Properties

Label 680.2.be
Level $680$
Weight $2$
Character orbit 680.be
Rep. character $\chi_{680}(149,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $208$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.be (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 680 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(680, [\chi])\).

Total New Old
Modular forms 224 224 0
Cusp forms 208 208 0
Eisenstein series 16 16 0

Trace form

\( 208 q - 8 q^{4} + 8 q^{6} + 2 q^{10} - 4 q^{14} + 6 q^{20} + 12 q^{24} - 24 q^{30} - 24 q^{31} - 20 q^{34} - 32 q^{39} + 10 q^{40} + 48 q^{44} - 24 q^{46} + 36 q^{50} - 20 q^{54} - 8 q^{55} - 40 q^{56}+ \cdots - 112 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
680.2.be.a 680.be 680.ae $208$ $5.430$ None 680.2.be.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$