Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.bg (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(96\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 | −1.41414 | + | 0.0144393i | −1.67812 | + | 1.67812i | 1.99958 | − | 0.0408384i | 0.606332 | + | 2.15229i | 2.34887 | − | 2.39733i | −3.20134 | + | 3.20134i | −2.82710 | + | 0.0866238i | − | 2.63219i | −0.888515 | − | 3.03489i | |
307.2 | −1.41408 | − | 0.0191244i | −2.19489 | + | 2.19489i | 1.99927 | + | 0.0540871i | −2.07854 | − | 0.824419i | 3.14574 | − | 3.06179i | 0.0463784 | − | 0.0463784i | −2.82610 | − | 0.114719i | − | 6.63511i | 2.92347 | + | 1.20555i | |
307.3 | −1.40922 | − | 0.118707i | −0.0880098 | + | 0.0880098i | 1.97182 | + | 0.334570i | 1.15330 | + | 1.91570i | 0.134473 | − | 0.113578i | 0.701897 | − | 0.701897i | −2.73901 | − | 0.705552i | 2.98451i | −1.39784 | − | 2.83655i | ||
307.4 | −1.40692 | + | 0.143433i | −1.31374 | + | 1.31374i | 1.95885 | − | 0.403599i | 2.16430 | − | 0.561952i | 1.65989 | − | 2.03676i | 1.21957 | − | 1.21957i | −2.69806 | + | 0.848796i | − | 0.451805i | −2.96440 | + | 1.10106i | |
307.5 | −1.40403 | − | 0.169411i | 0.650952 | − | 0.650952i | 1.94260 | + | 0.475715i | −2.11540 | + | 0.724619i | −1.02423 | + | 0.803678i | 0.614145 | − | 0.614145i | −2.64688 | − | 0.997015i | 2.15252i | 3.09285 | − | 0.659015i | ||
307.6 | −1.37584 | + | 0.327222i | 1.78728 | − | 1.78728i | 1.78585 | − | 0.900407i | 0.555716 | + | 2.16591i | −1.87417 | + | 3.04384i | 2.95224 | − | 2.95224i | −2.16241 | + | 1.82318i | − | 3.38873i | −1.47331 | − | 2.79810i | |
307.7 | −1.36957 | − | 0.352522i | 2.29220 | − | 2.29220i | 1.75146 | + | 0.965608i | −0.775233 | − | 2.09738i | −3.94738 | + | 2.33128i | 0.167838 | − | 0.167838i | −2.05835 | − | 1.93990i | − | 7.50837i | 0.322365 | + | 3.14580i | |
307.8 | −1.35624 | − | 0.400758i | −1.60078 | + | 1.60078i | 1.67879 | + | 1.08705i | 0.819675 | − | 2.08042i | 2.81258 | − | 1.52952i | 1.76879 | − | 1.76879i | −1.84120 | − | 2.14709i | − | 2.12502i | −1.94542 | + | 2.49306i | |
307.9 | −1.35479 | + | 0.405647i | 1.77226 | − | 1.77226i | 1.67090 | − | 1.09913i | 2.07389 | + | 0.836049i | −1.68213 | + | 3.11995i | −3.46258 | + | 3.46258i | −1.81786 | + | 2.16689i | − | 3.28182i | −3.14882 | − | 0.291401i | |
307.10 | −1.34539 | + | 0.435815i | 0.0551671 | − | 0.0551671i | 1.62013 | − | 1.17268i | −1.08340 | − | 1.95608i | −0.0501785 | + | 0.0982637i | −1.51122 | + | 1.51122i | −1.66863 | + | 2.28378i | 2.99391i | 2.31008 | + | 2.15952i | ||
307.11 | −1.32535 | + | 0.493391i | 1.44782 | − | 1.44782i | 1.51313 | − | 1.30784i | −2.15712 | + | 0.588925i | −1.20453 | + | 2.63321i | −0.920819 | + | 0.920819i | −1.36016 | + | 2.47991i | − | 1.19235i | 2.56838 | − | 1.84484i | |
307.12 | −1.30330 | − | 0.549014i | 2.14739 | − | 2.14739i | 1.39717 | + | 1.43106i | −1.39699 | + | 1.74597i | −3.97764 | + | 1.61974i | −1.73358 | + | 1.73358i | −1.03526 | − | 2.63216i | − | 6.22260i | 2.77926 | − | 1.50855i | |
307.13 | −1.27807 | + | 0.605423i | −1.30295 | + | 1.30295i | 1.26693 | − | 1.54755i | −1.65845 | − | 1.49985i | 0.876424 | − | 2.45409i | 0.261675 | − | 0.261675i | −0.682301 | + | 2.74490i | − | 0.395349i | 3.02766 | + | 0.912850i | |
307.14 | −1.27637 | − | 0.609009i | −0.634491 | + | 0.634491i | 1.25822 | + | 1.55464i | −2.01333 | + | 0.972887i | 1.19625 | − | 0.423431i | 2.34167 | − | 2.34167i | −0.659156 | − | 2.75055i | 2.19484i | 3.16224 | − | 0.0156248i | ||
307.15 | −1.26339 | − | 0.635494i | 1.35688 | − | 1.35688i | 1.19229 | + | 1.60575i | 2.22157 | − | 0.254202i | −2.57655 | + | 0.851974i | 1.93753 | − | 1.93753i | −0.485886 | − | 2.78638i | − | 0.682230i | −2.96825 | − | 1.09064i | |
307.16 | −1.25496 | − | 0.651972i | −0.867353 | + | 0.867353i | 1.14986 | + | 1.63640i | −2.19846 | − | 0.408383i | 1.65399 | − | 0.523005i | −3.35494 | + | 3.35494i | −0.376148 | − | 2.80330i | 1.49540i | 2.49273 | + | 1.94584i | ||
307.17 | −1.23879 | + | 0.682199i | −1.08388 | + | 1.08388i | 1.06921 | − | 1.69021i | −1.43185 | + | 1.71750i | 0.603282 | − | 2.08213i | 3.01153 | − | 3.01153i | −0.171470 | + | 2.82322i | 0.650390i | 0.602087 | − | 3.10443i | ||
307.18 | −1.21306 | + | 0.726977i | 0.637356 | − | 0.637356i | 0.943009 | − | 1.76373i | 0.876428 | − | 2.05715i | −0.309806 | + | 1.23649i | 3.53557 | − | 3.53557i | 0.138266 | + | 2.82505i | 2.18755i | 0.432346 | + | 3.13258i | ||
307.19 | −1.17894 | − | 0.781086i | −2.14184 | + | 2.14184i | 0.779808 | + | 1.84171i | −0.127785 | + | 2.23241i | 4.19807 | − | 0.852142i | 1.63144 | − | 1.63144i | 0.519188 | − | 2.78037i | − | 6.17495i | 1.89436 | − | 2.53207i | |
307.20 | −1.17397 | + | 0.788544i | −1.95701 | + | 1.95701i | 0.756398 | − | 1.85145i | 1.70987 | − | 1.44095i | 0.754277 | − | 3.84065i | −2.67624 | + | 2.67624i | 0.571961 | + | 2.76999i | − | 4.65975i | −0.871078 | + | 3.03994i | |
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
8.d | odd | 2 | 1 | inner |
40.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.bg.a | ✓ | 192 |
5.c | odd | 4 | 1 | inner | 680.2.bg.a | ✓ | 192 |
8.d | odd | 2 | 1 | inner | 680.2.bg.a | ✓ | 192 |
40.k | even | 4 | 1 | inner | 680.2.bg.a | ✓ | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.bg.a | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
680.2.bg.a | ✓ | 192 | 5.c | odd | 4 | 1 | inner |
680.2.bg.a | ✓ | 192 | 8.d | odd | 2 | 1 | inner |
680.2.bg.a | ✓ | 192 | 40.k | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(680, [\chi])\).