Defining parameters
Level: | \( N \) | \(=\) | \( 6840 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6840.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 45 \) | ||
Sturm bound: | \(2880\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6840))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1472 | 90 | 1382 |
Cusp forms | 1409 | 90 | 1319 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(82\) | \(4\) | \(78\) | \(79\) | \(4\) | \(75\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(100\) | \(5\) | \(95\) | \(96\) | \(5\) | \(91\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(102\) | \(5\) | \(97\) | \(98\) | \(5\) | \(93\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(84\) | \(4\) | \(80\) | \(80\) | \(4\) | \(76\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(94\) | \(6\) | \(88\) | \(90\) | \(6\) | \(84\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(92\) | \(7\) | \(85\) | \(88\) | \(7\) | \(81\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(90\) | \(6\) | \(84\) | \(86\) | \(6\) | \(80\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(92\) | \(8\) | \(84\) | \(88\) | \(8\) | \(80\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(86\) | \(5\) | \(81\) | \(82\) | \(5\) | \(77\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(100\) | \(4\) | \(96\) | \(96\) | \(4\) | \(92\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(98\) | \(4\) | \(94\) | \(94\) | \(4\) | \(90\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(84\) | \(5\) | \(79\) | \(80\) | \(5\) | \(75\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(90\) | \(7\) | \(83\) | \(86\) | \(7\) | \(79\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(92\) | \(6\) | \(86\) | \(88\) | \(6\) | \(82\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(94\) | \(8\) | \(86\) | \(90\) | \(8\) | \(82\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(92\) | \(6\) | \(86\) | \(88\) | \(6\) | \(82\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(728\) | \(42\) | \(686\) | \(697\) | \(42\) | \(655\) | \(31\) | \(0\) | \(31\) | ||||||
Minus space | \(-\) | \(744\) | \(48\) | \(696\) | \(712\) | \(48\) | \(664\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6840))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6840))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6840)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(380))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(456))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(570))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(684))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(760))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(855))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1368))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1710))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2280))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3420))\)\(^{\oplus 2}\)