Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.co (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(832\) |
Relative dimension: | \(104\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | −1.41418 | + | 0.0101729i | −0.640662 | − | 0.127436i | 1.99979 | − | 0.0287725i | 1.56955 | + | 1.59264i | 0.907306 | + | 0.173699i | −3.42068 | − | 2.28563i | −2.82777 | + | 0.0610331i | −2.37743 | − | 0.984764i | −2.23583 | − | 2.23631i |
99.2 | −1.41120 | + | 0.0922559i | −2.87525 | − | 0.571923i | 1.98298 | − | 0.260383i | −1.43338 | − | 1.71622i | 4.11032 | + | 0.541840i | −0.212560 | − | 0.142028i | −2.77436 | + | 0.550394i | 5.16834 | + | 2.14080i | 2.18112 | + | 2.28970i |
99.3 | −1.40993 | − | 0.110028i | 1.23327 | + | 0.245314i | 1.97579 | + | 0.310262i | 2.01756 | − | 0.964082i | −1.71184 | − | 0.481569i | 2.31563 | + | 1.54725i | −2.75158 | − | 0.654838i | −1.31085 | − | 0.542972i | −2.95069 | + | 1.13730i |
99.4 | −1.40789 | − | 0.133562i | −0.261892 | − | 0.0520936i | 1.96432 | + | 0.376082i | −2.19746 | − | 0.413747i | 0.361758 | + | 0.108321i | 3.74174 | + | 2.50015i | −2.71532 | − | 0.791841i | −2.70576 | − | 1.12076i | 3.03852 | + | 0.876008i |
99.5 | −1.40534 | + | 0.158195i | 1.68688 | + | 0.335540i | 1.94995 | − | 0.444636i | −1.31805 | + | 1.80630i | −2.42371 | − | 0.204691i | −1.88168 | − | 1.25730i | −2.67000 | + | 0.933337i | −0.0386776 | − | 0.0160208i | 1.56656 | − | 2.74698i |
99.6 | −1.40033 | + | 0.197690i | 2.34414 | + | 0.466278i | 1.92184 | − | 0.553661i | 0.931769 | − | 2.03268i | −3.37474 | − | 0.189530i | −3.26252 | − | 2.17994i | −2.58175 | + | 1.15523i | 2.50594 | + | 1.03799i | −0.902942 | + | 3.03063i |
99.7 | −1.39450 | − | 0.235336i | −1.73290 | − | 0.344695i | 1.88923 | + | 0.656351i | −0.781951 | + | 2.09489i | 2.33540 | + | 0.888490i | 1.67205 | + | 1.11723i | −2.48006 | − | 1.35988i | 0.112490 | + | 0.0465948i | 1.58343 | − | 2.73729i |
99.8 | −1.38718 | − | 0.275197i | 2.51872 | + | 0.501004i | 1.84853 | + | 0.763494i | 0.942122 | + | 2.02791i | −3.35604 | − | 1.38812i | 2.23913 | + | 1.49614i | −2.35414 | − | 1.56781i | 3.32129 | + | 1.37572i | −0.748819 | − | 3.07234i |
99.9 | −1.37562 | + | 0.328119i | −1.63264 | − | 0.324753i | 1.78468 | − | 0.902737i | 0.608763 | − | 2.15161i | 2.35246 | − | 0.0889645i | −0.693159 | − | 0.463154i | −2.15883 | + | 1.82741i | −0.211574 | − | 0.0876370i | −0.131444 | + | 3.15954i |
99.10 | −1.36678 | − | 0.363200i | −0.582212 | − | 0.115809i | 1.73617 | + | 0.992829i | 2.18602 | − | 0.470433i | 0.753693 | + | 0.369745i | −0.120434 | − | 0.0804716i | −2.01237 | − | 1.98756i | −2.44608 | − | 1.01320i | −3.15867 | − | 0.150986i |
99.11 | −1.35478 | + | 0.405659i | −3.02940 | − | 0.602586i | 1.67088 | − | 1.09916i | 2.03379 | + | 0.929359i | 4.34863 | − | 0.412531i | 3.84724 | + | 2.57064i | −1.81780 | + | 2.16693i | 6.04253 | + | 2.50290i | −3.13235 | − | 0.434057i |
99.12 | −1.32441 | + | 0.495923i | 1.03954 | + | 0.206777i | 1.50812 | − | 1.31361i | −2.15293 | − | 0.604079i | −1.47932 | + | 0.241673i | 0.290647 | + | 0.194204i | −1.34592 | + | 2.48767i | −1.73376 | − | 0.718147i | 3.15093 | − | 0.267637i |
99.13 | −1.31885 | − | 0.510535i | −0.821426 | − | 0.163392i | 1.47871 | + | 1.34663i | −1.70342 | − | 1.44857i | 0.999917 | + | 0.634856i | −3.51029 | − | 2.34550i | −1.26268 | − | 2.53094i | −2.12359 | − | 0.879621i | 1.50701 | + | 2.78010i |
99.14 | −1.30228 | − | 0.551433i | 3.30415 | + | 0.657237i | 1.39184 | + | 1.43624i | −2.22931 | − | 0.173723i | −3.94050 | − | 2.67792i | −0.135632 | − | 0.0906264i | −1.02058 | − | 2.63788i | 7.71383 | + | 3.19517i | 2.80738 | + | 1.45555i |
99.15 | −1.28717 | + | 0.585828i | −1.03954 | − | 0.206777i | 1.31361 | − | 1.50812i | −0.265792 | + | 2.22021i | 1.45919 | − | 0.342833i | 0.290647 | + | 0.194204i | −0.807340 | + | 2.71076i | −1.73376 | − | 0.718147i | −0.958545 | − | 3.01350i |
99.16 | −1.24482 | + | 0.671133i | 3.02940 | + | 0.602586i | 1.09916 | − | 1.67088i | −0.0803191 | − | 2.23462i | −4.17548 | + | 1.28302i | 3.84724 | + | 2.57064i | −0.246876 | + | 2.81763i | 6.04253 | + | 2.50290i | 1.59971 | + | 2.72780i |
99.17 | −1.20473 | + | 0.740697i | 1.63264 | + | 0.324753i | 0.902737 | − | 1.78468i | 2.22079 | + | 0.260961i | −2.20744 | + | 0.818055i | −0.693159 | − | 0.463154i | 0.234351 | + | 2.81870i | −0.211574 | − | 0.0876370i | −2.86874 | + | 1.33054i |
99.18 | −1.18089 | − | 0.778143i | −2.76972 | − | 0.550931i | 0.788988 | + | 1.83780i | 1.55179 | − | 1.60995i | 2.84202 | + | 2.80582i | −0.826983 | − | 0.552572i | 0.498362 | − | 2.78418i | 4.59617 | + | 1.90380i | −3.08526 | + | 0.693654i |
99.19 | −1.17976 | − | 0.779844i | 0.420865 | + | 0.0837152i | 0.783687 | + | 1.84006i | −0.334927 | − | 2.21084i | −0.431236 | − | 0.426973i | 0.582822 | + | 0.389429i | 0.510396 | − | 2.78199i | −2.60152 | − | 1.07758i | −1.32898 | + | 2.86946i |
99.20 | −1.16464 | − | 0.802257i | −1.96701 | − | 0.391262i | 0.712767 | + | 1.86868i | 0.939232 | + | 2.02925i | 1.97696 | + | 2.03373i | 1.80528 | + | 1.20625i | 0.669045 | − | 2.74816i | 0.944397 | + | 0.391182i | 0.534111 | − | 3.11685i |
See next 80 embeddings (of 832 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
17.e | odd | 16 | 1 | inner |
40.e | odd | 2 | 1 | inner |
85.p | odd | 16 | 1 | inner |
136.s | even | 16 | 1 | inner |
680.co | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.co.a | ✓ | 832 |
5.b | even | 2 | 1 | inner | 680.2.co.a | ✓ | 832 |
8.d | odd | 2 | 1 | inner | 680.2.co.a | ✓ | 832 |
17.e | odd | 16 | 1 | inner | 680.2.co.a | ✓ | 832 |
40.e | odd | 2 | 1 | inner | 680.2.co.a | ✓ | 832 |
85.p | odd | 16 | 1 | inner | 680.2.co.a | ✓ | 832 |
136.s | even | 16 | 1 | inner | 680.2.co.a | ✓ | 832 |
680.co | even | 16 | 1 | inner | 680.2.co.a | ✓ | 832 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.co.a | ✓ | 832 | 1.a | even | 1 | 1 | trivial |
680.2.co.a | ✓ | 832 | 5.b | even | 2 | 1 | inner |
680.2.co.a | ✓ | 832 | 8.d | odd | 2 | 1 | inner |
680.2.co.a | ✓ | 832 | 17.e | odd | 16 | 1 | inner |
680.2.co.a | ✓ | 832 | 40.e | odd | 2 | 1 | inner |
680.2.co.a | ✓ | 832 | 85.p | odd | 16 | 1 | inner |
680.2.co.a | ✓ | 832 | 136.s | even | 16 | 1 | inner |
680.2.co.a | ✓ | 832 | 680.co | even | 16 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(680, [\chi])\).