Properties

Label 6800.2.a.bv
Level $6800$
Weight $2$
Character orbit 6800.a
Self dual yes
Analytic conductor $54.298$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,0,0,0,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 340)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + (\beta_{3} + \beta_{2} + 1) q^{7} + (\beta_{2} - \beta_1 + 1) q^{9} + ( - \beta_{3} + \beta_1 - 1) q^{11} + (\beta_{3} - 2) q^{13} - q^{17} + ( - 2 \beta_{2} + 2 \beta_1 - 2) q^{19}+ \cdots + (2 \beta_{3} + \beta_{2} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 10 q^{13} - 4 q^{17} + 10 q^{23} + 2 q^{27} - 2 q^{31} - 14 q^{33} - 16 q^{37} - 2 q^{39} - 2 q^{41} + 18 q^{43} - 6 q^{47} + 4 q^{49} - 2 q^{51} - 16 q^{53} - 16 q^{57} + 4 q^{59} + 6 q^{61}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 5\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.78165
1.28734
−0.552409
−1.51658
0 −1.78165 0 0 0 2.65910 0 0.174289 0
1.2 0 −0.287336 0 0 0 −4.67316 0 −2.91744 0
1.3 0 1.55241 0 0 0 1.73591 0 −0.590025 0
1.4 0 2.51658 0 0 0 0.278150 0 3.33317 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6800.2.a.bv 4
4.b odd 2 1 1700.2.a.f 4
5.b even 2 1 6800.2.a.bu 4
5.c odd 4 2 1360.2.e.e 8
20.d odd 2 1 1700.2.a.g 4
20.e even 4 2 340.2.e.a 8
60.l odd 4 2 3060.2.g.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
340.2.e.a 8 20.e even 4 2
1360.2.e.e 8 5.c odd 4 2
1700.2.a.f 4 4.b odd 2 1
1700.2.a.g 4 20.d odd 2 1
3060.2.g.f 8 60.l odd 4 2
6800.2.a.bu 4 5.b even 2 1
6800.2.a.bv 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6800))\):

\( T_{3}^{4} - 2T_{3}^{3} - 4T_{3}^{2} + 6T_{3} + 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 16T_{7}^{2} + 26T_{7} - 6 \) Copy content Toggle raw display
\( T_{11}^{4} - 18T_{11}^{2} + 14T_{11} + 30 \) Copy content Toggle raw display
\( T_{13}^{4} + 10T_{13}^{3} + 28T_{13}^{2} + 8T_{13} - 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 16 T^{2} + \cdots - 6 \) Copy content Toggle raw display
$11$ \( T^{4} - 18 T^{2} + \cdots + 30 \) Copy content Toggle raw display
$13$ \( T^{4} + 10 T^{3} + \cdots - 36 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 40 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{4} - 10 T^{3} + \cdots + 10 \) Copy content Toggle raw display
$29$ \( T^{4} - 40 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots - 98 \) Copy content Toggle raw display
$37$ \( T^{4} + 16 T^{3} + \cdots - 496 \) Copy content Toggle raw display
$41$ \( T^{4} + 2 T^{3} + \cdots + 1320 \) Copy content Toggle raw display
$43$ \( T^{4} - 18 T^{3} + \cdots + 188 \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$53$ \( T^{4} + 16 T^{3} + \cdots + 1488 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 2608 \) Copy content Toggle raw display
$61$ \( T^{4} - 6 T^{3} + \cdots + 600 \) Copy content Toggle raw display
$67$ \( T^{4} - 2 T^{3} + \cdots + 292 \) Copy content Toggle raw display
$71$ \( T^{4} + 20 T^{3} + \cdots - 3378 \) Copy content Toggle raw display
$73$ \( T^{4} + 26 T^{3} + \cdots - 12088 \) Copy content Toggle raw display
$79$ \( T^{4} + 6 T^{3} + \cdots + 502 \) Copy content Toggle raw display
$83$ \( T^{4} - 14 T^{3} + \cdots + 7724 \) Copy content Toggle raw display
$89$ \( T^{4} + 4 T^{3} + \cdots - 772 \) Copy content Toggle raw display
$97$ \( T^{4} + 36 T^{3} + \cdots - 24048 \) Copy content Toggle raw display
show more
show less