Properties

Label 680.2.e
Level $680$
Weight $2$
Character orbit 680.e
Rep. character $\chi_{680}(409,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $3$
Sturm bound $216$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(216\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(680, [\chi])\).

Total New Old
Modular forms 116 24 92
Cusp forms 100 24 76
Eisenstein series 16 0 16

Trace form

\( 24 q - 28 q^{9} + 16 q^{11} - 16 q^{15} - 4 q^{19} - 8 q^{21} + 12 q^{25} + 24 q^{29} - 8 q^{31} - 4 q^{35} + 16 q^{39} - 24 q^{41} + 16 q^{45} - 48 q^{49} + 12 q^{51} - 16 q^{55} + 4 q^{59} - 24 q^{65}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
680.2.e.a 680.e 5.b $2$ $5.430$ \(\Q(\sqrt{-1}) \) None 680.2.e.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(2 i-1)q^{5}-4 i q^{7}+2 q^{9}+\cdots\)
680.2.e.b 680.e 5.b $10$ $5.430$ 10.0.\(\cdots\).1 None 680.2.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}+(-\beta _{3}-\beta _{8})q^{5}+(\beta _{5}+\beta _{7}+\cdots)q^{7}+\cdots\)
680.2.e.c 680.e 5.b $12$ $5.430$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 680.2.e.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3})q^{3}+\beta _{7}q^{5}+(-\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)