Properties

Label 6845.2.a.g.1.5
Level $6845$
Weight $2$
Character 6845.1
Self dual yes
Analytic conductor $54.658$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6845,2,Mod(1,6845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6845 = 5 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,6,-5,2,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6576001836\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.78948\) of defining polynomial
Character \(\chi\) \(=\) 6845.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.66356 q^{2} -0.671838 q^{3} +5.09455 q^{4} -1.00000 q^{5} -1.78948 q^{6} -0.305070 q^{7} +8.24252 q^{8} -2.54863 q^{9} -2.66356 q^{10} +1.85927 q^{11} -3.42271 q^{12} -4.78120 q^{13} -0.812573 q^{14} +0.671838 q^{15} +11.7653 q^{16} +2.54592 q^{17} -6.78844 q^{18} -8.13969 q^{19} -5.09455 q^{20} +0.204958 q^{21} +4.95226 q^{22} -6.67080 q^{23} -5.53764 q^{24} +1.00000 q^{25} -12.7350 q^{26} +3.72778 q^{27} -1.55420 q^{28} -0.374855 q^{29} +1.78948 q^{30} +4.02477 q^{31} +14.8527 q^{32} -1.24913 q^{33} +6.78120 q^{34} +0.305070 q^{35} -12.9841 q^{36} -21.6806 q^{38} +3.21219 q^{39} -8.24252 q^{40} +3.06337 q^{41} +0.545917 q^{42} -11.5328 q^{43} +9.47212 q^{44} +2.54863 q^{45} -17.7681 q^{46} +4.13587 q^{47} -7.90441 q^{48} -6.90693 q^{49} +2.66356 q^{50} -1.71044 q^{51} -24.3581 q^{52} -2.51559 q^{53} +9.92917 q^{54} -1.85927 q^{55} -2.51455 q^{56} +5.46855 q^{57} -0.998448 q^{58} +2.62947 q^{59} +3.42271 q^{60} +2.92264 q^{61} +10.7202 q^{62} +0.777512 q^{63} +16.0303 q^{64} +4.78120 q^{65} -3.32712 q^{66} -8.57520 q^{67} +12.9703 q^{68} +4.48169 q^{69} +0.812573 q^{70} -14.7798 q^{71} -21.0072 q^{72} -8.32984 q^{73} -0.671838 q^{75} -41.4681 q^{76} -0.567206 q^{77} +8.55587 q^{78} -8.41618 q^{79} -11.7653 q^{80} +5.14143 q^{81} +8.15947 q^{82} +10.8444 q^{83} +1.04417 q^{84} -2.54592 q^{85} -30.7182 q^{86} +0.251842 q^{87} +15.3250 q^{88} -17.7053 q^{89} +6.78844 q^{90} +1.45860 q^{91} -33.9847 q^{92} -2.70399 q^{93} +11.0161 q^{94} +8.13969 q^{95} -9.97858 q^{96} +13.6612 q^{97} -18.3970 q^{98} -4.73859 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} + 6 q^{4} - 5 q^{5} + 2 q^{6} + 7 q^{7} + 6 q^{8} + 2 q^{9} + 7 q^{11} - 2 q^{13} - 4 q^{14} + q^{15} + 8 q^{16} + 8 q^{17} + 6 q^{18} - 14 q^{19} - 6 q^{20} - 9 q^{21} - 2 q^{22} - 2 q^{23}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.66356 1.88342 0.941711 0.336424i \(-0.109218\pi\)
0.941711 + 0.336424i \(0.109218\pi\)
\(3\) −0.671838 −0.387886 −0.193943 0.981013i \(-0.562128\pi\)
−0.193943 + 0.981013i \(0.562128\pi\)
\(4\) 5.09455 2.54728
\(5\) −1.00000 −0.447214
\(6\) −1.78948 −0.730552
\(7\) −0.305070 −0.115306 −0.0576528 0.998337i \(-0.518362\pi\)
−0.0576528 + 0.998337i \(0.518362\pi\)
\(8\) 8.24252 2.91417
\(9\) −2.54863 −0.849545
\(10\) −2.66356 −0.842292
\(11\) 1.85927 0.560590 0.280295 0.959914i \(-0.409568\pi\)
0.280295 + 0.959914i \(0.409568\pi\)
\(12\) −3.42271 −0.988052
\(13\) −4.78120 −1.32607 −0.663033 0.748590i \(-0.730731\pi\)
−0.663033 + 0.748590i \(0.730731\pi\)
\(14\) −0.812573 −0.217169
\(15\) 0.671838 0.173468
\(16\) 11.7653 2.94134
\(17\) 2.54592 0.617476 0.308738 0.951147i \(-0.400093\pi\)
0.308738 + 0.951147i \(0.400093\pi\)
\(18\) −6.78844 −1.60005
\(19\) −8.13969 −1.86737 −0.933687 0.358091i \(-0.883428\pi\)
−0.933687 + 0.358091i \(0.883428\pi\)
\(20\) −5.09455 −1.13918
\(21\) 0.204958 0.0447254
\(22\) 4.95226 1.05583
\(23\) −6.67080 −1.39096 −0.695479 0.718547i \(-0.744808\pi\)
−0.695479 + 0.718547i \(0.744808\pi\)
\(24\) −5.53764 −1.13037
\(25\) 1.00000 0.200000
\(26\) −12.7350 −2.49754
\(27\) 3.72778 0.717412
\(28\) −1.55420 −0.293715
\(29\) −0.374855 −0.0696088 −0.0348044 0.999394i \(-0.511081\pi\)
−0.0348044 + 0.999394i \(0.511081\pi\)
\(30\) 1.78948 0.326713
\(31\) 4.02477 0.722869 0.361435 0.932397i \(-0.382287\pi\)
0.361435 + 0.932397i \(0.382287\pi\)
\(32\) 14.8527 2.62560
\(33\) −1.24913 −0.217445
\(34\) 6.78120 1.16297
\(35\) 0.305070 0.0515663
\(36\) −12.9841 −2.16402
\(37\) 0 0
\(38\) −21.6806 −3.51705
\(39\) 3.21219 0.514363
\(40\) −8.24252 −1.30326
\(41\) 3.06337 0.478418 0.239209 0.970968i \(-0.423112\pi\)
0.239209 + 0.970968i \(0.423112\pi\)
\(42\) 0.545917 0.0842368
\(43\) −11.5328 −1.75873 −0.879366 0.476146i \(-0.842033\pi\)
−0.879366 + 0.476146i \(0.842033\pi\)
\(44\) 9.47212 1.42798
\(45\) 2.54863 0.379928
\(46\) −17.7681 −2.61976
\(47\) 4.13587 0.603279 0.301640 0.953422i \(-0.402466\pi\)
0.301640 + 0.953422i \(0.402466\pi\)
\(48\) −7.90441 −1.14090
\(49\) −6.90693 −0.986705
\(50\) 2.66356 0.376684
\(51\) −1.71044 −0.239510
\(52\) −24.3581 −3.37786
\(53\) −2.51559 −0.345543 −0.172771 0.984962i \(-0.555272\pi\)
−0.172771 + 0.984962i \(0.555272\pi\)
\(54\) 9.92917 1.35119
\(55\) −1.85927 −0.250703
\(56\) −2.51455 −0.336020
\(57\) 5.46855 0.724328
\(58\) −0.998448 −0.131103
\(59\) 2.62947 0.342328 0.171164 0.985243i \(-0.445247\pi\)
0.171164 + 0.985243i \(0.445247\pi\)
\(60\) 3.42271 0.441870
\(61\) 2.92264 0.374205 0.187103 0.982340i \(-0.440090\pi\)
0.187103 + 0.982340i \(0.440090\pi\)
\(62\) 10.7202 1.36147
\(63\) 0.777512 0.0979573
\(64\) 16.0303 2.00378
\(65\) 4.78120 0.593035
\(66\) −3.32712 −0.409540
\(67\) −8.57520 −1.04763 −0.523814 0.851833i \(-0.675491\pi\)
−0.523814 + 0.851833i \(0.675491\pi\)
\(68\) 12.9703 1.57288
\(69\) 4.48169 0.539533
\(70\) 0.812573 0.0971210
\(71\) −14.7798 −1.75404 −0.877021 0.480452i \(-0.840473\pi\)
−0.877021 + 0.480452i \(0.840473\pi\)
\(72\) −21.0072 −2.47572
\(73\) −8.32984 −0.974934 −0.487467 0.873142i \(-0.662079\pi\)
−0.487467 + 0.873142i \(0.662079\pi\)
\(74\) 0 0
\(75\) −0.671838 −0.0775772
\(76\) −41.4681 −4.75671
\(77\) −0.567206 −0.0646392
\(78\) 8.55587 0.968761
\(79\) −8.41618 −0.946894 −0.473447 0.880822i \(-0.656990\pi\)
−0.473447 + 0.880822i \(0.656990\pi\)
\(80\) −11.7653 −1.31541
\(81\) 5.14143 0.571271
\(82\) 8.15947 0.901063
\(83\) 10.8444 1.19033 0.595163 0.803605i \(-0.297088\pi\)
0.595163 + 0.803605i \(0.297088\pi\)
\(84\) 1.04417 0.113928
\(85\) −2.54592 −0.276143
\(86\) −30.7182 −3.31243
\(87\) 0.251842 0.0270003
\(88\) 15.3250 1.63365
\(89\) −17.7053 −1.87676 −0.938380 0.345605i \(-0.887674\pi\)
−0.938380 + 0.345605i \(0.887674\pi\)
\(90\) 6.78844 0.715564
\(91\) 1.45860 0.152903
\(92\) −33.9847 −3.54315
\(93\) −2.70399 −0.280391
\(94\) 11.0161 1.13623
\(95\) 8.13969 0.835115
\(96\) −9.97858 −1.01843
\(97\) 13.6612 1.38709 0.693544 0.720415i \(-0.256048\pi\)
0.693544 + 0.720415i \(0.256048\pi\)
\(98\) −18.3970 −1.85838
\(99\) −4.73859 −0.476246
\(100\) 5.09455 0.509455
\(101\) 2.57981 0.256701 0.128350 0.991729i \(-0.459032\pi\)
0.128350 + 0.991729i \(0.459032\pi\)
\(102\) −4.55587 −0.451098
\(103\) 8.31211 0.819017 0.409509 0.912306i \(-0.365700\pi\)
0.409509 + 0.912306i \(0.365700\pi\)
\(104\) −39.4092 −3.86439
\(105\) −0.204958 −0.0200018
\(106\) −6.70042 −0.650803
\(107\) −10.2766 −0.993477 −0.496739 0.867900i \(-0.665469\pi\)
−0.496739 + 0.867900i \(0.665469\pi\)
\(108\) 18.9914 1.82745
\(109\) 19.7515 1.89185 0.945926 0.324384i \(-0.105157\pi\)
0.945926 + 0.324384i \(0.105157\pi\)
\(110\) −4.95226 −0.472180
\(111\) 0 0
\(112\) −3.58926 −0.339153
\(113\) 0.193052 0.0181608 0.00908039 0.999959i \(-0.497110\pi\)
0.00908039 + 0.999959i \(0.497110\pi\)
\(114\) 14.5658 1.36421
\(115\) 6.67080 0.622055
\(116\) −1.90972 −0.177313
\(117\) 12.1855 1.12655
\(118\) 7.00376 0.644748
\(119\) −0.776683 −0.0711984
\(120\) 5.53764 0.505515
\(121\) −7.54313 −0.685739
\(122\) 7.78462 0.704786
\(123\) −2.05809 −0.185572
\(124\) 20.5044 1.84135
\(125\) −1.00000 −0.0894427
\(126\) 2.07095 0.184495
\(127\) 3.21589 0.285364 0.142682 0.989769i \(-0.454427\pi\)
0.142682 + 0.989769i \(0.454427\pi\)
\(128\) 12.9922 1.14836
\(129\) 7.74816 0.682187
\(130\) 12.7350 1.11694
\(131\) −12.9029 −1.12733 −0.563664 0.826004i \(-0.690609\pi\)
−0.563664 + 0.826004i \(0.690609\pi\)
\(132\) −6.36373 −0.553892
\(133\) 2.48318 0.215319
\(134\) −22.8406 −1.97312
\(135\) −3.72778 −0.320836
\(136\) 20.9848 1.79943
\(137\) −6.77934 −0.579198 −0.289599 0.957148i \(-0.593522\pi\)
−0.289599 + 0.957148i \(0.593522\pi\)
\(138\) 11.9373 1.01617
\(139\) −6.06609 −0.514519 −0.257259 0.966342i \(-0.582819\pi\)
−0.257259 + 0.966342i \(0.582819\pi\)
\(140\) 1.55420 0.131353
\(141\) −2.77864 −0.234003
\(142\) −39.3669 −3.30360
\(143\) −8.88952 −0.743379
\(144\) −29.9856 −2.49880
\(145\) 0.374855 0.0311300
\(146\) −22.1870 −1.83621
\(147\) 4.64034 0.382729
\(148\) 0 0
\(149\) −10.2822 −0.842348 −0.421174 0.906980i \(-0.638382\pi\)
−0.421174 + 0.906980i \(0.638382\pi\)
\(150\) −1.78948 −0.146110
\(151\) 11.1876 0.910430 0.455215 0.890382i \(-0.349562\pi\)
0.455215 + 0.890382i \(0.349562\pi\)
\(152\) −67.0916 −5.44185
\(153\) −6.48861 −0.524573
\(154\) −1.51079 −0.121743
\(155\) −4.02477 −0.323277
\(156\) 16.3647 1.31022
\(157\) 16.6402 1.32804 0.664018 0.747716i \(-0.268850\pi\)
0.664018 + 0.747716i \(0.268850\pi\)
\(158\) −22.4170 −1.78340
\(159\) 1.69007 0.134031
\(160\) −14.8527 −1.17421
\(161\) 2.03506 0.160385
\(162\) 13.6945 1.07594
\(163\) 11.1117 0.870339 0.435169 0.900349i \(-0.356689\pi\)
0.435169 + 0.900349i \(0.356689\pi\)
\(164\) 15.6065 1.21866
\(165\) 1.24913 0.0972443
\(166\) 28.8847 2.24188
\(167\) −2.24836 −0.173983 −0.0869915 0.996209i \(-0.527725\pi\)
−0.0869915 + 0.996209i \(0.527725\pi\)
\(168\) 1.68937 0.130338
\(169\) 9.85990 0.758454
\(170\) −6.78120 −0.520094
\(171\) 20.7451 1.58642
\(172\) −58.7543 −4.47998
\(173\) −10.3774 −0.788981 −0.394490 0.918900i \(-0.629079\pi\)
−0.394490 + 0.918900i \(0.629079\pi\)
\(174\) 0.670796 0.0508529
\(175\) −0.305070 −0.0230611
\(176\) 21.8749 1.64888
\(177\) −1.76658 −0.132784
\(178\) −47.1592 −3.53473
\(179\) 9.67455 0.723110 0.361555 0.932351i \(-0.382246\pi\)
0.361555 + 0.932351i \(0.382246\pi\)
\(180\) 12.9841 0.967781
\(181\) 22.1236 1.64443 0.822216 0.569175i \(-0.192737\pi\)
0.822216 + 0.569175i \(0.192737\pi\)
\(182\) 3.88507 0.287981
\(183\) −1.96354 −0.145149
\(184\) −54.9842 −4.05349
\(185\) 0 0
\(186\) −7.20224 −0.528094
\(187\) 4.73354 0.346150
\(188\) 21.0704 1.53672
\(189\) −1.13724 −0.0827217
\(190\) 21.6806 1.57287
\(191\) −13.4291 −0.971695 −0.485848 0.874043i \(-0.661489\pi\)
−0.485848 + 0.874043i \(0.661489\pi\)
\(192\) −10.7697 −0.777239
\(193\) −5.54030 −0.398799 −0.199400 0.979918i \(-0.563899\pi\)
−0.199400 + 0.979918i \(0.563899\pi\)
\(194\) 36.3875 2.61247
\(195\) −3.21219 −0.230030
\(196\) −35.1877 −2.51341
\(197\) 9.64388 0.687098 0.343549 0.939135i \(-0.388371\pi\)
0.343549 + 0.939135i \(0.388371\pi\)
\(198\) −12.6215 −0.896972
\(199\) −9.72036 −0.689058 −0.344529 0.938776i \(-0.611961\pi\)
−0.344529 + 0.938776i \(0.611961\pi\)
\(200\) 8.24252 0.582834
\(201\) 5.76115 0.406360
\(202\) 6.87149 0.483476
\(203\) 0.114357 0.00802629
\(204\) −8.71394 −0.610098
\(205\) −3.06337 −0.213955
\(206\) 22.1398 1.54255
\(207\) 17.0014 1.18168
\(208\) −56.2525 −3.90041
\(209\) −15.1338 −1.04683
\(210\) −0.545917 −0.0376719
\(211\) 18.2671 1.25756 0.628779 0.777584i \(-0.283555\pi\)
0.628779 + 0.777584i \(0.283555\pi\)
\(212\) −12.8158 −0.880193
\(213\) 9.92964 0.680368
\(214\) −27.3724 −1.87114
\(215\) 11.5328 0.786529
\(216\) 30.7263 2.09066
\(217\) −1.22784 −0.0833509
\(218\) 52.6093 3.56315
\(219\) 5.59630 0.378163
\(220\) −9.47212 −0.638610
\(221\) −12.1725 −0.818814
\(222\) 0 0
\(223\) −3.90014 −0.261173 −0.130586 0.991437i \(-0.541686\pi\)
−0.130586 + 0.991437i \(0.541686\pi\)
\(224\) −4.53110 −0.302747
\(225\) −2.54863 −0.169909
\(226\) 0.514205 0.0342044
\(227\) 23.0180 1.52776 0.763878 0.645360i \(-0.223293\pi\)
0.763878 + 0.645360i \(0.223293\pi\)
\(228\) 27.8598 1.84506
\(229\) −24.9325 −1.64758 −0.823792 0.566893i \(-0.808145\pi\)
−0.823792 + 0.566893i \(0.808145\pi\)
\(230\) 17.7681 1.17159
\(231\) 0.381071 0.0250726
\(232\) −3.08975 −0.202852
\(233\) 27.1703 1.77999 0.889993 0.455974i \(-0.150709\pi\)
0.889993 + 0.455974i \(0.150709\pi\)
\(234\) 32.4569 2.12177
\(235\) −4.13587 −0.269795
\(236\) 13.3960 0.872004
\(237\) 5.65431 0.367287
\(238\) −2.06874 −0.134097
\(239\) −11.4668 −0.741726 −0.370863 0.928688i \(-0.620938\pi\)
−0.370863 + 0.928688i \(0.620938\pi\)
\(240\) 7.90441 0.510227
\(241\) 13.6581 0.879797 0.439898 0.898048i \(-0.355014\pi\)
0.439898 + 0.898048i \(0.355014\pi\)
\(242\) −20.0916 −1.29154
\(243\) −14.6376 −0.939000
\(244\) 14.8895 0.953204
\(245\) 6.90693 0.441268
\(246\) −5.48184 −0.349510
\(247\) 38.9175 2.47626
\(248\) 33.1742 2.10657
\(249\) −7.28567 −0.461710
\(250\) −2.66356 −0.168458
\(251\) 6.65785 0.420240 0.210120 0.977676i \(-0.432615\pi\)
0.210120 + 0.977676i \(0.432615\pi\)
\(252\) 3.96107 0.249524
\(253\) −12.4028 −0.779756
\(254\) 8.56571 0.537461
\(255\) 1.71044 0.107112
\(256\) 2.54507 0.159067
\(257\) 11.5885 0.722869 0.361434 0.932398i \(-0.382287\pi\)
0.361434 + 0.932398i \(0.382287\pi\)
\(258\) 20.6377 1.28485
\(259\) 0 0
\(260\) 24.3581 1.51062
\(261\) 0.955368 0.0591358
\(262\) −34.3675 −2.12323
\(263\) −17.1403 −1.05692 −0.528459 0.848959i \(-0.677230\pi\)
−0.528459 + 0.848959i \(0.677230\pi\)
\(264\) −10.2959 −0.633671
\(265\) 2.51559 0.154531
\(266\) 6.61409 0.405536
\(267\) 11.8951 0.727969
\(268\) −43.6868 −2.66860
\(269\) −2.00497 −0.122245 −0.0611225 0.998130i \(-0.519468\pi\)
−0.0611225 + 0.998130i \(0.519468\pi\)
\(270\) −9.92917 −0.604270
\(271\) 5.82824 0.354040 0.177020 0.984207i \(-0.443354\pi\)
0.177020 + 0.984207i \(0.443354\pi\)
\(272\) 29.9536 1.81620
\(273\) −0.979944 −0.0593089
\(274\) −18.0572 −1.09087
\(275\) 1.85927 0.112118
\(276\) 22.8322 1.37434
\(277\) −21.8323 −1.31177 −0.655887 0.754859i \(-0.727705\pi\)
−0.655887 + 0.754859i \(0.727705\pi\)
\(278\) −16.1574 −0.969056
\(279\) −10.2577 −0.614110
\(280\) 2.51455 0.150273
\(281\) −3.56449 −0.212640 −0.106320 0.994332i \(-0.533907\pi\)
−0.106320 + 0.994332i \(0.533907\pi\)
\(282\) −7.40107 −0.440727
\(283\) 14.0437 0.834812 0.417406 0.908720i \(-0.362939\pi\)
0.417406 + 0.908720i \(0.362939\pi\)
\(284\) −75.2965 −4.46803
\(285\) −5.46855 −0.323929
\(286\) −23.6778 −1.40010
\(287\) −0.934543 −0.0551643
\(288\) −37.8540 −2.23057
\(289\) −10.5183 −0.618724
\(290\) 0.998448 0.0586309
\(291\) −9.17813 −0.538031
\(292\) −42.4368 −2.48342
\(293\) −23.9496 −1.39915 −0.699577 0.714558i \(-0.746628\pi\)
−0.699577 + 0.714558i \(0.746628\pi\)
\(294\) 12.3598 0.720839
\(295\) −2.62947 −0.153094
\(296\) 0 0
\(297\) 6.93094 0.402174
\(298\) −27.3872 −1.58650
\(299\) 31.8944 1.84450
\(300\) −3.42271 −0.197610
\(301\) 3.51831 0.202792
\(302\) 29.7987 1.71472
\(303\) −1.73322 −0.0995707
\(304\) −95.7663 −5.49257
\(305\) −2.92264 −0.167350
\(306\) −17.2828 −0.987992
\(307\) −3.40442 −0.194301 −0.0971503 0.995270i \(-0.530973\pi\)
−0.0971503 + 0.995270i \(0.530973\pi\)
\(308\) −2.88966 −0.164654
\(309\) −5.58439 −0.317685
\(310\) −10.7202 −0.608867
\(311\) −1.85014 −0.104912 −0.0524558 0.998623i \(-0.516705\pi\)
−0.0524558 + 0.998623i \(0.516705\pi\)
\(312\) 26.4766 1.49894
\(313\) 24.8106 1.40238 0.701189 0.712975i \(-0.252653\pi\)
0.701189 + 0.712975i \(0.252653\pi\)
\(314\) 44.3223 2.50125
\(315\) −0.777512 −0.0438078
\(316\) −42.8766 −2.41200
\(317\) −29.0459 −1.63138 −0.815690 0.578489i \(-0.803642\pi\)
−0.815690 + 0.578489i \(0.803642\pi\)
\(318\) 4.50160 0.252437
\(319\) −0.696955 −0.0390220
\(320\) −16.0303 −0.896119
\(321\) 6.90422 0.385356
\(322\) 5.42051 0.302073
\(323\) −20.7230 −1.15306
\(324\) 26.1933 1.45518
\(325\) −4.78120 −0.265213
\(326\) 29.5968 1.63921
\(327\) −13.2698 −0.733822
\(328\) 25.2499 1.39419
\(329\) −1.26173 −0.0695615
\(330\) 3.32712 0.183152
\(331\) 5.75347 0.316239 0.158120 0.987420i \(-0.449457\pi\)
0.158120 + 0.987420i \(0.449457\pi\)
\(332\) 55.2473 3.03209
\(333\) 0 0
\(334\) −5.98863 −0.327683
\(335\) 8.57520 0.468513
\(336\) 2.41140 0.131553
\(337\) −1.93856 −0.105600 −0.0528001 0.998605i \(-0.516815\pi\)
−0.0528001 + 0.998605i \(0.516815\pi\)
\(338\) 26.2624 1.42849
\(339\) −0.129700 −0.00704431
\(340\) −12.9703 −0.703414
\(341\) 7.48311 0.405233
\(342\) 55.2558 2.98789
\(343\) 4.24259 0.229078
\(344\) −95.0592 −5.12525
\(345\) −4.48169 −0.241286
\(346\) −27.6409 −1.48598
\(347\) −21.1544 −1.13563 −0.567815 0.823156i \(-0.692211\pi\)
−0.567815 + 0.823156i \(0.692211\pi\)
\(348\) 1.28302 0.0687771
\(349\) −16.4132 −0.878577 −0.439289 0.898346i \(-0.644769\pi\)
−0.439289 + 0.898346i \(0.644769\pi\)
\(350\) −0.812573 −0.0434338
\(351\) −17.8233 −0.951337
\(352\) 27.6150 1.47189
\(353\) 0.557505 0.0296730 0.0148365 0.999890i \(-0.495277\pi\)
0.0148365 + 0.999890i \(0.495277\pi\)
\(354\) −4.70539 −0.250089
\(355\) 14.7798 0.784431
\(356\) −90.2007 −4.78063
\(357\) 0.521805 0.0276169
\(358\) 25.7688 1.36192
\(359\) 2.92356 0.154299 0.0771497 0.997020i \(-0.475418\pi\)
0.0771497 + 0.997020i \(0.475418\pi\)
\(360\) 21.0072 1.10717
\(361\) 47.2546 2.48708
\(362\) 58.9275 3.09716
\(363\) 5.06776 0.265989
\(364\) 7.43092 0.389486
\(365\) 8.32984 0.436004
\(366\) −5.23000 −0.273377
\(367\) 9.11824 0.475968 0.237984 0.971269i \(-0.423513\pi\)
0.237984 + 0.971269i \(0.423513\pi\)
\(368\) −78.4842 −4.09127
\(369\) −7.80741 −0.406438
\(370\) 0 0
\(371\) 0.767431 0.0398430
\(372\) −13.7756 −0.714233
\(373\) 14.0591 0.727953 0.363977 0.931408i \(-0.381419\pi\)
0.363977 + 0.931408i \(0.381419\pi\)
\(374\) 12.6081 0.651947
\(375\) 0.671838 0.0346936
\(376\) 34.0900 1.75806
\(377\) 1.79226 0.0923059
\(378\) −3.02909 −0.155800
\(379\) 0.614911 0.0315858 0.0157929 0.999875i \(-0.494973\pi\)
0.0157929 + 0.999875i \(0.494973\pi\)
\(380\) 41.4681 2.12727
\(381\) −2.16056 −0.110689
\(382\) −35.7692 −1.83011
\(383\) −1.29749 −0.0662988 −0.0331494 0.999450i \(-0.510554\pi\)
−0.0331494 + 0.999450i \(0.510554\pi\)
\(384\) −8.72867 −0.445433
\(385\) 0.567206 0.0289075
\(386\) −14.7569 −0.751107
\(387\) 29.3928 1.49412
\(388\) 69.5978 3.53329
\(389\) −31.3099 −1.58747 −0.793737 0.608261i \(-0.791867\pi\)
−0.793737 + 0.608261i \(0.791867\pi\)
\(390\) −8.55587 −0.433243
\(391\) −16.9833 −0.858882
\(392\) −56.9305 −2.87543
\(393\) 8.66863 0.437274
\(394\) 25.6871 1.29410
\(395\) 8.41618 0.423464
\(396\) −24.1410 −1.21313
\(397\) −6.53409 −0.327937 −0.163968 0.986466i \(-0.552430\pi\)
−0.163968 + 0.986466i \(0.552430\pi\)
\(398\) −25.8907 −1.29779
\(399\) −1.66829 −0.0835191
\(400\) 11.7653 0.588267
\(401\) 9.19104 0.458978 0.229489 0.973311i \(-0.426294\pi\)
0.229489 + 0.973311i \(0.426294\pi\)
\(402\) 15.3452 0.765347
\(403\) −19.2432 −0.958573
\(404\) 13.1430 0.653888
\(405\) −5.14143 −0.255480
\(406\) 0.304597 0.0151169
\(407\) 0 0
\(408\) −14.0984 −0.697973
\(409\) 34.8027 1.72088 0.860442 0.509549i \(-0.170188\pi\)
0.860442 + 0.509549i \(0.170188\pi\)
\(410\) −8.15947 −0.402968
\(411\) 4.55462 0.224663
\(412\) 42.3465 2.08626
\(413\) −0.802174 −0.0394724
\(414\) 45.2843 2.22560
\(415\) −10.8444 −0.532330
\(416\) −71.0136 −3.48173
\(417\) 4.07543 0.199575
\(418\) −40.3099 −1.97162
\(419\) −13.4200 −0.655608 −0.327804 0.944746i \(-0.606309\pi\)
−0.327804 + 0.944746i \(0.606309\pi\)
\(420\) −1.04417 −0.0509502
\(421\) −21.6891 −1.05706 −0.528532 0.848913i \(-0.677257\pi\)
−0.528532 + 0.848913i \(0.677257\pi\)
\(422\) 48.6555 2.36851
\(423\) −10.5408 −0.512512
\(424\) −20.7348 −1.00697
\(425\) 2.54592 0.123495
\(426\) 26.4482 1.28142
\(427\) −0.891609 −0.0431480
\(428\) −52.3547 −2.53066
\(429\) 5.97232 0.288346
\(430\) 30.7182 1.48137
\(431\) 21.5555 1.03829 0.519145 0.854686i \(-0.326250\pi\)
0.519145 + 0.854686i \(0.326250\pi\)
\(432\) 43.8587 2.11015
\(433\) −7.21533 −0.346747 −0.173373 0.984856i \(-0.555467\pi\)
−0.173373 + 0.984856i \(0.555467\pi\)
\(434\) −3.27041 −0.156985
\(435\) −0.251842 −0.0120749
\(436\) 100.625 4.81907
\(437\) 54.2982 2.59744
\(438\) 14.9061 0.712240
\(439\) −11.6800 −0.557455 −0.278728 0.960370i \(-0.589913\pi\)
−0.278728 + 0.960370i \(0.589913\pi\)
\(440\) −15.3250 −0.730592
\(441\) 17.6032 0.838250
\(442\) −32.4223 −1.54217
\(443\) −2.79428 −0.132760 −0.0663802 0.997794i \(-0.521145\pi\)
−0.0663802 + 0.997794i \(0.521145\pi\)
\(444\) 0 0
\(445\) 17.7053 0.839313
\(446\) −10.3883 −0.491898
\(447\) 6.90795 0.326735
\(448\) −4.89035 −0.231047
\(449\) 27.3557 1.29099 0.645497 0.763763i \(-0.276650\pi\)
0.645497 + 0.763763i \(0.276650\pi\)
\(450\) −6.78844 −0.320010
\(451\) 5.69562 0.268196
\(452\) 0.983512 0.0462605
\(453\) −7.51622 −0.353143
\(454\) 61.3097 2.87741
\(455\) −1.45860 −0.0683803
\(456\) 45.0747 2.11082
\(457\) −32.6562 −1.52759 −0.763796 0.645458i \(-0.776667\pi\)
−0.763796 + 0.645458i \(0.776667\pi\)
\(458\) −66.4091 −3.10309
\(459\) 9.49063 0.442985
\(460\) 33.9847 1.58455
\(461\) −16.8322 −0.783955 −0.391977 0.919975i \(-0.628209\pi\)
−0.391977 + 0.919975i \(0.628209\pi\)
\(462\) 1.01500 0.0472223
\(463\) −11.0460 −0.513353 −0.256676 0.966497i \(-0.582627\pi\)
−0.256676 + 0.966497i \(0.582627\pi\)
\(464\) −4.41030 −0.204743
\(465\) 2.70399 0.125395
\(466\) 72.3697 3.35246
\(467\) 3.59552 0.166381 0.0831904 0.996534i \(-0.473489\pi\)
0.0831904 + 0.996534i \(0.473489\pi\)
\(468\) 62.0798 2.86964
\(469\) 2.61604 0.120797
\(470\) −11.0161 −0.508137
\(471\) −11.1796 −0.515127
\(472\) 21.6735 0.997603
\(473\) −21.4425 −0.985927
\(474\) 15.0606 0.691756
\(475\) −8.13969 −0.373475
\(476\) −3.95685 −0.181362
\(477\) 6.41132 0.293554
\(478\) −30.5425 −1.39698
\(479\) 13.3049 0.607915 0.303958 0.952686i \(-0.401692\pi\)
0.303958 + 0.952686i \(0.401692\pi\)
\(480\) 9.97858 0.455458
\(481\) 0 0
\(482\) 36.3792 1.65703
\(483\) −1.36723 −0.0622112
\(484\) −38.4289 −1.74677
\(485\) −13.6612 −0.620324
\(486\) −38.9880 −1.76853
\(487\) −14.6228 −0.662624 −0.331312 0.943521i \(-0.607491\pi\)
−0.331312 + 0.943521i \(0.607491\pi\)
\(488\) 24.0899 1.09050
\(489\) −7.46529 −0.337592
\(490\) 18.3970 0.831093
\(491\) −16.3252 −0.736745 −0.368373 0.929678i \(-0.620085\pi\)
−0.368373 + 0.929678i \(0.620085\pi\)
\(492\) −10.4850 −0.472702
\(493\) −0.954350 −0.0429817
\(494\) 103.659 4.66384
\(495\) 4.73859 0.212984
\(496\) 47.3528 2.12620
\(497\) 4.50888 0.202251
\(498\) −19.4058 −0.869595
\(499\) 5.52070 0.247140 0.123570 0.992336i \(-0.460566\pi\)
0.123570 + 0.992336i \(0.460566\pi\)
\(500\) −5.09455 −0.227835
\(501\) 1.51053 0.0674856
\(502\) 17.7336 0.791488
\(503\) 8.54778 0.381127 0.190563 0.981675i \(-0.438969\pi\)
0.190563 + 0.981675i \(0.438969\pi\)
\(504\) 6.40866 0.285464
\(505\) −2.57981 −0.114800
\(506\) −33.0355 −1.46861
\(507\) −6.62425 −0.294193
\(508\) 16.3835 0.726901
\(509\) 28.9252 1.28209 0.641044 0.767505i \(-0.278502\pi\)
0.641044 + 0.767505i \(0.278502\pi\)
\(510\) 4.55587 0.201737
\(511\) 2.54118 0.112415
\(512\) −19.2055 −0.848772
\(513\) −30.3430 −1.33968
\(514\) 30.8666 1.36147
\(515\) −8.31211 −0.366276
\(516\) 39.4734 1.73772
\(517\) 7.68969 0.338192
\(518\) 0 0
\(519\) 6.97195 0.306034
\(520\) 39.4092 1.72821
\(521\) −7.22238 −0.316418 −0.158209 0.987406i \(-0.550572\pi\)
−0.158209 + 0.987406i \(0.550572\pi\)
\(522\) 2.54468 0.111378
\(523\) −17.6241 −0.770647 −0.385324 0.922782i \(-0.625910\pi\)
−0.385324 + 0.922782i \(0.625910\pi\)
\(524\) −65.7343 −2.87161
\(525\) 0.204958 0.00894509
\(526\) −45.6543 −1.99062
\(527\) 10.2467 0.446354
\(528\) −14.6964 −0.639578
\(529\) 21.4995 0.934761
\(530\) 6.70042 0.291048
\(531\) −6.70156 −0.290823
\(532\) 12.6507 0.548476
\(533\) −14.6466 −0.634415
\(534\) 31.6833 1.37107
\(535\) 10.2766 0.444297
\(536\) −70.6813 −3.05297
\(537\) −6.49973 −0.280484
\(538\) −5.34035 −0.230239
\(539\) −12.8418 −0.553136
\(540\) −18.9914 −0.817259
\(541\) −7.75499 −0.333413 −0.166707 0.986007i \(-0.553313\pi\)
−0.166707 + 0.986007i \(0.553313\pi\)
\(542\) 15.5239 0.666807
\(543\) −14.8635 −0.637852
\(544\) 37.8136 1.62125
\(545\) −19.7515 −0.846062
\(546\) −2.61014 −0.111704
\(547\) 13.7097 0.586186 0.293093 0.956084i \(-0.405315\pi\)
0.293093 + 0.956084i \(0.405315\pi\)
\(548\) −34.5377 −1.47538
\(549\) −7.44873 −0.317904
\(550\) 4.95226 0.211165
\(551\) 3.05120 0.129986
\(552\) 36.9405 1.57229
\(553\) 2.56752 0.109182
\(554\) −58.1516 −2.47062
\(555\) 0 0
\(556\) −30.9040 −1.31062
\(557\) 18.5503 0.786001 0.393000 0.919538i \(-0.371437\pi\)
0.393000 + 0.919538i \(0.371437\pi\)
\(558\) −27.3219 −1.15663
\(559\) 55.1405 2.33220
\(560\) 3.58926 0.151674
\(561\) −3.18017 −0.134267
\(562\) −9.49423 −0.400490
\(563\) 42.1208 1.77518 0.887590 0.460635i \(-0.152378\pi\)
0.887590 + 0.460635i \(0.152378\pi\)
\(564\) −14.1559 −0.596071
\(565\) −0.193052 −0.00812175
\(566\) 37.4063 1.57230
\(567\) −1.56850 −0.0658707
\(568\) −121.823 −5.11158
\(569\) −2.03727 −0.0854066 −0.0427033 0.999088i \(-0.513597\pi\)
−0.0427033 + 0.999088i \(0.513597\pi\)
\(570\) −14.5658 −0.610095
\(571\) −8.16633 −0.341750 −0.170875 0.985293i \(-0.554659\pi\)
−0.170875 + 0.985293i \(0.554659\pi\)
\(572\) −45.2881 −1.89359
\(573\) 9.02218 0.376907
\(574\) −2.48921 −0.103898
\(575\) −6.67080 −0.278191
\(576\) −40.8553 −1.70230
\(577\) −9.12193 −0.379751 −0.189875 0.981808i \(-0.560808\pi\)
−0.189875 + 0.981808i \(0.560808\pi\)
\(578\) −28.0161 −1.16532
\(579\) 3.72218 0.154689
\(580\) 1.90972 0.0792967
\(581\) −3.30830 −0.137251
\(582\) −24.4465 −1.01334
\(583\) −4.67715 −0.193708
\(584\) −68.6589 −2.84112
\(585\) −12.1855 −0.503810
\(586\) −63.7913 −2.63519
\(587\) −10.4884 −0.432902 −0.216451 0.976293i \(-0.569448\pi\)
−0.216451 + 0.976293i \(0.569448\pi\)
\(588\) 23.6404 0.974916
\(589\) −32.7604 −1.34987
\(590\) −7.00376 −0.288340
\(591\) −6.47913 −0.266516
\(592\) 0 0
\(593\) −5.23762 −0.215083 −0.107542 0.994201i \(-0.534298\pi\)
−0.107542 + 0.994201i \(0.534298\pi\)
\(594\) 18.4610 0.757463
\(595\) 0.776683 0.0318409
\(596\) −52.3830 −2.14569
\(597\) 6.53050 0.267276
\(598\) 84.9527 3.47397
\(599\) 19.5578 0.799108 0.399554 0.916710i \(-0.369165\pi\)
0.399554 + 0.916710i \(0.369165\pi\)
\(600\) −5.53764 −0.226073
\(601\) 11.3565 0.463242 0.231621 0.972806i \(-0.425597\pi\)
0.231621 + 0.972806i \(0.425597\pi\)
\(602\) 9.37122 0.381942
\(603\) 21.8550 0.890006
\(604\) 56.9955 2.31912
\(605\) 7.54313 0.306672
\(606\) −4.61652 −0.187534
\(607\) 27.7177 1.12503 0.562514 0.826788i \(-0.309834\pi\)
0.562514 + 0.826788i \(0.309834\pi\)
\(608\) −120.896 −4.90298
\(609\) −0.0768294 −0.00311328
\(610\) −7.78462 −0.315190
\(611\) −19.7744 −0.799989
\(612\) −33.0566 −1.33623
\(613\) 17.1015 0.690725 0.345362 0.938469i \(-0.387756\pi\)
0.345362 + 0.938469i \(0.387756\pi\)
\(614\) −9.06788 −0.365950
\(615\) 2.05809 0.0829902
\(616\) −4.67521 −0.188370
\(617\) −21.3110 −0.857950 −0.428975 0.903316i \(-0.641125\pi\)
−0.428975 + 0.903316i \(0.641125\pi\)
\(618\) −14.8744 −0.598335
\(619\) 12.0242 0.483292 0.241646 0.970364i \(-0.422313\pi\)
0.241646 + 0.970364i \(0.422313\pi\)
\(620\) −20.5044 −0.823476
\(621\) −24.8673 −0.997889
\(622\) −4.92795 −0.197593
\(623\) 5.40137 0.216401
\(624\) 37.7926 1.51291
\(625\) 1.00000 0.0400000
\(626\) 66.0845 2.64127
\(627\) 10.1675 0.406051
\(628\) 84.7746 3.38287
\(629\) 0 0
\(630\) −2.07095 −0.0825086
\(631\) 33.0174 1.31440 0.657201 0.753715i \(-0.271740\pi\)
0.657201 + 0.753715i \(0.271740\pi\)
\(632\) −69.3705 −2.75941
\(633\) −12.2725 −0.487789
\(634\) −77.3655 −3.07258
\(635\) −3.21589 −0.127619
\(636\) 8.61014 0.341414
\(637\) 33.0234 1.30844
\(638\) −1.85638 −0.0734948
\(639\) 37.6683 1.49014
\(640\) −12.9922 −0.513563
\(641\) 14.2676 0.563535 0.281767 0.959483i \(-0.409079\pi\)
0.281767 + 0.959483i \(0.409079\pi\)
\(642\) 18.3898 0.725787
\(643\) −22.5157 −0.887932 −0.443966 0.896044i \(-0.646429\pi\)
−0.443966 + 0.896044i \(0.646429\pi\)
\(644\) 10.3677 0.408545
\(645\) −7.74816 −0.305083
\(646\) −55.1969 −2.17169
\(647\) 41.2531 1.62183 0.810913 0.585167i \(-0.198971\pi\)
0.810913 + 0.585167i \(0.198971\pi\)
\(648\) 42.3784 1.66478
\(649\) 4.88889 0.191906
\(650\) −12.7350 −0.499509
\(651\) 0.824907 0.0323306
\(652\) 56.6093 2.21699
\(653\) 13.4063 0.524628 0.262314 0.964983i \(-0.415514\pi\)
0.262314 + 0.964983i \(0.415514\pi\)
\(654\) −35.3449 −1.38210
\(655\) 12.9029 0.504156
\(656\) 36.0416 1.40719
\(657\) 21.2297 0.828250
\(658\) −3.36070 −0.131014
\(659\) −35.6948 −1.39047 −0.695236 0.718781i \(-0.744700\pi\)
−0.695236 + 0.718781i \(0.744700\pi\)
\(660\) 6.36373 0.247708
\(661\) 33.2215 1.29217 0.646084 0.763266i \(-0.276405\pi\)
0.646084 + 0.763266i \(0.276405\pi\)
\(662\) 15.3247 0.595612
\(663\) 8.17798 0.317606
\(664\) 89.3851 3.46881
\(665\) −2.48318 −0.0962935
\(666\) 0 0
\(667\) 2.50058 0.0968229
\(668\) −11.4544 −0.443183
\(669\) 2.62026 0.101305
\(670\) 22.8406 0.882408
\(671\) 5.43396 0.209776
\(672\) 3.04417 0.117431
\(673\) 34.4820 1.32918 0.664592 0.747206i \(-0.268605\pi\)
0.664592 + 0.747206i \(0.268605\pi\)
\(674\) −5.16348 −0.198890
\(675\) 3.72778 0.143482
\(676\) 50.2317 1.93199
\(677\) 13.6122 0.523158 0.261579 0.965182i \(-0.415757\pi\)
0.261579 + 0.965182i \(0.415757\pi\)
\(678\) −0.345462 −0.0132674
\(679\) −4.16763 −0.159939
\(680\) −20.9848 −0.804729
\(681\) −15.4643 −0.592595
\(682\) 19.9317 0.763225
\(683\) 22.3789 0.856304 0.428152 0.903707i \(-0.359165\pi\)
0.428152 + 0.903707i \(0.359165\pi\)
\(684\) 105.687 4.04104
\(685\) 6.77934 0.259025
\(686\) 11.3004 0.431451
\(687\) 16.7506 0.639074
\(688\) −135.687 −5.17302
\(689\) 12.0275 0.458213
\(690\) −11.9373 −0.454444
\(691\) −24.7590 −0.941877 −0.470938 0.882166i \(-0.656085\pi\)
−0.470938 + 0.882166i \(0.656085\pi\)
\(692\) −52.8683 −2.00975
\(693\) 1.44560 0.0549139
\(694\) −56.3461 −2.13887
\(695\) 6.06609 0.230100
\(696\) 2.07581 0.0786834
\(697\) 7.79909 0.295412
\(698\) −43.7175 −1.65473
\(699\) −18.2540 −0.690431
\(700\) −1.55420 −0.0587431
\(701\) −4.21211 −0.159089 −0.0795446 0.996831i \(-0.525347\pi\)
−0.0795446 + 0.996831i \(0.525347\pi\)
\(702\) −47.4734 −1.79177
\(703\) 0 0
\(704\) 29.8045 1.12330
\(705\) 2.77864 0.104650
\(706\) 1.48495 0.0558868
\(707\) −0.787024 −0.0295991
\(708\) −8.99993 −0.338238
\(709\) −27.8603 −1.04632 −0.523158 0.852236i \(-0.675246\pi\)
−0.523158 + 0.852236i \(0.675246\pi\)
\(710\) 39.3669 1.47741
\(711\) 21.4498 0.804429
\(712\) −145.936 −5.46920
\(713\) −26.8484 −1.00548
\(714\) 1.38986 0.0520142
\(715\) 8.88952 0.332449
\(716\) 49.2875 1.84196
\(717\) 7.70384 0.287705
\(718\) 7.78707 0.290611
\(719\) −16.3154 −0.608460 −0.304230 0.952599i \(-0.598399\pi\)
−0.304230 + 0.952599i \(0.598399\pi\)
\(720\) 29.9856 1.11750
\(721\) −2.53578 −0.0944373
\(722\) 125.865 4.68423
\(723\) −9.17604 −0.341261
\(724\) 112.710 4.18882
\(725\) −0.374855 −0.0139218
\(726\) 13.4983 0.500968
\(727\) −33.2581 −1.23348 −0.616738 0.787168i \(-0.711546\pi\)
−0.616738 + 0.787168i \(0.711546\pi\)
\(728\) 12.0226 0.445586
\(729\) −5.59024 −0.207046
\(730\) 22.1870 0.821178
\(731\) −29.3615 −1.08597
\(732\) −10.0033 −0.369734
\(733\) −2.17580 −0.0803648 −0.0401824 0.999192i \(-0.512794\pi\)
−0.0401824 + 0.999192i \(0.512794\pi\)
\(734\) 24.2870 0.896448
\(735\) −4.64034 −0.171162
\(736\) −99.0791 −3.65210
\(737\) −15.9436 −0.587289
\(738\) −20.7955 −0.765493
\(739\) −39.0865 −1.43782 −0.718910 0.695103i \(-0.755359\pi\)
−0.718910 + 0.695103i \(0.755359\pi\)
\(740\) 0 0
\(741\) −26.1463 −0.960507
\(742\) 2.04410 0.0750412
\(743\) 32.4833 1.19170 0.595848 0.803097i \(-0.296816\pi\)
0.595848 + 0.803097i \(0.296816\pi\)
\(744\) −22.2877 −0.817107
\(745\) 10.2822 0.376710
\(746\) 37.4473 1.37104
\(747\) −27.6384 −1.01123
\(748\) 24.1152 0.881740
\(749\) 3.13509 0.114554
\(750\) 1.78948 0.0653426
\(751\) 33.0898 1.20747 0.603733 0.797187i \(-0.293679\pi\)
0.603733 + 0.797187i \(0.293679\pi\)
\(752\) 48.6600 1.77445
\(753\) −4.47299 −0.163005
\(754\) 4.77378 0.173851
\(755\) −11.1876 −0.407157
\(756\) −5.79370 −0.210715
\(757\) −14.4706 −0.525942 −0.262971 0.964804i \(-0.584702\pi\)
−0.262971 + 0.964804i \(0.584702\pi\)
\(758\) 1.63785 0.0594894
\(759\) 8.33266 0.302456
\(760\) 67.0916 2.43367
\(761\) −0.396943 −0.0143892 −0.00719459 0.999974i \(-0.502290\pi\)
−0.00719459 + 0.999974i \(0.502290\pi\)
\(762\) −5.75477 −0.208473
\(763\) −6.02559 −0.218141
\(764\) −68.4152 −2.47518
\(765\) 6.48861 0.234596
\(766\) −3.45595 −0.124868
\(767\) −12.5720 −0.453950
\(768\) −1.70987 −0.0616997
\(769\) 40.3582 1.45535 0.727676 0.685921i \(-0.240600\pi\)
0.727676 + 0.685921i \(0.240600\pi\)
\(770\) 1.51079 0.0544450
\(771\) −7.78557 −0.280390
\(772\) −28.2253 −1.01585
\(773\) 34.5410 1.24236 0.621178 0.783670i \(-0.286655\pi\)
0.621178 + 0.783670i \(0.286655\pi\)
\(774\) 78.2895 2.81406
\(775\) 4.02477 0.144574
\(776\) 112.603 4.04221
\(777\) 0 0
\(778\) −83.3957 −2.98988
\(779\) −24.9349 −0.893386
\(780\) −16.3647 −0.585950
\(781\) −27.4796 −0.983298
\(782\) −45.2360 −1.61764
\(783\) −1.39738 −0.0499382
\(784\) −81.2625 −2.90223
\(785\) −16.6402 −0.593916
\(786\) 23.0894 0.823572
\(787\) −22.2006 −0.791365 −0.395682 0.918387i \(-0.629492\pi\)
−0.395682 + 0.918387i \(0.629492\pi\)
\(788\) 49.1313 1.75023
\(789\) 11.5155 0.409963
\(790\) 22.4170 0.797561
\(791\) −0.0588943 −0.00209404
\(792\) −39.0579 −1.38786
\(793\) −13.9737 −0.496221
\(794\) −17.4039 −0.617643
\(795\) −1.69007 −0.0599406
\(796\) −49.5208 −1.75522
\(797\) −21.1930 −0.750695 −0.375348 0.926884i \(-0.622477\pi\)
−0.375348 + 0.926884i \(0.622477\pi\)
\(798\) −4.44360 −0.157302
\(799\) 10.5296 0.372510
\(800\) 14.8527 0.525121
\(801\) 45.1244 1.59439
\(802\) 24.4809 0.864450
\(803\) −15.4874 −0.546538
\(804\) 29.3505 1.03511
\(805\) −2.03506 −0.0717265
\(806\) −51.2555 −1.80540
\(807\) 1.34701 0.0474171
\(808\) 21.2642 0.748071
\(809\) −9.51326 −0.334468 −0.167234 0.985917i \(-0.553484\pi\)
−0.167234 + 0.985917i \(0.553484\pi\)
\(810\) −13.6945 −0.481176
\(811\) −31.4978 −1.10604 −0.553019 0.833169i \(-0.686524\pi\)
−0.553019 + 0.833169i \(0.686524\pi\)
\(812\) 0.582598 0.0204452
\(813\) −3.91563 −0.137327
\(814\) 0 0
\(815\) −11.1117 −0.389227
\(816\) −20.1240 −0.704480
\(817\) 93.8733 3.28421
\(818\) 92.6991 3.24115
\(819\) −3.71744 −0.129898
\(820\) −15.6065 −0.545003
\(821\) 24.2852 0.847558 0.423779 0.905766i \(-0.360703\pi\)
0.423779 + 0.905766i \(0.360703\pi\)
\(822\) 12.1315 0.423134
\(823\) −23.7422 −0.827602 −0.413801 0.910367i \(-0.635799\pi\)
−0.413801 + 0.910367i \(0.635799\pi\)
\(824\) 68.5128 2.38676
\(825\) −1.24913 −0.0434890
\(826\) −2.13664 −0.0743431
\(827\) 30.7256 1.06844 0.534218 0.845347i \(-0.320606\pi\)
0.534218 + 0.845347i \(0.320606\pi\)
\(828\) 86.6146 3.01006
\(829\) 19.9615 0.693290 0.346645 0.937996i \(-0.387321\pi\)
0.346645 + 0.937996i \(0.387321\pi\)
\(830\) −28.8847 −1.00260
\(831\) 14.6678 0.508819
\(832\) −76.6439 −2.65715
\(833\) −17.5845 −0.609266
\(834\) 10.8551 0.375883
\(835\) 2.24836 0.0778076
\(836\) −77.1002 −2.66656
\(837\) 15.0035 0.518595
\(838\) −35.7449 −1.23479
\(839\) 27.5692 0.951796 0.475898 0.879501i \(-0.342123\pi\)
0.475898 + 0.879501i \(0.342123\pi\)
\(840\) −1.68937 −0.0582887
\(841\) −28.8595 −0.995155
\(842\) −57.7703 −1.99090
\(843\) 2.39476 0.0824799
\(844\) 93.0626 3.20335
\(845\) −9.85990 −0.339191
\(846\) −28.0761 −0.965277
\(847\) 2.30118 0.0790696
\(848\) −29.5968 −1.01636
\(849\) −9.43510 −0.323812
\(850\) 6.78120 0.232593
\(851\) 0 0
\(852\) 50.5871 1.73308
\(853\) 2.05731 0.0704408 0.0352204 0.999380i \(-0.488787\pi\)
0.0352204 + 0.999380i \(0.488787\pi\)
\(854\) −2.37485 −0.0812659
\(855\) −20.7451 −0.709467
\(856\) −84.7052 −2.89516
\(857\) 2.81604 0.0961942 0.0480971 0.998843i \(-0.484684\pi\)
0.0480971 + 0.998843i \(0.484684\pi\)
\(858\) 15.9076 0.543078
\(859\) 9.11129 0.310873 0.155437 0.987846i \(-0.450322\pi\)
0.155437 + 0.987846i \(0.450322\pi\)
\(860\) 58.7543 2.00351
\(861\) 0.627862 0.0213975
\(862\) 57.4143 1.95554
\(863\) −9.48116 −0.322743 −0.161371 0.986894i \(-0.551592\pi\)
−0.161371 + 0.986894i \(0.551592\pi\)
\(864\) 55.3675 1.88364
\(865\) 10.3774 0.352843
\(866\) −19.2185 −0.653070
\(867\) 7.06660 0.239994
\(868\) −6.25527 −0.212318
\(869\) −15.6479 −0.530819
\(870\) −0.670796 −0.0227421
\(871\) 40.9998 1.38922
\(872\) 162.802 5.51318
\(873\) −34.8175 −1.17839
\(874\) 144.627 4.89207
\(875\) 0.305070 0.0103133
\(876\) 28.5106 0.963285
\(877\) 5.35815 0.180932 0.0904659 0.995900i \(-0.471164\pi\)
0.0904659 + 0.995900i \(0.471164\pi\)
\(878\) −31.1103 −1.04992
\(879\) 16.0903 0.542712
\(880\) −21.8749 −0.737403
\(881\) −46.0547 −1.55162 −0.775812 0.630964i \(-0.782659\pi\)
−0.775812 + 0.630964i \(0.782659\pi\)
\(882\) 46.8873 1.57878
\(883\) 40.0651 1.34830 0.674150 0.738595i \(-0.264510\pi\)
0.674150 + 0.738595i \(0.264510\pi\)
\(884\) −62.0137 −2.08574
\(885\) 1.76658 0.0593829
\(886\) −7.44274 −0.250044
\(887\) 27.6759 0.929266 0.464633 0.885503i \(-0.346186\pi\)
0.464633 + 0.885503i \(0.346186\pi\)
\(888\) 0 0
\(889\) −0.981072 −0.0329041
\(890\) 47.1592 1.58078
\(891\) 9.55929 0.320248
\(892\) −19.8695 −0.665279
\(893\) −33.6647 −1.12655
\(894\) 18.3997 0.615379
\(895\) −9.67455 −0.323385
\(896\) −3.96354 −0.132413
\(897\) −21.4279 −0.715456
\(898\) 72.8635 2.43149
\(899\) −1.50870 −0.0503181
\(900\) −12.9841 −0.432805
\(901\) −6.40448 −0.213364
\(902\) 15.1706 0.505127
\(903\) −2.36373 −0.0786601
\(904\) 1.59123 0.0529236
\(905\) −22.1236 −0.735413
\(906\) −20.0199 −0.665117
\(907\) −15.4980 −0.514603 −0.257302 0.966331i \(-0.582833\pi\)
−0.257302 + 0.966331i \(0.582833\pi\)
\(908\) 117.266 3.89162
\(909\) −6.57500 −0.218079
\(910\) −3.88507 −0.128789
\(911\) 32.7886 1.08633 0.543167 0.839625i \(-0.317225\pi\)
0.543167 + 0.839625i \(0.317225\pi\)
\(912\) 64.3394 2.13049
\(913\) 20.1626 0.667284
\(914\) −86.9817 −2.87710
\(915\) 1.96354 0.0649126
\(916\) −127.020 −4.19685
\(917\) 3.93628 0.129987
\(918\) 25.2789 0.834326
\(919\) 0.940187 0.0310139 0.0155070 0.999880i \(-0.495064\pi\)
0.0155070 + 0.999880i \(0.495064\pi\)
\(920\) 54.9842 1.81277
\(921\) 2.28722 0.0753665
\(922\) −44.8336 −1.47652
\(923\) 70.6653 2.32598
\(924\) 1.94138 0.0638669
\(925\) 0 0
\(926\) −29.4218 −0.966859
\(927\) −21.1845 −0.695791
\(928\) −5.56759 −0.182765
\(929\) −7.74285 −0.254035 −0.127017 0.991900i \(-0.540540\pi\)
−0.127017 + 0.991900i \(0.540540\pi\)
\(930\) 7.20224 0.236171
\(931\) 56.2203 1.84255
\(932\) 138.421 4.53411
\(933\) 1.24299 0.0406937
\(934\) 9.57688 0.313365
\(935\) −4.73354 −0.154803
\(936\) 100.440 3.28297
\(937\) −27.8977 −0.911377 −0.455689 0.890139i \(-0.650607\pi\)
−0.455689 + 0.890139i \(0.650607\pi\)
\(938\) 6.96797 0.227512
\(939\) −16.6687 −0.543963
\(940\) −21.0704 −0.687241
\(941\) −49.2272 −1.60476 −0.802380 0.596813i \(-0.796433\pi\)
−0.802380 + 0.596813i \(0.796433\pi\)
\(942\) −29.7774 −0.970200
\(943\) −20.4351 −0.665459
\(944\) 30.9367 1.00690
\(945\) 1.13724 0.0369943
\(946\) −57.1134 −1.85692
\(947\) −37.8698 −1.23060 −0.615302 0.788291i \(-0.710966\pi\)
−0.615302 + 0.788291i \(0.710966\pi\)
\(948\) 28.8062 0.935581
\(949\) 39.8266 1.29283
\(950\) −21.6806 −0.703410
\(951\) 19.5141 0.632789
\(952\) −6.40183 −0.207484
\(953\) 33.5987 1.08837 0.544185 0.838965i \(-0.316839\pi\)
0.544185 + 0.838965i \(0.316839\pi\)
\(954\) 17.0769 0.552886
\(955\) 13.4291 0.434555
\(956\) −58.4183 −1.88938
\(957\) 0.468241 0.0151361
\(958\) 35.4383 1.14496
\(959\) 2.06817 0.0667848
\(960\) 10.7697 0.347592
\(961\) −14.8013 −0.477460
\(962\) 0 0
\(963\) 26.1913 0.844003
\(964\) 69.5820 2.24109
\(965\) 5.54030 0.178348
\(966\) −3.64170 −0.117170
\(967\) −32.5035 −1.04524 −0.522622 0.852565i \(-0.675046\pi\)
−0.522622 + 0.852565i \(0.675046\pi\)
\(968\) −62.1744 −1.99836
\(969\) 13.9225 0.447255
\(970\) −36.3875 −1.16833
\(971\) −30.1776 −0.968445 −0.484223 0.874945i \(-0.660898\pi\)
−0.484223 + 0.874945i \(0.660898\pi\)
\(972\) −74.5718 −2.39189
\(973\) 1.85058 0.0593269
\(974\) −38.9488 −1.24800
\(975\) 3.21219 0.102873
\(976\) 34.3858 1.10066
\(977\) 41.4992 1.32768 0.663839 0.747876i \(-0.268926\pi\)
0.663839 + 0.747876i \(0.268926\pi\)
\(978\) −19.8842 −0.635828
\(979\) −32.9189 −1.05209
\(980\) 35.1877 1.12403
\(981\) −50.3394 −1.60721
\(982\) −43.4831 −1.38760
\(983\) −21.6389 −0.690173 −0.345086 0.938571i \(-0.612150\pi\)
−0.345086 + 0.938571i \(0.612150\pi\)
\(984\) −16.9638 −0.540788
\(985\) −9.64388 −0.307280
\(986\) −2.54197 −0.0809527
\(987\) 0.847679 0.0269819
\(988\) 198.267 6.30772
\(989\) 76.9328 2.44632
\(990\) 12.6215 0.401138
\(991\) −19.4143 −0.616714 −0.308357 0.951271i \(-0.599779\pi\)
−0.308357 + 0.951271i \(0.599779\pi\)
\(992\) 59.7785 1.89797
\(993\) −3.86540 −0.122665
\(994\) 12.0097 0.380924
\(995\) 9.72036 0.308156
\(996\) −37.1172 −1.17610
\(997\) 10.2171 0.323578 0.161789 0.986825i \(-0.448274\pi\)
0.161789 + 0.986825i \(0.448274\pi\)
\(998\) 14.7047 0.465470
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6845.2.a.g.1.5 5
37.36 even 2 185.2.a.d.1.1 5
111.110 odd 2 1665.2.a.q.1.5 5
148.147 odd 2 2960.2.a.ba.1.4 5
185.73 odd 4 925.2.b.g.149.10 10
185.147 odd 4 925.2.b.g.149.1 10
185.184 even 2 925.2.a.h.1.5 5
259.258 odd 2 9065.2.a.j.1.1 5
555.554 odd 2 8325.2.a.cc.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.1 5 37.36 even 2
925.2.a.h.1.5 5 185.184 even 2
925.2.b.g.149.1 10 185.147 odd 4
925.2.b.g.149.10 10 185.73 odd 4
1665.2.a.q.1.5 5 111.110 odd 2
2960.2.a.ba.1.4 5 148.147 odd 2
6845.2.a.g.1.5 5 1.1 even 1 trivial
8325.2.a.cc.1.1 5 555.554 odd 2
9065.2.a.j.1.1 5 259.258 odd 2