Defining parameters
Level: | \( N \) | \(=\) | \( 6864 = 2^{4} \cdot 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6864.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 58 \) | ||
Sturm bound: | \(2688\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6864))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1368 | 120 | 1248 |
Cusp forms | 1321 | 120 | 1201 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(73\) | \(7\) | \(66\) | \(71\) | \(7\) | \(64\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(98\) | \(9\) | \(89\) | \(95\) | \(9\) | \(86\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(92\) | \(8\) | \(84\) | \(89\) | \(8\) | \(81\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(79\) | \(6\) | \(73\) | \(76\) | \(6\) | \(70\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(83\) | \(8\) | \(75\) | \(80\) | \(8\) | \(72\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(88\) | \(6\) | \(82\) | \(85\) | \(6\) | \(79\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(94\) | \(7\) | \(87\) | \(91\) | \(7\) | \(84\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(77\) | \(9\) | \(68\) | \(74\) | \(9\) | \(65\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(84\) | \(8\) | \(76\) | \(81\) | \(8\) | \(73\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(87\) | \(6\) | \(81\) | \(84\) | \(6\) | \(78\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(85\) | \(7\) | \(78\) | \(82\) | \(7\) | \(75\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(86\) | \(9\) | \(77\) | \(83\) | \(9\) | \(74\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(82\) | \(7\) | \(75\) | \(79\) | \(7\) | \(72\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(89\) | \(9\) | \(80\) | \(86\) | \(9\) | \(77\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(91\) | \(8\) | \(83\) | \(88\) | \(8\) | \(80\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(80\) | \(6\) | \(74\) | \(77\) | \(6\) | \(71\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(668\) | \(52\) | \(616\) | \(645\) | \(52\) | \(593\) | \(23\) | \(0\) | \(23\) | ||||||
Minus space | \(-\) | \(700\) | \(68\) | \(632\) | \(676\) | \(68\) | \(608\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6864))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6864))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6864)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(286))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(429))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(528))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(572))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(858))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1716))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3432))\)\(^{\oplus 2}\)