Properties

Label 680.2.cf
Level $680$
Weight $2$
Character orbit 680.cf
Rep. character $\chi_{680}(37,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $832$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.cf (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 680 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(680, [\chi])\).

Total New Old
Modular forms 896 896 0
Cusp forms 832 832 0
Eisenstein series 64 64 0

Trace form

\( 832 q - 8 q^{2} - 16 q^{6} - 16 q^{7} - 8 q^{8} - 8 q^{10} - 32 q^{12} - 32 q^{14} - 16 q^{15} - 16 q^{17} - 16 q^{18} - 8 q^{20} - 8 q^{22} - 16 q^{23} - 16 q^{25} - 48 q^{26} - 40 q^{28} - 72 q^{30} - 32 q^{31}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
680.2.cf.a 680.cf 680.bf $832$ $5.430$ None 680.2.cf.a \(-8\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{16}]$