.0654597\pi\)
−0.978929 + 0.204201i \(0.934540\pi\)
\(348\) 0 0
\(349\) −0.464102 −0.0248428 −0.0124214 0.999923i \(-0.503954\pi\)
−0.0124214 + 0.999923i \(0.503954\pi\)
\(350\) 0 0
\(351\) 3.26795 0.174430
\(352\) 0 0
\(353\) − 1.41154i − 0.0751288i −0.999294 0.0375644i \(-0.988040\pi\)
0.999294 0.0375644i \(-0.0119599\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 19.0526i − 1.00837i
\(358\) 0 0
\(359\) 8.73205 0.460860 0.230430 0.973089i \(-0.425987\pi\)
0.230430 + 0.973089i \(0.425987\pi\)
\(360\) 0 0
\(361\) −18.4641 −0.971795
\(362\) 0 0
\(363\) 6.60770i 0.346814i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 30.4641i − 1.59021i −0.606470 0.795107i \(-0.707415\pi\)
0.606470 0.795107i \(-0.292585\pi\)
\(368\) 0 0
\(369\) 7.73205 0.402514
\(370\) 0 0
\(371\) −16.4115 −0.852045
\(372\) 0 0
\(373\) 9.46410i 0.490033i 0.969519 + 0.245016i \(0.0787933\pi\)
−0.969519 + 0.245016i \(0.921207\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 23.5167i − 1.21117i
\(378\) 0 0
\(379\) −9.85641 −0.506290 −0.253145 0.967428i \(-0.581465\pi\)
−0.253145 + 0.967428i \(0.581465\pi\)
\(380\) 0 0
\(381\) −11.1244 −0.569918
\(382\) 0 0
\(383\) − 31.0526i − 1.58671i −0.608758 0.793356i \(-0.708332\pi\)
0.608758 0.793356i \(-0.291668\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.46410i 0.176090i
\(388\) 0 0
\(389\) −12.5359 −0.635595 −0.317798 0.948159i \(-0.602943\pi\)
−0.317798 + 0.948159i \(0.602943\pi\)
\(390\) 0 0
\(391\) 7.73205 0.391027
\(392\) 0 0
\(393\) − 21.8564i − 1.10251i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 32.0000i 1.60603i 0.595956 + 0.803017i \(0.296773\pi\)
−0.595956 + 0.803017i \(0.703227\pi\)
\(398\) 0 0
\(399\) −1.80385 −0.0903053
\(400\) 0 0
\(401\) 30.3923 1.51772 0.758860 0.651254i \(-0.225757\pi\)
0.758860 + 0.651254i \(0.225757\pi\)
\(402\) 0 0
\(403\) − 3.26795i − 0.162788i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 47.8038i − 2.36955i
\(408\) 0 0
\(409\) 32.1769 1.59105 0.795523 0.605923i \(-0.207196\pi\)
0.795523 + 0.605923i \(0.207196\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) − 17.7321i − 0.872537i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 7.00000i − 0.342791i
\(418\) 0 0
\(419\) 3.12436 0.152635 0.0763174 0.997084i \(-0.475684\pi\)
0.0763174 + 0.997084i \(0.475684\pi\)
\(420\) 0 0
\(421\) 13.5167 0.658762 0.329381 0.944197i \(-0.393160\pi\)
0.329381 + 0.944197i \(0.393160\pi\)
\(422\) 0 0
\(423\) − 0.732051i − 0.0355935i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 26.4449i 1.27976i
\(428\) 0 0
\(429\) −13.7128 −0.662061
\(430\) 0 0
\(431\) 3.60770 0.173777 0.0868883 0.996218i \(-0.472308\pi\)
0.0868883 + 0.996218i \(0.472308\pi\)
\(432\) 0 0
\(433\) 29.3923i 1.41250i 0.707961 + 0.706252i \(0.249615\pi\)
−0.707961 + 0.706252i \(0.750385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 0.732051i − 0.0350187i
\(438\) 0 0
\(439\) −18.7846 −0.896541 −0.448270 0.893898i \(-0.647960\pi\)
−0.448270 + 0.893898i \(0.647960\pi\)
\(440\) 0 0
\(441\) −0.928203 −0.0442002
\(442\) 0 0
\(443\) 1.80385i 0.0857034i 0.999081 + 0.0428517i \(0.0136443\pi\)
−0.999081 + 0.0428517i \(0.986356\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 5.80385i − 0.274513i
\(448\) 0 0
\(449\) −4.26795 −0.201417 −0.100708 0.994916i \(-0.532111\pi\)
−0.100708 + 0.994916i \(0.532111\pi\)
\(450\) 0 0
\(451\) −32.4449 −1.52777
\(452\) 0 0
\(453\) − 2.39230i − 0.112400i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 26.4641i − 1.23794i −0.785415 0.618969i \(-0.787551\pi\)
0.785415 0.618969i \(-0.212449\pi\)
\(458\) 0 0
\(459\) −7.73205 −0.360901
\(460\) 0 0
\(461\) −29.3205 −1.36559 −0.682796 0.730609i \(-0.739236\pi\)
−0.682796 + 0.730609i \(0.739236\pi\)
\(462\) 0 0
\(463\) 10.5885i 0.492087i 0.969259 + 0.246044i \(0.0791307\pi\)
−0.969259 + 0.246044i \(0.920869\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 29.4449i − 1.36255i −0.732030 0.681273i \(-0.761427\pi\)
0.732030 0.681273i \(-0.238573\pi\)
\(468\) 0 0
\(469\) 12.3205 0.568908
\(470\) 0 0
\(471\) −12.3205 −0.567699
\(472\) 0 0
\(473\) − 14.5359i − 0.668361i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.66025i 0.304952i
\(478\) 0 0
\(479\) 34.9808 1.59831 0.799156 0.601124i \(-0.205280\pi\)
0.799156 + 0.601124i \(0.205280\pi\)
\(480\) 0 0
\(481\) 37.2295 1.69752
\(482\) 0 0
\(483\) 2.46410i 0.112121i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 2.73205i − 0.123801i −0.998082 0.0619005i \(-0.980284\pi\)
0.998082 0.0619005i \(-0.0197162\pi\)
\(488\) 0 0
\(489\) −3.85641 −0.174393
\(490\) 0 0
\(491\) 19.0526 0.859830 0.429915 0.902869i \(-0.358544\pi\)
0.429915 + 0.902869i \(0.358544\pi\)
\(492\) 0 0
\(493\) 55.6410i 2.50595i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 34.8038i 1.56117i
\(498\) 0 0
\(499\) 28.4641 1.27423 0.637114 0.770770i \(-0.280128\pi\)
0.637114 + 0.770770i \(0.280128\pi\)
\(500\) 0 0
\(501\) 5.80385 0.259297
\(502\) 0 0
\(503\) − 17.1962i − 0.766739i −0.923595 0.383369i \(-0.874764\pi\)
0.923595 0.383369i \(-0.125236\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.32051i 0.103057i
\(508\) 0 0
\(509\) 32.7846 1.45315 0.726576 0.687086i \(-0.241110\pi\)
0.726576 + 0.687086i \(0.241110\pi\)
\(510\) 0 0
\(511\) 27.7654 1.22827
\(512\) 0 0
\(513\) 0.732051i 0.0323208i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.07180i 0.135097i
\(518\) 0 0
\(519\) 17.8564 0.783809
\(520\) 0 0
\(521\) 22.0526 0.966140 0.483070 0.875582i \(-0.339522\pi\)
0.483070 + 0.875582i \(0.339522\pi\)
\(522\) 0 0
\(523\) − 36.7846i − 1.60848i −0.594306 0.804239i \(-0.702573\pi\)
0.594306 0.804239i \(-0.297427\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.73205i 0.336813i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −7.19615 −0.312286
\(532\) 0 0
\(533\) − 25.2679i − 1.09448i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 11.4641i − 0.494713i
\(538\) 0 0
\(539\) 3.89488 0.167764
\(540\) 0 0
\(541\) −14.9282 −0.641814 −0.320907 0.947111i \(-0.603988\pi\)
−0.320907 + 0.947111i \(0.603988\pi\)
\(542\) 0 0
\(543\) − 12.3923i − 0.531805i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 2.92820i − 0.125201i −0.998039 0.0626005i \(-0.980061\pi\)
0.998039 0.0626005i \(-0.0199394\pi\)
\(548\) 0 0
\(549\) 10.7321 0.458033
\(550\) 0 0
\(551\) 5.26795 0.224422
\(552\) 0 0
\(553\) 9.85641i 0.419137i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 15.9808i − 0.677127i −0.940944 0.338563i \(-0.890059\pi\)
0.940944 0.338563i \(-0.109941\pi\)
\(558\) 0 0
\(559\) 11.3205 0.478806
\(560\) 0 0
\(561\) 32.4449 1.36982
\(562\) 0 0
\(563\) − 15.5885i − 0.656975i −0.944508 0.328488i \(-0.893461\pi\)
0.944508 0.328488i \(-0.106539\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 2.46410i − 0.103483i
\(568\) 0 0
\(569\) −0.535898 −0.0224660 −0.0112330 0.999937i \(-0.503576\pi\)
−0.0112330 + 0.999937i \(0.503576\pi\)
\(570\) 0 0
\(571\) −24.5885 −1.02899 −0.514497 0.857492i \(-0.672022\pi\)
−0.514497 + 0.857492i \(0.672022\pi\)
\(572\) 0 0
\(573\) 5.80385i 0.242459i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 16.7846i 0.698752i 0.936983 + 0.349376i \(0.113606\pi\)
−0.936983 + 0.349376i \(0.886394\pi\)
\(578\) 0 0
\(579\) 24.3923 1.01371
\(580\) 0 0
\(581\) 16.4115 0.680866
\(582\) 0 0
\(583\) − 27.9474i − 1.15746i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 24.9282i − 1.02890i −0.857521 0.514449i \(-0.827997\pi\)
0.857521 0.514449i \(-0.172003\pi\)
\(588\) 0 0
\(589\) 0.732051 0.0301636
\(590\) 0 0
\(591\) 7.46410 0.307032
\(592\) 0 0
\(593\) 31.2679i 1.28402i 0.766696 + 0.642010i \(0.221899\pi\)
−0.766696 + 0.642010i \(0.778101\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.53590i 0.185642i
\(598\) 0 0
\(599\) −3.60770 −0.147406 −0.0737032 0.997280i \(-0.523482\pi\)
−0.0737032 + 0.997280i \(0.523482\pi\)
\(600\) 0 0
\(601\) −6.60770 −0.269534 −0.134767 0.990877i \(-0.543029\pi\)
−0.134767 + 0.990877i \(0.543029\pi\)
\(602\) 0 0
\(603\) − 5.00000i − 0.203616i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 28.9808i − 1.17629i −0.808754 0.588146i \(-0.799858\pi\)
0.808754 0.588146i \(-0.200142\pi\)
\(608\) 0 0
\(609\) −17.7321 −0.718539
\(610\) 0 0
\(611\) −2.39230 −0.0967823
\(612\) 0 0
\(613\) 41.7128i 1.68476i 0.538880 + 0.842382i \(0.318847\pi\)
−0.538880 + 0.842382i \(0.681153\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 11.8756i − 0.478095i −0.971008 0.239048i \(-0.923165\pi\)
0.971008 0.239048i \(-0.0768352\pi\)
\(618\) 0 0
\(619\) −10.9282 −0.439242 −0.219621 0.975585i \(-0.570482\pi\)
−0.219621 + 0.975585i \(0.570482\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) − 40.3923i − 1.61828i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 3.07180i − 0.122676i
\(628\) 0 0
\(629\) −88.0859 −3.51221
\(630\) 0 0
\(631\) 34.8372 1.38685 0.693423 0.720531i \(-0.256102\pi\)
0.693423 + 0.720531i \(0.256102\pi\)
\(632\) 0 0
\(633\) − 17.9282i − 0.712582i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.03332i 0.120185i
\(638\) 0 0
\(639\) 14.1244 0.558751
\(640\) 0 0
\(641\) 10.0526 0.397052 0.198526 0.980096i \(-0.436385\pi\)
0.198526 + 0.980096i \(0.436385\pi\)
\(642\) 0 0
\(643\) 1.53590i 0.0605699i 0.999541 + 0.0302850i \(0.00964148\pi\)
−0.999541 + 0.0302850i \(0.990359\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 26.7321i − 1.05095i −0.850810 0.525473i \(-0.823889\pi\)
0.850810 0.525473i \(-0.176111\pi\)
\(648\) 0 0
\(649\) 30.1962 1.18530
\(650\) 0 0
\(651\) −2.46410 −0.0965758
\(652\) 0 0
\(653\) 33.3731i 1.30599i 0.757363 + 0.652995i \(0.226488\pi\)
−0.757363 + 0.652995i \(0.773512\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 11.2679i − 0.439605i
\(658\) 0 0
\(659\) 50.4449 1.96505 0.982526 0.186123i \(-0.0595923\pi\)
0.982526 + 0.186123i \(0.0595923\pi\)
\(660\) 0 0
\(661\) 28.5359 1.10992 0.554959 0.831878i \(-0.312734\pi\)
0.554959 + 0.831878i \(0.312734\pi\)
\(662\) 0 0
\(663\) 25.2679i 0.981326i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 7.19615i − 0.278636i
\(668\) 0 0
\(669\) 14.0000 0.541271
\(670\) 0 0
\(671\) −45.0333 −1.73849
\(672\) 0 0
\(673\) 27.9090i 1.07581i 0.843005 + 0.537906i \(0.180784\pi\)
−0.843005 + 0.537906i \(0.819216\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 20.8038i − 0.799557i −0.916612 0.399778i \(-0.869087\pi\)
0.916612 0.399778i \(-0.130913\pi\)
\(678\) 0 0
\(679\) 9.85641 0.378254
\(680\) 0 0
\(681\) 22.9282 0.878611
\(682\) 0 0
\(683\) 7.26795i 0.278100i 0.990285 + 0.139050i \(0.0444049\pi\)
−0.990285 + 0.139050i \(0.955595\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 17.4641i − 0.666297i
\(688\) 0 0
\(689\) 21.7654 0.829195
\(690\) 0 0
\(691\) −0.535898 −0.0203865 −0.0101933 0.999948i \(-0.503245\pi\)
−0.0101933 + 0.999948i \(0.503245\pi\)
\(692\) 0 0
\(693\) 10.3397i 0.392774i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 59.7846i 2.26450i
\(698\) 0 0
\(699\) 20.7846 0.786146
\(700\) 0 0
\(701\) −18.5885 −0.702076 −0.351038 0.936361i \(-0.614171\pi\)
−0.351038 + 0.936361i \(0.614171\pi\)
\(702\) 0 0
\(703\) 8.33975i 0.314539i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.90897i 0.259838i
\(708\) 0 0
\(709\) −31.1244 −1.16890 −0.584450 0.811430i \(-0.698690\pi\)
−0.584450 + 0.811430i \(0.698690\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) − 1.00000i − 0.0374503i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 2.12436i − 0.0793355i
\(718\) 0 0
\(719\) −14.2679 −0.532105 −0.266052 0.963959i \(-0.585719\pi\)
−0.266052 + 0.963959i \(0.585719\pi\)
\(720\) 0 0
\(721\) −41.7128 −1.55347
\(722\) 0 0
\(723\) − 14.5885i − 0.542551i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 29.0000i 1.07555i 0.843088 + 0.537775i \(0.180735\pi\)
−0.843088 + 0.537775i \(0.819265\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −26.7846 −0.990665
\(732\) 0 0
\(733\) − 15.6410i − 0.577714i −0.957372 0.288857i \(-0.906725\pi\)
0.957372 0.288857i \(-0.0932752\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.9808i 0.772836i
\(738\) 0 0
\(739\) 1.67949 0.0617811 0.0308906 0.999523i \(-0.490166\pi\)
0.0308906 + 0.999523i \(0.490166\pi\)
\(740\) 0 0
\(741\) 2.39230 0.0878835
\(742\) 0 0
\(743\) 17.8564i 0.655088i 0.944836 + 0.327544i \(0.106221\pi\)
−0.944836 + 0.327544i \(0.893779\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 6.66025i − 0.243686i
\(748\) 0 0
\(749\) 2.94744 0.107697
\(750\) 0 0
\(751\) −49.1244 −1.79257 −0.896287 0.443475i \(-0.853745\pi\)
−0.896287 + 0.443475i \(0.853745\pi\)
\(752\) 0 0
\(753\) 23.8564i 0.869376i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23.1436i 0.841168i 0.907254 + 0.420584i \(0.138175\pi\)
−0.907254 + 0.420584i \(0.861825\pi\)
\(758\) 0 0
\(759\) −4.19615 −0.152311
\(760\) 0 0
\(761\) 5.19615 0.188360 0.0941802 0.995555i \(-0.469977\pi\)
0.0941802 + 0.995555i \(0.469977\pi\)
\(762\) 0 0
\(763\) 9.01924i 0.326518i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.5167i 0.849137i
\(768\) 0 0
\(769\) 9.66025 0.348358 0.174179 0.984714i \(-0.444273\pi\)
0.174179 + 0.984714i \(0.444273\pi\)
\(770\) 0 0
\(771\) −9.12436 −0.328606
\(772\) 0 0
\(773\) − 45.0333i − 1.61974i −0.586612 0.809868i \(-0.699539\pi\)
0.586612 0.809868i \(-0.300461\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 28.0718i − 1.00707i
\(778\) 0 0
\(779\) 5.66025 0.202800
\(780\) 0 0
\(781\) −59.2679 −2.12077
\(782\) 0 0
\(783\) 7.19615i 0.257170i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 45.3923i 1.61806i 0.587767 + 0.809030i \(0.300007\pi\)
−0.587767 + 0.809030i \(0.699993\pi\)
\(788\) 0 0
\(789\) −11.3397 −0.403706
\(790\) 0 0
\(791\) 37.4449 1.33139
\(792\) 0 0
\(793\) − 35.0718i − 1.24544i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.26795i 0.151179i 0.997139 + 0.0755893i \(0.0240838\pi\)
−0.997139 + 0.0755893i \(0.975916\pi\)
\(798\) 0 0
\(799\) 5.66025 0.200245
\(800\) 0 0
\(801\) −16.3923 −0.579194
\(802\) 0 0
\(803\) 47.2820i 1.66855i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.73205i 0.0609711i
\(808\) 0 0
\(809\) 23.1962 0.815533 0.407767 0.913086i \(-0.366308\pi\)
0.407767 + 0.913086i \(0.366308\pi\)
\(810\) 0 0
\(811\) −33.9282 −1.19138 −0.595690 0.803214i \(-0.703121\pi\)
−0.595690 + 0.803214i \(0.703121\pi\)
\(812\) 0 0
\(813\) 23.3923i 0.820404i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.53590i 0.0887199i
\(818\) 0 0
\(819\) −8.05256 −0.281379
\(820\) 0 0
\(821\) −1.85641 −0.0647890 −0.0323945 0.999475i \(-0.510313\pi\)
−0.0323945 + 0.999475i \(0.510313\pi\)
\(822\) 0 0
\(823\) − 20.7846i − 0.724506i −0.932080 0.362253i \(-0.882008\pi\)
0.932080 0.362253i \(-0.117992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 40.5167i − 1.40890i −0.709752 0.704451i \(-0.751193\pi\)
0.709752 0.704451i \(-0.248807\pi\)
\(828\) 0 0
\(829\) −55.4974 −1.92751 −0.963753 0.266798i \(-0.914034\pi\)
−0.963753 + 0.266798i \(0.914034\pi\)
\(830\) 0 0
\(831\) 4.14359 0.143740
\(832\) 0 0
\(833\) − 7.17691i − 0.248665i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000i 0.0345651i
\(838\) 0 0
\(839\) −42.0000 −1.45000 −0.725001 0.688748i \(-0.758161\pi\)
−0.725001 + 0.688748i \(0.758161\pi\)
\(840\) 0 0
\(841\) 22.7846 0.785676
\(842\) 0 0
\(843\) 15.5167i 0.534422i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 16.2820i − 0.559457i
\(848\) 0 0
\(849\) 30.8564 1.05899
\(850\) 0 0
\(851\) 11.3923 0.390523
\(852\) 0 0
\(853\) 31.4641i 1.07731i 0.842526 + 0.538655i \(0.181067\pi\)
−0.842526 + 0.538655i \(0.818933\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33.7128i 1.15161i 0.817588 + 0.575804i \(0.195311\pi\)
−0.817588 + 0.575804i \(0.804689\pi\)
\(858\) 0 0
\(859\) 19.0000 0.648272 0.324136 0.946011i \(-0.394927\pi\)
0.324136 + 0.946011i \(0.394927\pi\)
\(860\) 0 0
\(861\) −19.0526 −0.649309
\(862\) 0 0
\(863\) − 51.9615i − 1.76879i −0.466738 0.884395i \(-0.654571\pi\)
0.466738 0.884395i \(-0.345429\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 42.7846i − 1.45304i
\(868\) 0 0
\(869\) −16.7846 −0.569379
\(870\) 0 0
\(871\) −16.3397 −0.553651
\(872\) 0 0
\(873\) − 4.00000i − 0.135379i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 7.46410i − 0.252045i −0.992027 0.126022i \(-0.959779\pi\)
0.992027 0.126022i \(-0.0402211\pi\)
\(878\) 0 0
\(879\) −24.6603 −0.831770
\(880\) 0 0
\(881\) 7.94744 0.267756 0.133878 0.990998i \(-0.457257\pi\)
0.133878 + 0.990998i \(0.457257\pi\)
\(882\) 0 0
\(883\) 45.6603i 1.53659i 0.640096 + 0.768295i \(0.278895\pi\)
−0.640096 + 0.768295i \(0.721105\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 17.3205i − 0.581566i −0.956789 0.290783i \(-0.906084\pi\)
0.956789 0.290783i \(-0.0939157\pi\)
\(888\) 0 0
\(889\) 27.4115 0.919354
\(890\) 0 0
\(891\) 4.19615 0.140576
\(892\) 0 0
\(893\) − 0.535898i − 0.0179332i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3.26795i − 0.109114i
\(898\) 0 0
\(899\) 7.19615 0.240005
\(900\) 0 0
\(901\) −51.4974 −1.71563
\(902\) 0 0
\(903\) − 8.53590i − 0.284057i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 19.9282i 0.661705i 0.943682 + 0.330853i \(0.107336\pi\)
−0.943682 + 0.330853i \(0.892664\pi\)
\(908\) 0 0
\(909\) 2.80385 0.0929978
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 27.9474i 0.924925i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 53.8564i 1.77850i
\(918\) 0 0
\(919\) 22.9282 0.756332 0.378166 0.925738i \(-0.376555\pi\)
0.378166 + 0.925738i \(0.376555\pi\)
\(920\) 0 0
\(921\) −3.66025 −0.120609
\(922\) 0 0
\(923\) − 46.1577i − 1.51930i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 16.9282i 0.555995i
\(928\) 0 0
\(929\) −10.5167 −0.345040 −0.172520 0.985006i \(-0.555191\pi\)
−0.172520 + 0.985006i \(0.555191\pi\)
\(930\) 0 0
\(931\) −0.679492 −0.0222694
\(932\) 0 0
\(933\) 22.9282i 0.750636i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.07180i 0.165688i 0.996563 + 0.0828442i \(0.0264004\pi\)
−0.996563 + 0.0828442i \(0.973600\pi\)
\(938\) 0 0
\(939\) 22.3205 0.728402
\(940\) 0 0
\(941\) 22.1962 0.723574 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(942\) 0 0
\(943\) − 7.73205i − 0.251790i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.67949i − 0.282046i −0.990006 0.141023i \(-0.954961\pi\)
0.990006 0.141023i \(-0.0450391\pi\)
\(948\) 0 0
\(949\) −36.8231 −1.19533
\(950\) 0 0
\(951\) 13.5167 0.438308
\(952\) 0 0
\(953\) 25.7128i 0.832920i 0.909154 + 0.416460i \(0.136729\pi\)
−0.909154 + 0.416460i \(0.863271\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 30.1962i − 0.976103i
\(958\) 0 0
\(959\) −29.5692 −0.954840
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) − 1.19615i − 0.0385455i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 16.8756i − 0.542684i −0.962483 0.271342i \(-0.912533\pi\)
0.962483 0.271342i \(-0.0874675\pi\)
\(968\) 0 0
\(969\) −5.66025 −0.181834
\(970\) 0 0
\(971\) −47.3205 −1.51859 −0.759294 0.650748i \(-0.774455\pi\)
−0.759294 + 0.650748i \(0.774455\pi\)
\(972\) 0 0
\(973\) 17.2487i 0.552968i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.87564i 0.315950i 0.987443 + 0.157975i \(0.0504965\pi\)
−0.987443 + 0.157975i \(0.949503\pi\)
\(978\) 0 0
\(979\) 68.7846 2.19837
\(980\) 0 0
\(981\) 3.66025 0.116863
\(982\) 0 0
\(983\) − 11.1962i − 0.357102i −0.983931 0.178551i \(-0.942859\pi\)
0.983931 0.178551i \(-0.0571409\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.80385i 0.0574171i
\(988\) 0 0
\(989\) 3.46410 0.110152
\(990\) 0 0
\(991\) 28.7128 0.912093 0.456046 0.889956i \(-0.349265\pi\)
0.456046 + 0.889956i \(0.349265\pi\)
\(992\) 0 0
\(993\) − 27.2487i − 0.864712i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 53.4641i − 1.69323i −0.532210 0.846613i \(-0.678638\pi\)
0.532210 0.846613i \(-0.321362\pi\)
\(998\) 0 0
\(999\) −11.3923 −0.360437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6900.2.f.i.6349.3 4
5.2 odd 4 6900.2.a.s.1.2 2
5.3 odd 4 1380.2.a.h.1.1 2
5.4 even 2 inner 6900.2.f.i.6349.2 4
15.8 even 4 4140.2.a.o.1.1 2
20.3 even 4 5520.2.a.bp.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.2.a.h.1.1 2 5.3 odd 4
4140.2.a.o.1.1 2 15.8 even 4
5520.2.a.bp.1.2 2 20.3 even 4
6900.2.a.s.1.2 2 5.2 odd 4
6900.2.f.i.6349.2 4 5.4 even 2 inner
6900.2.f.i.6349.3 4 1.1 even 1 trivial