Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.br (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(416\) |
Relative dimension: | \(104\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
189.1 | −1.40988 | − | 0.110686i | 2.70861 | − | 1.12194i | 1.97550 | + | 0.312106i | 1.69735 | + | 1.45568i | −3.94299 | + | 1.28200i | 2.90462 | + | 1.20313i | −2.75066 | − | 0.658689i | 3.95650 | − | 3.95650i | −2.23193 | − | 2.24020i |
189.2 | −1.40588 | + | 0.153322i | 0.993360 | − | 0.411463i | 1.95298 | − | 0.431104i | 2.22386 | − | 0.233300i | −1.33346 | + | 0.730771i | −2.22932 | − | 0.923416i | −2.67956 | + | 0.905515i | −1.30386 | + | 1.30386i | −3.09071 | + | 0.668958i |
189.3 | −1.40379 | − | 0.171400i | −0.526477 | + | 0.218074i | 1.94124 | + | 0.481218i | −2.20426 | − | 0.375794i | 0.776440 | − | 0.215892i | −0.947853 | − | 0.392614i | −2.64262 | − | 1.00826i | −1.89170 | + | 1.89170i | 3.02991 | + | 0.905346i |
189.4 | −1.40155 | − | 0.188830i | 0.915206 | − | 0.379091i | 1.92869 | + | 0.529309i | 0.0790838 | + | 2.23467i | −1.35429 | + | 0.358496i | 3.01207 | + | 1.24764i | −2.60320 | − | 1.10605i | −1.42743 | + | 1.42743i | 0.311132 | − | 3.14693i |
189.5 | −1.39904 | + | 0.206585i | −2.16008 | + | 0.894733i | 1.91465 | − | 0.578042i | 1.10543 | − | 1.94371i | 2.83720 | − | 1.69801i | 4.44461 | + | 1.84102i | −2.55926 | + | 1.20424i | 1.74407 | − | 1.74407i | −1.14501 | + | 2.94770i |
189.6 | −1.39620 | + | 0.224998i | −0.349327 | + | 0.144696i | 1.89875 | − | 0.628285i | −0.605891 | − | 2.15242i | 0.455174 | − | 0.280622i | −0.459864 | − | 0.190482i | −2.50968 | + | 1.30443i | −2.02023 | + | 2.02023i | 1.33023 | + | 2.86888i |
189.7 | −1.39544 | − | 0.229661i | 3.09876 | − | 1.28355i | 1.89451 | + | 0.640958i | −0.179138 | − | 2.22888i | −4.61892 | + | 1.07945i | −3.68766 | − | 1.52748i | −2.49648 | − | 1.32952i | 5.83350 | − | 5.83350i | −0.261911 | + | 3.15141i |
189.8 | −1.38778 | − | 0.272134i | −2.09716 | + | 0.868672i | 1.85189 | + | 0.755326i | 1.19071 | + | 1.89267i | 3.14680 | − | 0.634820i | −0.787192 | − | 0.326065i | −2.36447 | − | 1.55219i | 1.52217 | − | 1.52217i | −1.13738 | − | 2.95065i |
189.9 | −1.38576 | + | 0.282254i | −2.43492 | + | 1.00858i | 1.84066 | − | 0.782274i | −1.03845 | + | 1.98031i | 3.08954 | − | 2.08491i | 2.82991 | + | 1.17219i | −2.32992 | + | 1.60358i | 2.79029 | − | 2.79029i | 0.880085 | − | 3.03734i |
189.10 | −1.37975 | + | 0.310318i | 1.71038 | − | 0.708465i | 1.80741 | − | 0.856321i | −1.93386 | − | 1.12258i | −2.14005 | + | 1.50827i | 3.10654 | + | 1.28677i | −2.22803 | + | 1.74238i | 0.302174 | − | 0.302174i | 3.01659 | + | 0.948770i |
189.11 | −1.36915 | − | 0.354165i | 1.54407 | − | 0.639573i | 1.74913 | + | 0.969808i | −1.61229 | + | 1.54936i | −2.34057 | + | 0.328817i | −2.60037 | − | 1.07711i | −2.05135 | − | 1.94729i | −0.146235 | + | 0.146235i | 2.75619 | − | 1.55029i |
189.12 | −1.35659 | + | 0.399586i | −1.50278 | + | 0.622470i | 1.68066 | − | 1.08415i | −2.13034 | + | 0.679452i | 1.78992 | − | 1.44492i | −3.52757 | − | 1.46117i | −1.84676 | + | 2.14231i | −0.250453 | + | 0.250453i | 2.61849 | − | 1.77299i |
189.13 | −1.32984 | − | 0.481164i | 0.337370 | − | 0.139743i | 1.53696 | + | 1.27974i | 1.90443 | − | 1.17181i | −0.515889 | + | 0.0235062i | −0.589730 | − | 0.244274i | −1.42815 | − | 2.44139i | −2.02703 | + | 2.02703i | −3.09643 | + | 0.641987i |
189.14 | −1.29630 | + | 0.565334i | −1.35560 | + | 0.561507i | 1.36080 | − | 1.46569i | 2.09094 | + | 0.792447i | 1.43983 | − | 1.49425i | −1.50301 | − | 0.622567i | −0.935398 | + | 2.66928i | −0.598963 | + | 0.598963i | −3.15849 | + | 0.154828i |
189.15 | −1.26372 | + | 0.634824i | 2.52290 | − | 1.04502i | 1.19400 | − | 1.60448i | −2.11060 | + | 0.738481i | −2.52485 | + | 2.92222i | −0.343036 | − | 0.142090i | −0.490320 | + | 2.78560i | 3.15165 | − | 3.15165i | 2.19842 | − | 2.27310i |
189.16 | −1.25660 | − | 0.648820i | −1.86646 | + | 0.773113i | 1.15807 | + | 1.63061i | −0.689354 | − | 2.12716i | 2.84700 | + | 0.239505i | 0.739929 | + | 0.306488i | −0.397251 | − | 2.80039i | 0.764647 | − | 0.764647i | −0.513900 | + | 3.12024i |
189.17 | −1.22341 | + | 0.709418i | 2.20971 | − | 0.915292i | 0.993451 | − | 1.73582i | 1.27033 | − | 1.84018i | −2.05405 | + | 2.68738i | 2.89176 | + | 1.19781i | 0.0160243 | + | 2.82838i | 1.92374 | − | 1.92374i | −0.248667 | + | 3.15249i |
189.18 | −1.17301 | − | 0.789962i | −0.850355 | + | 0.352229i | 0.751921 | + | 1.85327i | −2.19191 | + | 0.442194i | 1.27573 | + | 0.258579i | 4.44690 | + | 1.84197i | 0.581999 | − | 2.76790i | −1.52228 | + | 1.52228i | 2.92046 | + | 1.21282i |
189.19 | −1.16277 | + | 0.804965i | 0.0813899 | − | 0.0337128i | 0.704063 | − | 1.87198i | 1.95265 | + | 1.08957i | −0.0675000 | + | 0.104716i | 3.26620 | + | 1.35291i | 0.688213 | + | 2.74342i | −2.11583 | + | 2.11583i | −3.14754 | + | 0.304895i |
189.20 | −1.14802 | − | 0.825870i | 1.43999 | − | 0.596464i | 0.635878 | + | 1.89622i | 0.576715 | − | 2.16042i | −2.14574 | − | 0.504496i | 2.02012 | + | 0.836761i | 0.836035 | − | 2.70204i | −0.403512 | + | 0.403512i | −2.44630 | + | 2.00390i |
See next 80 embeddings (of 416 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
17.d | even | 8 | 1 | inner |
40.f | even | 2 | 1 | inner |
85.m | even | 8 | 1 | inner |
136.o | even | 8 | 1 | inner |
680.br | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.br.a | ✓ | 416 |
5.b | even | 2 | 1 | inner | 680.2.br.a | ✓ | 416 |
8.b | even | 2 | 1 | inner | 680.2.br.a | ✓ | 416 |
17.d | even | 8 | 1 | inner | 680.2.br.a | ✓ | 416 |
40.f | even | 2 | 1 | inner | 680.2.br.a | ✓ | 416 |
85.m | even | 8 | 1 | inner | 680.2.br.a | ✓ | 416 |
136.o | even | 8 | 1 | inner | 680.2.br.a | ✓ | 416 |
680.br | even | 8 | 1 | inner | 680.2.br.a | ✓ | 416 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.br.a | ✓ | 416 | 1.a | even | 1 | 1 | trivial |
680.2.br.a | ✓ | 416 | 5.b | even | 2 | 1 | inner |
680.2.br.a | ✓ | 416 | 8.b | even | 2 | 1 | inner |
680.2.br.a | ✓ | 416 | 17.d | even | 8 | 1 | inner |
680.2.br.a | ✓ | 416 | 40.f | even | 2 | 1 | inner |
680.2.br.a | ✓ | 416 | 85.m | even | 8 | 1 | inner |
680.2.br.a | ✓ | 416 | 136.o | even | 8 | 1 | inner |
680.2.br.a | ✓ | 416 | 680.br | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(680, [\chi])\).