Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.cf (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(832\) |
Relative dimension: | \(104\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −1.41415 | − | 0.0131479i | 0.645128 | + | 0.965503i | 1.99965 | + | 0.0371862i | −0.0494241 | + | 2.23552i | −0.899616 | − | 1.37385i | −0.178215 | + | 0.0354493i | −2.82733 | − | 0.0788781i | 0.632045 | − | 1.52589i | 0.0992856 | − | 3.16072i |
37.2 | −1.41354 | − | 0.0437995i | −0.517043 | − | 0.773810i | 1.99616 | + | 0.123824i | −2.20741 | + | 0.356844i | 0.696966 | + | 1.11645i | 2.40217 | − | 0.477821i | −2.81622 | − | 0.262461i | 0.816602 | − | 1.97145i | 3.13588 | − | 0.407728i |
37.3 | −1.41350 | − | 0.0448075i | 0.585607 | + | 0.876423i | 1.99598 | + | 0.126671i | 1.49958 | + | 1.65870i | −0.788487 | − | 1.26507i | −0.432665 | + | 0.0860623i | −2.81566 | − | 0.268485i | 0.722869 | − | 1.74516i | −2.04533 | − | 2.41176i |
37.4 | −1.40593 | − | 0.152840i | 0.159020 | + | 0.237990i | 1.95328 | + | 0.429766i | −0.318666 | − | 2.21324i | −0.187196 | − | 0.358901i | 4.61714 | − | 0.918406i | −2.68049 | − | 0.902761i | 1.11670 | − | 2.69595i | 0.109749 | + | 3.16037i |
37.5 | −1.39551 | − | 0.229244i | 1.00008 | + | 1.49673i | 1.89489 | + | 0.639823i | 1.25943 | − | 1.84765i | −1.05251 | − | 2.31796i | −0.346855 | + | 0.0689937i | −2.49767 | − | 1.32727i | −0.0919848 | + | 0.222071i | −2.18111 | + | 2.28970i |
37.6 | −1.39219 | + | 0.248599i | 1.74548 | + | 2.61229i | 1.87640 | − | 0.692196i | −1.88646 | − | 1.20052i | −3.07945 | − | 3.20289i | −1.75917 | + | 0.349920i | −2.44023 | + | 1.43014i | −2.62933 | + | 6.34776i | 2.92477 | + | 1.20239i |
37.7 | −1.37681 | − | 0.323085i | −1.73274 | − | 2.59324i | 1.79123 | + | 0.889656i | −1.99136 | − | 1.01710i | 1.54783 | + | 4.13023i | −1.15970 | + | 0.230678i | −2.17876 | − | 1.80361i | −2.57442 | + | 6.21519i | 2.41312 | + | 2.04373i |
37.8 | −1.36221 | + | 0.379990i | −1.10197 | − | 1.64922i | 1.71121 | − | 1.03525i | −0.610258 | + | 2.15118i | 2.12780 | + | 1.82784i | −4.76307 | + | 0.947434i | −1.93764 | + | 2.06047i | −0.357529 | + | 0.863152i | 0.0138687 | − | 3.16225i |
37.9 | −1.36008 | + | 0.387549i | −1.32287 | − | 1.97982i | 1.69961 | − | 1.05419i | 0.865885 | − | 2.06161i | 2.56649 | + | 2.18003i | −1.17495 | + | 0.233712i | −1.90305 | + | 2.09246i | −1.02164 | + | 2.46647i | −0.378693 | + | 3.13952i |
37.10 | −1.35485 | + | 0.405455i | 0.281224 | + | 0.420881i | 1.67121 | − | 1.09866i | −1.80329 | − | 1.32218i | −0.551663 | − | 0.456205i | −3.98768 | + | 0.793198i | −1.81878 | + | 2.16611i | 1.05000 | − | 2.53492i | 2.97926 | + | 1.06020i |
37.11 | −1.34965 | − | 0.422420i | −0.577178 | − | 0.863808i | 1.64312 | + | 1.14024i | 1.97239 | − | 1.05341i | 0.414100 | + | 1.40965i | −3.87241 | + | 0.770271i | −1.73598 | − | 2.23302i | 0.735021 | − | 1.77450i | −3.10702 | + | 0.588563i |
37.12 | −1.34139 | + | 0.447975i | −0.672289 | − | 1.00615i | 1.59864 | − | 1.20182i | 2.23426 | + | 0.0898960i | 1.35253 | + | 1.04847i | 2.33408 | − | 0.464277i | −1.60601 | + | 2.32825i | 0.587682 | − | 1.41879i | −3.03728 | + | 0.880308i |
37.13 | −1.33961 | + | 0.453250i | 1.50989 | + | 2.25971i | 1.58913 | − | 1.21436i | −1.01577 | + | 1.99204i | −3.04688 | − | 2.34278i | 1.91012 | − | 0.379947i | −1.57841 | + | 2.34704i | −1.67846 | + | 4.05216i | 0.457849 | − | 3.12896i |
37.14 | −1.33544 | − | 0.465393i | −1.38781 | − | 2.07701i | 1.56682 | + | 1.24301i | 2.15229 | + | 0.606353i | 0.886721 | + | 3.41961i | 2.34627 | − | 0.466702i | −1.51391 | − | 2.38916i | −1.23989 | + | 2.99337i | −2.59206 | − | 1.81141i |
37.15 | −1.27338 | − | 0.615219i | 1.38781 | + | 2.07701i | 1.24301 | + | 1.56682i | −2.15229 | − | 0.606353i | −0.489403 | − | 3.49864i | 2.34627 | − | 0.466702i | −0.618894 | − | 2.75989i | −1.23989 | + | 2.99337i | 2.36765 | + | 2.09625i |
37.16 | −1.26524 | + | 0.631804i | −1.84215 | − | 2.75697i | 1.20165 | − | 1.59876i | −0.219679 | + | 2.22525i | 4.07262 | + | 2.32434i | 4.13937 | − | 0.823371i | −0.510265 | + | 2.78202i | −3.05933 | + | 7.38587i | −1.12798 | − | 2.95426i |
37.17 | −1.25304 | − | 0.655652i | 0.577178 | + | 0.863808i | 1.14024 | + | 1.64312i | −1.97239 | + | 1.05341i | −0.156872 | − | 1.46082i | −3.87241 | + | 0.770271i | −0.351454 | − | 2.80651i | 0.735021 | − | 1.77450i | 3.16216 | − | 0.0267698i |
37.18 | −1.20201 | − | 0.745099i | 1.73274 | + | 2.59324i | 0.889656 | + | 1.79123i | 1.99136 | + | 1.01710i | −0.150560 | − | 4.40816i | −1.15970 | + | 0.230678i | 0.265270 | − | 2.81596i | −2.57442 | + | 6.21519i | −1.63580 | − | 2.70632i |
37.19 | −1.20119 | + | 0.746422i | 1.51859 | + | 2.27273i | 0.885710 | − | 1.79319i | 2.00008 | − | 0.999838i | −3.52053 | − | 1.59647i | 3.78525 | − | 0.752933i | 0.274568 | + | 2.81507i | −1.71114 | + | 4.13105i | −1.65617 | + | 2.69390i |
37.20 | −1.18388 | + | 0.773579i | 0.545146 | + | 0.815869i | 0.803152 | − | 1.83165i | 0.176872 | − | 2.22906i | −1.27653 | − | 0.544179i | 0.186072 | − | 0.0370121i | 0.466089 | + | 2.78976i | 0.779592 | − | 1.88210i | 1.51496 | + | 2.77577i |
See next 80 embeddings (of 832 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
85.r | even | 16 | 1 | inner |
680.cf | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.cf.a | ✓ | 832 |
5.c | odd | 4 | 1 | 680.2.ct.a | yes | 832 | |
8.b | even | 2 | 1 | inner | 680.2.cf.a | ✓ | 832 |
17.e | odd | 16 | 1 | 680.2.ct.a | yes | 832 | |
40.i | odd | 4 | 1 | 680.2.ct.a | yes | 832 | |
85.r | even | 16 | 1 | inner | 680.2.cf.a | ✓ | 832 |
136.q | odd | 16 | 1 | 680.2.ct.a | yes | 832 | |
680.cf | even | 16 | 1 | inner | 680.2.cf.a | ✓ | 832 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.cf.a | ✓ | 832 | 1.a | even | 1 | 1 | trivial |
680.2.cf.a | ✓ | 832 | 8.b | even | 2 | 1 | inner |
680.2.cf.a | ✓ | 832 | 85.r | even | 16 | 1 | inner |
680.2.cf.a | ✓ | 832 | 680.cf | even | 16 | 1 | inner |
680.2.ct.a | yes | 832 | 5.c | odd | 4 | 1 | |
680.2.ct.a | yes | 832 | 17.e | odd | 16 | 1 | |
680.2.ct.a | yes | 832 | 40.i | odd | 4 | 1 | |
680.2.ct.a | yes | 832 | 136.q | odd | 16 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(680, [\chi])\).