Properties

Label 680.2.ci
Level $680$
Weight $2$
Character orbit 680.ci
Rep. character $\chi_{680}(11,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $576$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.ci (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(680, [\chi])\).

Total New Old
Modular forms 896 576 320
Cusp forms 832 576 256
Eisenstein series 64 0 64

Trace form

\( 576 q - 16 q^{24} + 32 q^{26} - 96 q^{28} - 80 q^{32} + 64 q^{34} - 64 q^{36} + 80 q^{38} + 96 q^{42} - 32 q^{44} + 16 q^{46} - 80 q^{54} - 80 q^{56} + 64 q^{57} - 112 q^{62} - 96 q^{64} - 208 q^{66} - 208 q^{72}+ \cdots - 272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
680.2.ci.a 680.ci 136.s $576$ $5.430$ None 680.2.ci.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$

Decomposition of \(S_{2}^{\mathrm{old}}(680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 2}\)