Defining parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(680, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 24 | 92 |
Cusp forms | 100 | 24 | 76 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(680, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
680.2.e.a | $2$ | $5.430$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+i q^{3}+(2 i-1)q^{5}-4 i q^{7}+2 q^{9}+\cdots\) |
680.2.e.b | $10$ | $5.430$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{5}q^{3}+(-\beta _{3}-\beta _{8})q^{5}+(\beta _{5}+\beta _{7}+\cdots)q^{7}+\cdots\) |
680.2.e.c | $12$ | $5.430$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(\beta _{1}+\beta _{3})q^{3}+\beta _{7}q^{5}+(-\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(680, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)