Properties

Label 6900.2.f.i.6349.1
Level $6900$
Weight $2$
Character 6900.6349
Analytic conductor $55.097$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6900,2,Mod(6349,6900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6900.6349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,-4,0,0,0,0,0,0,0,4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 6349.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 6900.6349
Dual form 6900.2.f.i.6349.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -4.46410i q^{7} -1.00000 q^{9} -6.19615 q^{11} -6.73205i q^{13} +4.26795i q^{17} +2.73205 q^{19} -4.46410 q^{21} -1.00000i q^{23} +1.00000i q^{27} +3.19615 q^{29} -1.00000 q^{31} +6.19615i q^{33} -9.39230i q^{37} -6.73205 q^{39} -4.26795 q^{41} -3.46410i q^{43} +2.73205i q^{47} -12.9282 q^{49} +4.26795 q^{51} -10.6603i q^{53} -2.73205i q^{57} -3.19615 q^{59} -7.26795 q^{61} +4.46410i q^{63} -5.00000i q^{67} -1.00000 q^{69} +10.1244 q^{71} -14.7321i q^{73} +27.6603i q^{77} -4.00000 q^{79} +1.00000 q^{81} +10.6603i q^{83} -3.19615i q^{87} -4.39230 q^{89} -30.0526 q^{91} +1.00000i q^{93} -4.00000i q^{97} +6.19615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 4 q^{11} + 4 q^{19} - 4 q^{21} - 8 q^{29} - 4 q^{31} - 20 q^{39} - 24 q^{41} - 24 q^{49} + 24 q^{51} + 8 q^{59} - 36 q^{61} - 4 q^{69} - 8 q^{71} - 16 q^{79} + 4 q^{81} + 24 q^{89} - 44 q^{91}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6900\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1201\) \(3451\) \(4601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.46410i − 1.68727i −0.536916 0.843636i \(-0.680411\pi\)
0.536916 0.843636i \(-0.319589\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −6.19615 −1.86821 −0.934105 0.356998i \(-0.883800\pi\)
−0.934105 + 0.356998i \(0.883800\pi\)
\(12\) 0 0
\(13\) − 6.73205i − 1.86713i −0.358402 0.933567i \(-0.616678\pi\)
0.358402 0.933567i \(-0.383322\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.26795i 1.03513i 0.855644 + 0.517565i \(0.173161\pi\)
−0.855644 + 0.517565i \(0.826839\pi\)
\(18\) 0 0
\(19\) 2.73205 0.626775 0.313388 0.949625i \(-0.398536\pi\)
0.313388 + 0.949625i \(0.398536\pi\)
\(20\) 0 0
\(21\) −4.46410 −0.974147
\(22\) 0 0
\(23\) − 1.00000i − 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 3.19615 0.593511 0.296755 0.954954i \(-0.404095\pi\)
0.296755 + 0.954954i \(0.404095\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) 6.19615i 1.07861i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 9.39230i − 1.54409i −0.635571 0.772043i \(-0.719235\pi\)
0.635571 0.772043i \(-0.280765\pi\)
\(38\) 0 0
\(39\) −6.73205 −1.07799
\(40\) 0 0
\(41\) −4.26795 −0.666542 −0.333271 0.942831i \(-0.608152\pi\)
−0.333271 + 0.942831i \(0.608152\pi\)
\(42\) 0 0
\(43\) − 3.46410i − 0.528271i −0.964486 0.264135i \(-0.914913\pi\)
0.964486 0.264135i \(-0.0850865\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.73205i 0.398511i 0.979948 + 0.199255i \(0.0638523\pi\)
−0.979948 + 0.199255i \(0.936148\pi\)
\(48\) 0 0
\(49\) −12.9282 −1.84689
\(50\) 0 0
\(51\) 4.26795 0.597632
\(52\) 0 0
\(53\) − 10.6603i − 1.46430i −0.681144 0.732149i \(-0.738517\pi\)
0.681144 0.732149i \(-0.261483\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.73205i − 0.361869i
\(58\) 0 0
\(59\) −3.19615 −0.416104 −0.208052 0.978118i \(-0.566712\pi\)
−0.208052 + 0.978118i \(0.566712\pi\)
\(60\) 0 0
\(61\) −7.26795 −0.930566 −0.465283 0.885162i \(-0.654047\pi\)
−0.465283 + 0.885162i \(0.654047\pi\)
\(62\) 0 0
\(63\) 4.46410i 0.562424i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 5.00000i − 0.610847i −0.952217 0.305424i \(-0.901202\pi\)
0.952217 0.305424i \(-0.0987981\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) 10.1244 1.20154 0.600770 0.799422i \(-0.294861\pi\)
0.600770 + 0.799422i \(0.294861\pi\)
\(72\) 0 0
\(73\) − 14.7321i − 1.72426i −0.506690 0.862128i \(-0.669131\pi\)
0.506690 0.862128i \(-0.330869\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 27.6603i 3.15218i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.6603i 1.17011i 0.810992 + 0.585057i \(0.198928\pi\)
−0.810992 + 0.585057i \(0.801072\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 3.19615i − 0.342664i
\(88\) 0 0
\(89\) −4.39230 −0.465583 −0.232792 0.972527i \(-0.574786\pi\)
−0.232792 + 0.972527i \(0.574786\pi\)
\(90\) 0 0
\(91\) −30.0526 −3.15036
\(92\) 0 0
\(93\) 1.00000i 0.103695i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 4.00000i − 0.406138i −0.979164 0.203069i \(-0.934908\pi\)
0.979164 0.203069i \(-0.0650917\pi\)
\(98\) 0 0
\(99\) 6.19615 0.622737
\(100\) 0 0
\(101\) −13.1962 −1.31307 −0.656533 0.754297i \(-0.727978\pi\)
−0.656533 + 0.754297i \(0.727978\pi\)
\(102\) 0 0
\(103\) 3.07180i 0.302673i 0.988482 + 0.151337i \(0.0483577\pi\)
−0.988482 + 0.151337i \(0.951642\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.19615i 0.889026i 0.895772 + 0.444513i \(0.146623\pi\)
−0.895772 + 0.444513i \(0.853377\pi\)
\(108\) 0 0
\(109\) 13.6603 1.30842 0.654208 0.756315i \(-0.273002\pi\)
0.654208 + 0.756315i \(0.273002\pi\)
\(110\) 0 0
\(111\) −9.39230 −0.891478
\(112\) 0 0
\(113\) − 4.80385i − 0.451908i −0.974138 0.225954i \(-0.927450\pi\)
0.974138 0.225954i \(-0.0725499\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.73205i 0.622378i
\(118\) 0 0
\(119\) 19.0526 1.74655
\(120\) 0 0
\(121\) 27.3923 2.49021
\(122\) 0 0
\(123\) 4.26795i 0.384828i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 13.1244i 1.16460i 0.812975 + 0.582299i \(0.197847\pi\)
−0.812975 + 0.582299i \(0.802153\pi\)
\(128\) 0 0
\(129\) −3.46410 −0.304997
\(130\) 0 0
\(131\) 5.85641 0.511677 0.255838 0.966720i \(-0.417649\pi\)
0.255838 + 0.966720i \(0.417649\pi\)
\(132\) 0 0
\(133\) − 12.1962i − 1.05754i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −7.00000 −0.593732 −0.296866 0.954919i \(-0.595942\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 2.73205 0.230080
\(142\) 0 0
\(143\) 41.7128i 3.48820i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 12.9282i 1.06630i
\(148\) 0 0
\(149\) −16.1962 −1.32684 −0.663420 0.748247i \(-0.730896\pi\)
−0.663420 + 0.748247i \(0.730896\pi\)
\(150\) 0 0
\(151\) 18.3923 1.49674 0.748372 0.663279i \(-0.230836\pi\)
0.748372 + 0.663279i \(0.230836\pi\)
\(152\) 0 0
\(153\) − 4.26795i − 0.345043i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 22.3205i 1.78137i 0.454621 + 0.890685i \(0.349775\pi\)
−0.454621 + 0.890685i \(0.650225\pi\)
\(158\) 0 0
\(159\) −10.6603 −0.845413
\(160\) 0 0
\(161\) −4.46410 −0.351820
\(162\) 0 0
\(163\) 23.8564i 1.86858i 0.356517 + 0.934289i \(0.383964\pi\)
−0.356517 + 0.934289i \(0.616036\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.1962i 1.25330i 0.779302 + 0.626648i \(0.215574\pi\)
−0.779302 + 0.626648i \(0.784426\pi\)
\(168\) 0 0
\(169\) −32.3205 −2.48619
\(170\) 0 0
\(171\) −2.73205 −0.208925
\(172\) 0 0
\(173\) − 9.85641i − 0.749369i −0.927152 0.374684i \(-0.877751\pi\)
0.927152 0.374684i \(-0.122249\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.19615i 0.240238i
\(178\) 0 0
\(179\) −4.53590 −0.339029 −0.169514 0.985528i \(-0.554220\pi\)
−0.169514 + 0.985528i \(0.554220\pi\)
\(180\) 0 0
\(181\) 8.39230 0.623795 0.311898 0.950116i \(-0.399035\pi\)
0.311898 + 0.950116i \(0.399035\pi\)
\(182\) 0 0
\(183\) 7.26795i 0.537262i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 26.4449i − 1.93384i
\(188\) 0 0
\(189\) 4.46410 0.324716
\(190\) 0 0
\(191\) 16.1962 1.17191 0.585956 0.810343i \(-0.300719\pi\)
0.585956 + 0.810343i \(0.300719\pi\)
\(192\) 0 0
\(193\) 3.60770i 0.259688i 0.991534 + 0.129844i \(0.0414476\pi\)
−0.991534 + 0.129844i \(0.958552\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.535898i 0.0381812i 0.999818 + 0.0190906i \(0.00607709\pi\)
−0.999818 + 0.0190906i \(0.993923\pi\)
\(198\) 0 0
\(199\) 11.4641 0.812669 0.406334 0.913724i \(-0.366807\pi\)
0.406334 + 0.913724i \(0.366807\pi\)
\(200\) 0 0
\(201\) −5.00000 −0.352673
\(202\) 0 0
\(203\) − 14.2679i − 1.00141i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.00000i 0.0695048i
\(208\) 0 0
\(209\) −16.9282 −1.17095
\(210\) 0 0
\(211\) −4.07180 −0.280314 −0.140157 0.990129i \(-0.544761\pi\)
−0.140157 + 0.990129i \(0.544761\pi\)
\(212\) 0 0
\(213\) − 10.1244i − 0.693709i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.46410i 0.303043i
\(218\) 0 0
\(219\) −14.7321 −0.995500
\(220\) 0 0
\(221\) 28.7321 1.93273
\(222\) 0 0
\(223\) 14.0000i 0.937509i 0.883328 + 0.468755i \(0.155297\pi\)
−0.883328 + 0.468755i \(0.844703\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.07180i 0.602116i 0.953606 + 0.301058i \(0.0973398\pi\)
−0.953606 + 0.301058i \(0.902660\pi\)
\(228\) 0 0
\(229\) −10.5359 −0.696232 −0.348116 0.937452i \(-0.613178\pi\)
−0.348116 + 0.937452i \(0.613178\pi\)
\(230\) 0 0
\(231\) 27.6603 1.81991
\(232\) 0 0
\(233\) − 20.7846i − 1.36165i −0.732448 0.680823i \(-0.761622\pi\)
0.732448 0.680823i \(-0.238378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000i 0.259828i
\(238\) 0 0
\(239\) 22.1244 1.43111 0.715553 0.698559i \(-0.246175\pi\)
0.715553 + 0.698559i \(0.246175\pi\)
\(240\) 0 0
\(241\) 16.5885 1.06856 0.534278 0.845309i \(-0.320583\pi\)
0.534278 + 0.845309i \(0.320583\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 18.3923i − 1.17027i
\(248\) 0 0
\(249\) 10.6603 0.675566
\(250\) 0 0
\(251\) −3.85641 −0.243414 −0.121707 0.992566i \(-0.538837\pi\)
−0.121707 + 0.992566i \(0.538837\pi\)
\(252\) 0 0
\(253\) 6.19615i 0.389549i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.1244i 0.943431i 0.881751 + 0.471716i \(0.156365\pi\)
−0.881751 + 0.471716i \(0.843635\pi\)
\(258\) 0 0
\(259\) −41.9282 −2.60529
\(260\) 0 0
\(261\) −3.19615 −0.197837
\(262\) 0 0
\(263\) − 28.6603i − 1.76727i −0.468179 0.883633i \(-0.655090\pi\)
0.468179 0.883633i \(-0.344910\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.39230i 0.268805i
\(268\) 0 0
\(269\) −1.73205 −0.105605 −0.0528025 0.998605i \(-0.516815\pi\)
−0.0528025 + 0.998605i \(0.516815\pi\)
\(270\) 0 0
\(271\) 2.60770 0.158406 0.0792031 0.996858i \(-0.474762\pi\)
0.0792031 + 0.996858i \(0.474762\pi\)
\(272\) 0 0
\(273\) 30.0526i 1.81886i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 31.8564i 1.91407i 0.289979 + 0.957033i \(0.406352\pi\)
−0.289979 + 0.957033i \(0.593648\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −29.5167 −1.76082 −0.880408 0.474217i \(-0.842731\pi\)
−0.880408 + 0.474217i \(0.842731\pi\)
\(282\) 0 0
\(283\) 3.14359i 0.186867i 0.995626 + 0.0934336i \(0.0297843\pi\)
−0.995626 + 0.0934336i \(0.970216\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 19.0526i 1.12464i
\(288\) 0 0
\(289\) −1.21539 −0.0714935
\(290\) 0 0
\(291\) −4.00000 −0.234484
\(292\) 0 0
\(293\) − 7.33975i − 0.428793i −0.976747 0.214396i \(-0.931222\pi\)
0.976747 0.214396i \(-0.0687784\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 6.19615i − 0.359537i
\(298\) 0 0
\(299\) −6.73205 −0.389325
\(300\) 0 0
\(301\) −15.4641 −0.891336
\(302\) 0 0
\(303\) 13.1962i 0.758099i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.6603i 0.779632i 0.920893 + 0.389816i \(0.127461\pi\)
−0.920893 + 0.389816i \(0.872539\pi\)
\(308\) 0 0
\(309\) 3.07180 0.174748
\(310\) 0 0
\(311\) 9.07180 0.514414 0.257207 0.966356i \(-0.417198\pi\)
0.257207 + 0.966356i \(0.417198\pi\)
\(312\) 0 0
\(313\) − 12.3205i − 0.696396i −0.937421 0.348198i \(-0.886794\pi\)
0.937421 0.348198i \(-0.113206\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 31.5167i − 1.77015i −0.465447 0.885076i \(-0.654106\pi\)
0.465447 0.885076i \(-0.345894\pi\)
\(318\) 0 0
\(319\) −19.8038 −1.10880
\(320\) 0 0
\(321\) 9.19615 0.513279
\(322\) 0 0
\(323\) 11.6603i 0.648794i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 13.6603i − 0.755414i
\(328\) 0 0
\(329\) 12.1962 0.672396
\(330\) 0 0
\(331\) 21.2487 1.16793 0.583967 0.811777i \(-0.301500\pi\)
0.583967 + 0.811777i \(0.301500\pi\)
\(332\) 0 0
\(333\) 9.39230i 0.514695i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 28.9282i − 1.57582i −0.615791 0.787910i \(-0.711163\pi\)
0.615791 0.787910i \(-0.288837\pi\)
\(338\) 0 0
\(339\) −4.80385 −0.260909
\(340\) 0 0
\(341\) 6.19615 0.335540
\(342\) 0 0
\(343\) 26.4641i 1.42893i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 28.3923i − 1.52418i −0.647472 0.762089i \(-0.724174\pi\)
0.647472 0.762089i \(-0.275826\pi\)
\(348\) 0 0
\(349\) 6.46410 0.346015 0.173008 0.984920i \(-0.444651\pi\)
0.173008 + 0.984920i \(0.444651\pi\)
\(350\) 0 0
\(351\) 6.73205 0.359330
\(352\) 0 0
\(353\) 32.5885i 1.73451i 0.497865 + 0.867254i \(0.334117\pi\)
−0.497865 + 0.867254i \(0.665883\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 19.0526i − 1.00837i
\(358\) 0 0
\(359\) 5.26795 0.278032 0.139016 0.990290i \(-0.455606\pi\)
0.139016 + 0.990290i \(0.455606\pi\)
\(360\) 0 0
\(361\) −11.5359 −0.607153
\(362\) 0 0
\(363\) − 27.3923i − 1.43772i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 23.5359i 1.22856i 0.789087 + 0.614282i \(0.210554\pi\)
−0.789087 + 0.614282i \(0.789446\pi\)
\(368\) 0 0
\(369\) 4.26795 0.222181
\(370\) 0 0
\(371\) −47.5885 −2.47067
\(372\) 0 0
\(373\) − 2.53590i − 0.131304i −0.997843 0.0656519i \(-0.979087\pi\)
0.997843 0.0656519i \(-0.0209127\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 21.5167i − 1.10816i
\(378\) 0 0
\(379\) 17.8564 0.917222 0.458611 0.888637i \(-0.348347\pi\)
0.458611 + 0.888637i \(0.348347\pi\)
\(380\) 0 0
\(381\) 13.1244 0.672381
\(382\) 0 0
\(383\) − 7.05256i − 0.360369i −0.983633 0.180184i \(-0.942331\pi\)
0.983633 0.180184i \(-0.0576695\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.46410i 0.176090i
\(388\) 0 0
\(389\) −19.4641 −0.986869 −0.493435 0.869783i \(-0.664259\pi\)
−0.493435 + 0.869783i \(0.664259\pi\)
\(390\) 0 0
\(391\) 4.26795 0.215839
\(392\) 0 0
\(393\) − 5.85641i − 0.295417i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 32.0000i − 1.60603i −0.595956 0.803017i \(-0.703227\pi\)
0.595956 0.803017i \(-0.296773\pi\)
\(398\) 0 0
\(399\) −12.1962 −0.610571
\(400\) 0 0
\(401\) 9.60770 0.479785 0.239893 0.970799i \(-0.422888\pi\)
0.239893 + 0.970799i \(0.422888\pi\)
\(402\) 0 0
\(403\) 6.73205i 0.335347i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 58.1962i 2.88468i
\(408\) 0 0
\(409\) −30.1769 −1.49215 −0.746076 0.665861i \(-0.768065\pi\)
−0.746076 + 0.665861i \(0.768065\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) 14.2679i 0.702080i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.00000i 0.342791i
\(418\) 0 0
\(419\) −21.1244 −1.03199 −0.515996 0.856591i \(-0.672578\pi\)
−0.515996 + 0.856591i \(0.672578\pi\)
\(420\) 0 0
\(421\) −31.5167 −1.53603 −0.768014 0.640433i \(-0.778755\pi\)
−0.768014 + 0.640433i \(0.778755\pi\)
\(422\) 0 0
\(423\) − 2.73205i − 0.132837i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 32.4449i 1.57012i
\(428\) 0 0
\(429\) 41.7128 2.01391
\(430\) 0 0
\(431\) 24.3923 1.17494 0.587468 0.809247i \(-0.300125\pi\)
0.587468 + 0.809247i \(0.300125\pi\)
\(432\) 0 0
\(433\) − 8.60770i − 0.413659i −0.978377 0.206830i \(-0.933685\pi\)
0.978377 0.206830i \(-0.0663146\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.73205i − 0.130692i
\(438\) 0 0
\(439\) 22.7846 1.08745 0.543725 0.839263i \(-0.317013\pi\)
0.543725 + 0.839263i \(0.317013\pi\)
\(440\) 0 0
\(441\) 12.9282 0.615629
\(442\) 0 0
\(443\) − 12.1962i − 0.579457i −0.957109 0.289728i \(-0.906435\pi\)
0.957109 0.289728i \(-0.0935650\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 16.1962i 0.766052i
\(448\) 0 0
\(449\) −7.73205 −0.364898 −0.182449 0.983215i \(-0.558402\pi\)
−0.182449 + 0.983215i \(0.558402\pi\)
\(450\) 0 0
\(451\) 26.4449 1.24524
\(452\) 0 0
\(453\) − 18.3923i − 0.864146i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.5359i 0.913851i 0.889505 + 0.456925i \(0.151049\pi\)
−0.889505 + 0.456925i \(0.848951\pi\)
\(458\) 0 0
\(459\) −4.26795 −0.199211
\(460\) 0 0
\(461\) 5.32051 0.247801 0.123900 0.992295i \(-0.460460\pi\)
0.123900 + 0.992295i \(0.460460\pi\)
\(462\) 0 0
\(463\) 20.5885i 0.956827i 0.878135 + 0.478413i \(0.158788\pi\)
−0.878135 + 0.478413i \(0.841212\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 29.4449i − 1.36255i −0.732030 0.681273i \(-0.761427\pi\)
0.732030 0.681273i \(-0.238573\pi\)
\(468\) 0 0
\(469\) −22.3205 −1.03067
\(470\) 0 0
\(471\) 22.3205 1.02847
\(472\) 0 0
\(473\) 21.4641i 0.986920i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.6603i 0.488100i
\(478\) 0 0
\(479\) −16.9808 −0.775871 −0.387935 0.921687i \(-0.626812\pi\)
−0.387935 + 0.921687i \(0.626812\pi\)
\(480\) 0 0
\(481\) −63.2295 −2.88302
\(482\) 0 0
\(483\) 4.46410i 0.203124i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 0.732051i − 0.0331724i −0.999862 0.0165862i \(-0.994720\pi\)
0.999862 0.0165862i \(-0.00527979\pi\)
\(488\) 0 0
\(489\) 23.8564 1.07882
\(490\) 0 0
\(491\) −19.0526 −0.859830 −0.429915 0.902869i \(-0.641456\pi\)
−0.429915 + 0.902869i \(0.641456\pi\)
\(492\) 0 0
\(493\) 13.6410i 0.614360i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 45.1962i − 2.02732i
\(498\) 0 0
\(499\) 21.5359 0.964079 0.482040 0.876149i \(-0.339896\pi\)
0.482040 + 0.876149i \(0.339896\pi\)
\(500\) 0 0
\(501\) 16.1962 0.723591
\(502\) 0 0
\(503\) 6.80385i 0.303369i 0.988429 + 0.151684i \(0.0484697\pi\)
−0.988429 + 0.151684i \(0.951530\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 32.3205i 1.43540i
\(508\) 0 0
\(509\) −8.78461 −0.389371 −0.194685 0.980866i \(-0.562369\pi\)
−0.194685 + 0.980866i \(0.562369\pi\)
\(510\) 0 0
\(511\) −65.7654 −2.90929
\(512\) 0 0
\(513\) 2.73205i 0.120623i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 16.9282i − 0.744502i
\(518\) 0 0
\(519\) −9.85641 −0.432648
\(520\) 0 0
\(521\) −16.0526 −0.703275 −0.351638 0.936136i \(-0.614375\pi\)
−0.351638 + 0.936136i \(0.614375\pi\)
\(522\) 0 0
\(523\) − 4.78461i − 0.209216i −0.994514 0.104608i \(-0.966641\pi\)
0.994514 0.104608i \(-0.0333589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.26795i − 0.185915i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 3.19615 0.138701
\(532\) 0 0
\(533\) 28.7321i 1.24452i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.53590i 0.195738i
\(538\) 0 0
\(539\) 80.1051 3.45037
\(540\) 0 0
\(541\) −1.07180 −0.0460801 −0.0230401 0.999735i \(-0.507335\pi\)
−0.0230401 + 0.999735i \(0.507335\pi\)
\(542\) 0 0
\(543\) − 8.39230i − 0.360148i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 10.9282i − 0.467256i −0.972326 0.233628i \(-0.924940\pi\)
0.972326 0.233628i \(-0.0750598\pi\)
\(548\) 0 0
\(549\) 7.26795 0.310189
\(550\) 0 0
\(551\) 8.73205 0.371998
\(552\) 0 0
\(553\) 17.8564i 0.759332i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 35.9808i − 1.52455i −0.647251 0.762277i \(-0.724081\pi\)
0.647251 0.762277i \(-0.275919\pi\)
\(558\) 0 0
\(559\) −23.3205 −0.986352
\(560\) 0 0
\(561\) −26.4449 −1.11650
\(562\) 0 0
\(563\) − 15.5885i − 0.656975i −0.944508 0.328488i \(-0.893461\pi\)
0.944508 0.328488i \(-0.106539\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 4.46410i − 0.187475i
\(568\) 0 0
\(569\) −7.46410 −0.312911 −0.156456 0.987685i \(-0.550007\pi\)
−0.156456 + 0.987685i \(0.550007\pi\)
\(570\) 0 0
\(571\) 6.58846 0.275718 0.137859 0.990452i \(-0.455978\pi\)
0.137859 + 0.990452i \(0.455978\pi\)
\(572\) 0 0
\(573\) − 16.1962i − 0.676604i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 24.7846i 1.03180i 0.856650 + 0.515898i \(0.172542\pi\)
−0.856650 + 0.515898i \(0.827458\pi\)
\(578\) 0 0
\(579\) 3.60770 0.149931
\(580\) 0 0
\(581\) 47.5885 1.97430
\(582\) 0 0
\(583\) 66.0526i 2.73562i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.0718i 0.456982i 0.973546 + 0.228491i \(0.0733791\pi\)
−0.973546 + 0.228491i \(0.926621\pi\)
\(588\) 0 0
\(589\) −2.73205 −0.112572
\(590\) 0 0
\(591\) 0.535898 0.0220439
\(592\) 0 0
\(593\) − 34.7321i − 1.42627i −0.701024 0.713137i \(-0.747274\pi\)
0.701024 0.713137i \(-0.252726\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 11.4641i − 0.469194i
\(598\) 0 0
\(599\) −24.3923 −0.996643 −0.498321 0.866992i \(-0.666050\pi\)
−0.498321 + 0.866992i \(0.666050\pi\)
\(600\) 0 0
\(601\) −27.3923 −1.11736 −0.558678 0.829385i \(-0.688691\pi\)
−0.558678 + 0.829385i \(0.688691\pi\)
\(602\) 0 0
\(603\) 5.00000i 0.203616i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 22.9808i − 0.932760i −0.884584 0.466380i \(-0.845558\pi\)
0.884584 0.466380i \(-0.154442\pi\)
\(608\) 0 0
\(609\) −14.2679 −0.578166
\(610\) 0 0
\(611\) 18.3923 0.744073
\(612\) 0 0
\(613\) 13.7128i 0.553855i 0.960891 + 0.276928i \(0.0893162\pi\)
−0.960891 + 0.276928i \(0.910684\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.1244i 1.45431i 0.686472 + 0.727156i \(0.259158\pi\)
−0.686472 + 0.727156i \(0.740842\pi\)
\(618\) 0 0
\(619\) 2.92820 0.117694 0.0588472 0.998267i \(-0.481258\pi\)
0.0588472 + 0.998267i \(0.481258\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 19.6077i 0.785566i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 16.9282i 0.676047i
\(628\) 0 0
\(629\) 40.0859 1.59833
\(630\) 0 0
\(631\) −44.8372 −1.78494 −0.892470 0.451107i \(-0.851029\pi\)
−0.892470 + 0.451107i \(0.851029\pi\)
\(632\) 0 0
\(633\) 4.07180i 0.161839i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 87.0333i 3.44839i
\(638\) 0 0
\(639\) −10.1244 −0.400513
\(640\) 0 0
\(641\) −28.0526 −1.10801 −0.554005 0.832514i \(-0.686901\pi\)
−0.554005 + 0.832514i \(0.686901\pi\)
\(642\) 0 0
\(643\) − 8.46410i − 0.333792i −0.985975 0.166896i \(-0.946626\pi\)
0.985975 0.166896i \(-0.0533743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.2679i 0.914757i 0.889272 + 0.457379i \(0.151212\pi\)
−0.889272 + 0.457379i \(0.848788\pi\)
\(648\) 0 0
\(649\) 19.8038 0.777369
\(650\) 0 0
\(651\) 4.46410 0.174962
\(652\) 0 0
\(653\) 39.3731i 1.54079i 0.637569 + 0.770394i \(0.279940\pi\)
−0.637569 + 0.770394i \(0.720060\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 14.7321i 0.574752i
\(658\) 0 0
\(659\) −8.44486 −0.328965 −0.164483 0.986380i \(-0.552595\pi\)
−0.164483 + 0.986380i \(0.552595\pi\)
\(660\) 0 0
\(661\) 35.4641 1.37939 0.689697 0.724098i \(-0.257744\pi\)
0.689697 + 0.724098i \(0.257744\pi\)
\(662\) 0 0
\(663\) − 28.7321i − 1.11586i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 3.19615i − 0.123756i
\(668\) 0 0
\(669\) 14.0000 0.541271
\(670\) 0 0
\(671\) 45.0333 1.73849
\(672\) 0 0
\(673\) 37.9090i 1.46128i 0.682761 + 0.730642i \(0.260779\pi\)
−0.682761 + 0.730642i \(0.739221\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.1962i 1.19897i 0.800388 + 0.599483i \(0.204627\pi\)
−0.800388 + 0.599483i \(0.795373\pi\)
\(678\) 0 0
\(679\) −17.8564 −0.685266
\(680\) 0 0
\(681\) 9.07180 0.347632
\(682\) 0 0
\(683\) − 10.7321i − 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658252\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.5359i 0.401970i
\(688\) 0 0
\(689\) −71.7654 −2.73404
\(690\) 0 0
\(691\) −7.46410 −0.283948 −0.141974 0.989870i \(-0.545345\pi\)
−0.141974 + 0.989870i \(0.545345\pi\)
\(692\) 0 0
\(693\) − 27.6603i − 1.05073i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 18.2154i − 0.689957i
\(698\) 0 0
\(699\) −20.7846 −0.786146
\(700\) 0 0
\(701\) 12.5885 0.475459 0.237730 0.971331i \(-0.423597\pi\)
0.237730 + 0.971331i \(0.423597\pi\)
\(702\) 0 0
\(703\) − 25.6603i − 0.967795i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 58.9090i 2.21550i
\(708\) 0 0
\(709\) −6.87564 −0.258220 −0.129110 0.991630i \(-0.541212\pi\)
−0.129110 + 0.991630i \(0.541212\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 1.00000i 0.0374503i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 22.1244i − 0.826249i
\(718\) 0 0
\(719\) −17.7321 −0.661294 −0.330647 0.943755i \(-0.607267\pi\)
−0.330647 + 0.943755i \(0.607267\pi\)
\(720\) 0 0
\(721\) 13.7128 0.510692
\(722\) 0 0
\(723\) − 16.5885i − 0.616931i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 29.0000i − 1.07555i −0.843088 0.537775i \(-0.819265\pi\)
0.843088 0.537775i \(-0.180735\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 14.7846 0.546829
\(732\) 0 0
\(733\) − 53.6410i − 1.98128i −0.136515 0.990638i \(-0.543590\pi\)
0.136515 0.990638i \(-0.456410\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 30.9808i 1.14119i
\(738\) 0 0
\(739\) 36.3205 1.33607 0.668036 0.744129i \(-0.267135\pi\)
0.668036 + 0.744129i \(0.267135\pi\)
\(740\) 0 0
\(741\) −18.3923 −0.675658
\(742\) 0 0
\(743\) 9.85641i 0.361596i 0.983520 + 0.180798i \(0.0578681\pi\)
−0.983520 + 0.180798i \(0.942132\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 10.6603i − 0.390038i
\(748\) 0 0
\(749\) 41.0526 1.50003
\(750\) 0 0
\(751\) −24.8756 −0.907725 −0.453863 0.891072i \(-0.649954\pi\)
−0.453863 + 0.891072i \(0.649954\pi\)
\(752\) 0 0
\(753\) 3.85641i 0.140535i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 50.8564i − 1.84841i −0.381900 0.924204i \(-0.624730\pi\)
0.381900 0.924204i \(-0.375270\pi\)
\(758\) 0 0
\(759\) 6.19615 0.224906
\(760\) 0 0
\(761\) −5.19615 −0.188360 −0.0941802 0.995555i \(-0.530023\pi\)
−0.0941802 + 0.995555i \(0.530023\pi\)
\(762\) 0 0
\(763\) − 60.9808i − 2.20765i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.5167i 0.776922i
\(768\) 0 0
\(769\) −7.66025 −0.276236 −0.138118 0.990416i \(-0.544105\pi\)
−0.138118 + 0.990416i \(0.544105\pi\)
\(770\) 0 0
\(771\) 15.1244 0.544690
\(772\) 0 0
\(773\) − 45.0333i − 1.61974i −0.586612 0.809868i \(-0.699539\pi\)
0.586612 0.809868i \(-0.300461\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 41.9282i 1.50417i
\(778\) 0 0
\(779\) −11.6603 −0.417772
\(780\) 0 0
\(781\) −62.7321 −2.24473
\(782\) 0 0
\(783\) 3.19615i 0.114221i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 24.6077i − 0.877170i −0.898690 0.438585i \(-0.855480\pi\)
0.898690 0.438585i \(-0.144520\pi\)
\(788\) 0 0
\(789\) −28.6603 −1.02033
\(790\) 0 0
\(791\) −21.4449 −0.762492
\(792\) 0 0
\(793\) 48.9282i 1.73749i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 7.73205i − 0.273883i −0.990579 0.136942i \(-0.956273\pi\)
0.990579 0.136942i \(-0.0437273\pi\)
\(798\) 0 0
\(799\) −11.6603 −0.412510
\(800\) 0 0
\(801\) 4.39230 0.155194
\(802\) 0 0
\(803\) 91.2820i 3.22127i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.73205i 0.0609711i
\(808\) 0 0
\(809\) 12.8038 0.450159 0.225080 0.974340i \(-0.427736\pi\)
0.225080 + 0.974340i \(0.427736\pi\)
\(810\) 0 0
\(811\) −20.0718 −0.704816 −0.352408 0.935846i \(-0.614637\pi\)
−0.352408 + 0.935846i \(0.614637\pi\)
\(812\) 0 0
\(813\) − 2.60770i − 0.0914559i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 9.46410i − 0.331107i
\(818\) 0 0
\(819\) 30.0526 1.05012
\(820\) 0 0
\(821\) 25.8564 0.902395 0.451197 0.892424i \(-0.350997\pi\)
0.451197 + 0.892424i \(0.350997\pi\)
\(822\) 0 0
\(823\) − 20.7846i − 0.724506i −0.932080 0.362253i \(-0.882008\pi\)
0.932080 0.362253i \(-0.117992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 4.51666i − 0.157060i −0.996912 0.0785298i \(-0.974977\pi\)
0.996912 0.0785298i \(-0.0250226\pi\)
\(828\) 0 0
\(829\) 41.4974 1.44127 0.720633 0.693317i \(-0.243852\pi\)
0.720633 + 0.693317i \(0.243852\pi\)
\(830\) 0 0
\(831\) 31.8564 1.10509
\(832\) 0 0
\(833\) − 55.1769i − 1.91177i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 1.00000i − 0.0345651i
\(838\) 0 0
\(839\) −42.0000 −1.45000 −0.725001 0.688748i \(-0.758161\pi\)
−0.725001 + 0.688748i \(0.758161\pi\)
\(840\) 0 0
\(841\) −18.7846 −0.647745
\(842\) 0 0
\(843\) 29.5167i 1.01661i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 122.282i − 4.20166i
\(848\) 0 0
\(849\) 3.14359 0.107888
\(850\) 0 0
\(851\) −9.39230 −0.321964
\(852\) 0 0
\(853\) − 24.5359i − 0.840093i −0.907503 0.420047i \(-0.862014\pi\)
0.907503 0.420047i \(-0.137986\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.7128i 0.741696i 0.928694 + 0.370848i \(0.120933\pi\)
−0.928694 + 0.370848i \(0.879067\pi\)
\(858\) 0 0
\(859\) 19.0000 0.648272 0.324136 0.946011i \(-0.394927\pi\)
0.324136 + 0.946011i \(0.394927\pi\)
\(860\) 0 0
\(861\) 19.0526 0.649309
\(862\) 0 0
\(863\) − 51.9615i − 1.76879i −0.466738 0.884395i \(-0.654571\pi\)
0.466738 0.884395i \(-0.345429\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.21539i 0.0412768i
\(868\) 0 0
\(869\) 24.7846 0.840760
\(870\) 0 0
\(871\) −33.6603 −1.14053
\(872\) 0 0
\(873\) 4.00000i 0.135379i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.535898i 0.0180960i 0.999959 + 0.00904800i \(0.00288011\pi\)
−0.999959 + 0.00904800i \(0.997120\pi\)
\(878\) 0 0
\(879\) −7.33975 −0.247563
\(880\) 0 0
\(881\) 46.0526 1.55155 0.775775 0.631010i \(-0.217359\pi\)
0.775775 + 0.631010i \(0.217359\pi\)
\(882\) 0 0
\(883\) − 28.3397i − 0.953708i −0.878982 0.476854i \(-0.841777\pi\)
0.878982 0.476854i \(-0.158223\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 17.3205i − 0.581566i −0.956789 0.290783i \(-0.906084\pi\)
0.956789 0.290783i \(-0.0939157\pi\)
\(888\) 0 0
\(889\) 58.5885 1.96499
\(890\) 0 0
\(891\) −6.19615 −0.207579
\(892\) 0 0
\(893\) 7.46410i 0.249777i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.73205i 0.224777i
\(898\) 0 0
\(899\) −3.19615 −0.106598
\(900\) 0 0
\(901\) 45.4974 1.51574
\(902\) 0 0
\(903\) 15.4641i 0.514613i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 6.07180i − 0.201611i −0.994906 0.100805i \(-0.967858\pi\)
0.994906 0.100805i \(-0.0321419\pi\)
\(908\) 0 0
\(909\) 13.1962 0.437689
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) − 66.0526i − 2.18602i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 26.1436i − 0.863338i
\(918\) 0 0
\(919\) 9.07180 0.299251 0.149625 0.988743i \(-0.452193\pi\)
0.149625 + 0.988743i \(0.452193\pi\)
\(920\) 0 0
\(921\) 13.6603 0.450121
\(922\) 0 0
\(923\) − 68.1577i − 2.24344i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 3.07180i − 0.100891i
\(928\) 0 0
\(929\) 34.5167 1.13245 0.566227 0.824249i \(-0.308402\pi\)
0.566227 + 0.824249i \(0.308402\pi\)
\(930\) 0 0
\(931\) −35.3205 −1.15758
\(932\) 0 0
\(933\) − 9.07180i − 0.296997i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 18.9282i − 0.618357i −0.951004 0.309179i \(-0.899946\pi\)
0.951004 0.309179i \(-0.100054\pi\)
\(938\) 0 0
\(939\) −12.3205 −0.402065
\(940\) 0 0
\(941\) 11.8038 0.384794 0.192397 0.981317i \(-0.438374\pi\)
0.192397 + 0.981317i \(0.438374\pi\)
\(942\) 0 0
\(943\) 4.26795i 0.138984i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.3205i 1.40773i 0.710335 + 0.703864i \(0.248543\pi\)
−0.710335 + 0.703864i \(0.751457\pi\)
\(948\) 0 0
\(949\) −99.1769 −3.21942
\(950\) 0 0
\(951\) −31.5167 −1.02200
\(952\) 0 0
\(953\) 29.7128i 0.962492i 0.876585 + 0.481246i \(0.159816\pi\)
−0.876585 + 0.481246i \(0.840184\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 19.8038i 0.640167i
\(958\) 0 0
\(959\) 53.5692 1.72984
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) − 9.19615i − 0.296342i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 41.1244i 1.32247i 0.750179 + 0.661235i \(0.229967\pi\)
−0.750179 + 0.661235i \(0.770033\pi\)
\(968\) 0 0
\(969\) 11.6603 0.374581
\(970\) 0 0
\(971\) −12.6795 −0.406904 −0.203452 0.979085i \(-0.565216\pi\)
−0.203452 + 0.979085i \(0.565216\pi\)
\(972\) 0 0
\(973\) 31.2487i 1.00179i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 34.1244i − 1.09173i −0.837872 0.545867i \(-0.816200\pi\)
0.837872 0.545867i \(-0.183800\pi\)
\(978\) 0 0
\(979\) 27.2154 0.869808
\(980\) 0 0
\(981\) −13.6603 −0.436138
\(982\) 0 0
\(983\) 0.803848i 0.0256388i 0.999918 + 0.0128194i \(0.00408065\pi\)
−0.999918 + 0.0128194i \(0.995919\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 12.1962i − 0.388208i
\(988\) 0 0
\(989\) −3.46410 −0.110152
\(990\) 0 0
\(991\) −26.7128 −0.848560 −0.424280 0.905531i \(-0.639473\pi\)
−0.424280 + 0.905531i \(0.639473\pi\)
\(992\) 0 0
\(993\) − 21.2487i − 0.674307i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 46.5359i 1.47381i 0.675998 + 0.736903i \(0.263713\pi\)
−0.675998 + 0.736903i \(0.736287\pi\)
\(998\) 0 0
\(999\) 9.39230 0.297159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6900.2.f.i.6349.1 4
5.2 odd 4 1380.2.a.h.1.2 2
5.3 odd 4 6900.2.a.s.1.1 2
5.4 even 2 inner 6900.2.f.i.6349.4 4
15.2 even 4 4140.2.a.o.1.2 2
20.7 even 4 5520.2.a.bp.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.2.a.h.1.2 2 5.2 odd 4
4140.2.a.o.1.2 2 15.2 even 4
5520.2.a.bp.1.1 2 20.7 even 4
6900.2.a.s.1.1 2 5.3 odd 4
6900.2.f.i.6349.1 4 1.1 even 1 trivial
6900.2.f.i.6349.4 4 5.4 even 2 inner