Properties

Label 6800.2.a.cc
Level $6800$
Weight $2$
Character orbit 6800.a
Self dual yes
Analytic conductor $54.298$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,1,0,0,0,-2,0,2,0,4,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.563792.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 2x^{2} + 12x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 680)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{4} - \beta_{3} - \beta_1) q^{7} + (\beta_{2} + \beta_1) q^{9} + ( - \beta_{4} + 1) q^{11} + (\beta_{4} - 2 \beta_{3} + \beta_1 + 1) q^{13} - q^{17} + (2 \beta_{4} - \beta_{3} + \cdots + 2 \beta_1) q^{19}+ \cdots + (\beta_{2} + 2 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{3} - 2 q^{7} + 2 q^{9} + 4 q^{11} + 3 q^{13} - 5 q^{17} + 3 q^{19} - 20 q^{21} - 4 q^{23} + 13 q^{27} - 17 q^{29} + 11 q^{31} + 20 q^{37} + 11 q^{39} - 22 q^{41} + 22 q^{43} + 5 q^{47} + 9 q^{49}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 8x^{3} + 2x^{2} + 12x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 2\nu^{3} - 5\nu^{2} + 5\nu + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 3\nu^{3} - 3\nu^{2} + 9\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + 2\beta_{2} + 6\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{4} + 3\beta_{3} + 9\beta_{2} + 12\beta _1 + 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.83529
−1.66285
0.165176
1.31440
3.01856
0 −1.83529 0 0 0 3.41244 0 0.368274 0
1.2 0 −1.66285 0 0 0 1.13950 0 −0.234926 0
1.3 0 0.165176 0 0 0 −3.45441 0 −2.97272 0
1.4 0 1.31440 0 0 0 1.12767 0 −1.27236 0
1.5 0 3.01856 0 0 0 −4.22519 0 6.11173 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6800.2.a.cc 5
4.b odd 2 1 3400.2.a.t 5
5.b even 2 1 6800.2.a.cb 5
5.c odd 4 2 1360.2.e.f 10
20.d odd 2 1 3400.2.a.u 5
20.e even 4 2 680.2.e.b 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.e.b 10 20.e even 4 2
1360.2.e.f 10 5.c odd 4 2
3400.2.a.t 5 4.b odd 2 1
3400.2.a.u 5 20.d odd 2 1
6800.2.a.cb 5 5.b even 2 1
6800.2.a.cc 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6800))\):

\( T_{3}^{5} - T_{3}^{4} - 8T_{3}^{3} + 2T_{3}^{2} + 12T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{5} + 2T_{7}^{4} - 20T_{7}^{3} - 18T_{7}^{2} + 98T_{7} - 64 \) Copy content Toggle raw display
\( T_{11}^{5} - 4T_{11}^{4} - 2T_{11}^{3} + 10T_{11}^{2} + 2T_{11} - 4 \) Copy content Toggle raw display
\( T_{13}^{5} - 3T_{13}^{4} - 30T_{13}^{3} + 108T_{13}^{2} - 84T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - T^{4} - 8 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 2 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$13$ \( T^{5} - 3 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( (T + 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} - 3 T^{4} + \cdots - 2224 \) Copy content Toggle raw display
$23$ \( T^{5} + 4 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$29$ \( T^{5} + 17 T^{4} + \cdots + 3568 \) Copy content Toggle raw display
$31$ \( T^{5} - 11 T^{4} + \cdots + 54 \) Copy content Toggle raw display
$37$ \( T^{5} - 20 T^{4} + \cdots + 3200 \) Copy content Toggle raw display
$41$ \( T^{5} + 22 T^{4} + \cdots - 2752 \) Copy content Toggle raw display
$43$ \( T^{5} - 22 T^{4} + \cdots - 1776 \) Copy content Toggle raw display
$47$ \( T^{5} - 5 T^{4} + \cdots - 876 \) Copy content Toggle raw display
$53$ \( T^{5} - 7 T^{4} + \cdots + 7312 \) Copy content Toggle raw display
$59$ \( T^{5} - 3 T^{4} + \cdots + 3504 \) Copy content Toggle raw display
$61$ \( T^{5} + 13 T^{4} + \cdots - 568 \) Copy content Toggle raw display
$67$ \( T^{5} - 28 T^{4} + \cdots - 14264 \) Copy content Toggle raw display
$71$ \( T^{5} - 33 T^{4} + \cdots + 4406 \) Copy content Toggle raw display
$73$ \( T^{5} - 21 T^{4} + \cdots + 1864 \) Copy content Toggle raw display
$79$ \( T^{5} - 20 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$83$ \( T^{5} - 18 T^{4} + \cdots - 4112 \) Copy content Toggle raw display
$89$ \( T^{5} + 25 T^{4} + \cdots - 23748 \) Copy content Toggle raw display
$97$ \( T^{5} - 21 T^{4} + \cdots - 15376 \) Copy content Toggle raw display
show more
show less