Properties

Label 6864.2.a.u
Level $6864$
Weight $2$
Character orbit 6864.a
Self dual yes
Analytic conductor $54.809$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6864 = 2^{4} \cdot 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6864.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(54.8093159474\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 858)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - q^{5} + 3q^{7} + q^{9} + O(q^{10}) \) \( q + q^{3} - q^{5} + 3q^{7} + q^{9} - q^{11} - q^{13} - q^{15} - 4q^{17} + 2q^{19} + 3q^{21} + q^{23} - 4q^{25} + q^{27} - 9q^{29} + 4q^{31} - q^{33} - 3q^{35} - 6q^{37} - q^{39} + q^{41} - 11q^{43} - q^{45} + 2q^{49} - 4q^{51} - 10q^{53} + q^{55} + 2q^{57} + 3q^{59} + 5q^{61} + 3q^{63} + q^{65} - 3q^{67} + q^{69} - 10q^{71} + 9q^{73} - 4q^{75} - 3q^{77} - 10q^{79} + q^{81} + 6q^{83} + 4q^{85} - 9q^{87} - 8q^{89} - 3q^{91} + 4q^{93} - 2q^{95} + 2q^{97} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −1.00000 0 3.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(11\) \(1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6864.2.a.u 1
4.b odd 2 1 858.2.a.g 1
12.b even 2 1 2574.2.a.i 1
44.c even 2 1 9438.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
858.2.a.g 1 4.b odd 2 1
2574.2.a.i 1 12.b even 2 1
6864.2.a.u 1 1.a even 1 1 trivial
9438.2.a.d 1 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6864))\):

\( T_{5} + 1 \)
\( T_{7} - 3 \)
\( T_{17} + 4 \)
\( T_{19} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -1 + T \)
$5$ \( 1 + T \)
$7$ \( -3 + T \)
$11$ \( 1 + T \)
$13$ \( 1 + T \)
$17$ \( 4 + T \)
$19$ \( -2 + T \)
$23$ \( -1 + T \)
$29$ \( 9 + T \)
$31$ \( -4 + T \)
$37$ \( 6 + T \)
$41$ \( -1 + T \)
$43$ \( 11 + T \)
$47$ \( T \)
$53$ \( 10 + T \)
$59$ \( -3 + T \)
$61$ \( -5 + T \)
$67$ \( 3 + T \)
$71$ \( 10 + T \)
$73$ \( -9 + T \)
$79$ \( 10 + T \)
$83$ \( -6 + T \)
$89$ \( 8 + T \)
$97$ \( -2 + T \)
show more
show less