Properties

Label 6800.2.a.bh
Level $6800$
Weight $2$
Character orbit 6800.a
Self dual yes
Analytic conductor $54.298$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,0,0,-2,0,2,0,6,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{3} + ( - \beta - 1) q^{7} + (2 \beta + 1) q^{9} + ( - \beta + 3) q^{11} + ( - 2 \beta - 2) q^{13} + q^{17} + (2 \beta - 2) q^{19} + ( - 2 \beta - 4) q^{21} + (\beta - 3) q^{23} + 4 q^{27}+ \cdots + (5 \beta - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{7} + 2 q^{9} + 6 q^{11} - 4 q^{13} + 2 q^{17} - 4 q^{19} - 8 q^{21} - 6 q^{23} + 8 q^{27} + 2 q^{31} - 16 q^{37} - 16 q^{39} - 12 q^{41} + 4 q^{43} - 6 q^{49} + 2 q^{51} - 12 q^{53}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −0.732051 0 0 0 0.732051 0 −2.46410 0
1.2 0 2.73205 0 0 0 −2.73205 0 4.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6800.2.a.bh 2
4.b odd 2 1 1700.2.a.d 2
5.b even 2 1 272.2.a.e 2
15.d odd 2 1 2448.2.a.y 2
20.d odd 2 1 68.2.a.a 2
20.e even 4 2 1700.2.e.c 4
40.e odd 2 1 1088.2.a.p 2
40.f even 2 1 1088.2.a.t 2
60.h even 2 1 612.2.a.e 2
85.c even 2 1 4624.2.a.x 2
120.i odd 2 1 9792.2.a.cs 2
120.m even 2 1 9792.2.a.cr 2
140.c even 2 1 3332.2.a.h 2
220.g even 2 1 8228.2.a.k 2
340.d odd 2 1 1156.2.a.a 2
340.n odd 4 2 1156.2.b.c 4
340.ba odd 8 4 1156.2.e.d 8
340.bg even 16 8 1156.2.h.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.2.a.a 2 20.d odd 2 1
272.2.a.e 2 5.b even 2 1
612.2.a.e 2 60.h even 2 1
1088.2.a.p 2 40.e odd 2 1
1088.2.a.t 2 40.f even 2 1
1156.2.a.a 2 340.d odd 2 1
1156.2.b.c 4 340.n odd 4 2
1156.2.e.d 8 340.ba odd 8 4
1156.2.h.f 16 340.bg even 16 8
1700.2.a.d 2 4.b odd 2 1
1700.2.e.c 4 20.e even 4 2
2448.2.a.y 2 15.d odd 2 1
3332.2.a.h 2 140.c even 2 1
4624.2.a.x 2 85.c even 2 1
6800.2.a.bh 2 1.a even 1 1 trivial
8228.2.a.k 2 220.g even 2 1
9792.2.a.cr 2 120.m even 2 1
9792.2.a.cs 2 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6800))\):

\( T_{3}^{2} - 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 6T_{11} + 6 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$29$ \( T^{2} - 12 \) Copy content Toggle raw display
$31$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$37$ \( T^{2} + 16T + 52 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 4T - 104 \) Copy content Toggle raw display
$47$ \( T^{2} - 48 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$61$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} - 16T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T - 18 \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 14T + 22 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$89$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 44 \) Copy content Toggle raw display
show more
show less