Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.ba (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(140\) |
Relative dimension: | \(70\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21.1 | −1.40821 | + | 0.130188i | 1.50733 | + | 1.50733i | 1.96610 | − | 0.366665i | −0.707107 | − | 0.707107i | −2.31888 | − | 1.92640i | −3.09613 | − | 3.09613i | −2.72095 | + | 0.772304i | 1.54411i | 1.08781 | + | 0.903697i | ||
21.2 | −1.40300 | − | 0.177724i | −1.59244 | − | 1.59244i | 1.93683 | + | 0.498695i | −0.707107 | − | 0.707107i | 1.95119 | + | 2.51722i | 0.509104 | + | 0.509104i | −2.62874 | − | 1.04389i | 2.07176i | 0.866402 | + | 1.11774i | ||
21.3 | −1.39861 | − | 0.209479i | 0.297587 | + | 0.297587i | 1.91224 | + | 0.585960i | −0.707107 | − | 0.707107i | −0.353871 | − | 0.478547i | 2.12142 | + | 2.12142i | −2.55173 | − | 1.22010i | − | 2.82288i | 0.840845 | + | 1.13709i | |
21.4 | −1.36824 | − | 0.357649i | −0.199214 | − | 0.199214i | 1.74417 | + | 0.978700i | 0.707107 | + | 0.707107i | 0.201324 | + | 0.343821i | −1.78690 | − | 1.78690i | −2.03642 | − | 1.96290i | − | 2.92063i | −0.714598 | − | 1.22039i | |
21.5 | −1.34753 | − | 0.429141i | 1.81913 | + | 1.81913i | 1.63168 | + | 1.15656i | 0.707107 | + | 0.707107i | −1.67067 | − | 3.23200i | −0.325706 | − | 0.325706i | −1.70240 | − | 2.25872i | 3.61847i | −0.649399 | − | 1.25630i | ||
21.6 | −1.34108 | − | 0.448889i | −2.27997 | − | 2.27997i | 1.59700 | + | 1.20399i | 0.707107 | + | 0.707107i | 2.03417 | + | 4.08107i | −0.753751 | − | 0.753751i | −1.60124 | − | 2.33153i | 7.39649i | −0.630875 | − | 1.26570i | ||
21.7 | −1.34037 | + | 0.451000i | −1.45882 | − | 1.45882i | 1.59320 | − | 1.20902i | 0.707107 | + | 0.707107i | 2.61330 | + | 1.29744i | 0.765216 | + | 0.765216i | −1.59022 | + | 2.33906i | 1.25634i | −1.26669 | − | 0.628882i | ||
21.8 | −1.33610 | + | 0.463502i | 0.494360 | + | 0.494360i | 1.57033 | − | 1.23857i | −0.707107 | − | 0.707107i | −0.889652 | − | 0.431378i | −0.414696 | − | 0.414696i | −1.52404 | + | 2.38271i | − | 2.51122i | 1.27251 | + | 0.617020i | |
21.9 | −1.28273 | + | 0.595486i | −0.901457 | − | 0.901457i | 1.29079 | − | 1.52770i | −0.707107 | − | 0.707107i | 1.69313 | + | 0.619521i | 0.193573 | + | 0.193573i | −0.746016 | + | 2.72827i | − | 1.37475i | 1.32810 | + | 0.485955i | |
21.10 | −1.27433 | + | 0.613265i | 2.07444 | + | 2.07444i | 1.24781 | − | 1.56300i | 0.707107 | + | 0.707107i | −3.91570 | − | 1.37133i | 1.70925 | + | 1.70925i | −0.631586 | + | 2.75701i | 5.60664i | −1.33473 | − | 0.467440i | ||
21.11 | −1.23042 | − | 0.697177i | −0.742822 | − | 0.742822i | 1.02789 | + | 1.71565i | −0.707107 | − | 0.707107i | 0.396108 | + | 1.43187i | −3.48763 | − | 3.48763i | −0.0686299 | − | 2.82759i | − | 1.89643i | 0.377063 | + | 1.36302i | |
21.12 | −1.21931 | − | 0.716444i | 1.45367 | + | 1.45367i | 0.973417 | + | 1.74713i | −0.707107 | − | 0.707107i | −0.730995 | − | 2.81394i | 2.29587 | + | 2.29587i | 0.0648259 | − | 2.82768i | 1.22630i | 0.355578 | + | 1.36878i | ||
21.13 | −1.16850 | + | 0.796619i | 1.30395 | + | 1.30395i | 0.730797 | − | 1.86170i | 0.707107 | + | 0.707107i | −2.56243 | − | 0.484919i | −2.46360 | − | 2.46360i | 0.629129 | + | 2.75757i | 0.400588i | −1.38955 | − | 0.262962i | ||
21.14 | −1.09569 | − | 0.894130i | −1.78868 | − | 1.78868i | 0.401063 | + | 1.95937i | −0.707107 | − | 0.707107i | 0.360521 | + | 3.55914i | 1.20340 | + | 1.20340i | 1.31250 | − | 2.50546i | 3.39872i | 0.142523 | + | 1.40701i | ||
21.15 | −1.07030 | − | 0.924369i | −1.16413 | − | 1.16413i | 0.291085 | + | 1.97870i | 0.707107 | + | 0.707107i | 0.169884 | + | 2.32206i | 2.58910 | + | 2.58910i | 1.51750 | − | 2.38688i | − | 0.289584i | −0.103189 | − | 1.41044i | |
21.16 | −1.06369 | + | 0.931965i | −2.43920 | − | 2.43920i | 0.262881 | − | 1.98265i | −0.707107 | − | 0.707107i | 4.86781 | + | 0.321308i | −2.50313 | − | 2.50313i | 1.56813 | + | 2.35392i | 8.89942i | 1.41114 | + | 0.0931448i | ||
21.17 | −1.04654 | − | 0.951189i | 0.411582 | + | 0.411582i | 0.190479 | + | 1.99091i | 0.707107 | + | 0.707107i | −0.0392435 | − | 0.822228i | 0.0802668 | + | 0.0802668i | 1.69439 | − | 2.26474i | − | 2.66120i | −0.0674212 | − | 1.41261i | |
21.18 | −1.03249 | + | 0.966421i | −1.62610 | − | 1.62610i | 0.132062 | − | 1.99564i | 0.707107 | + | 0.707107i | 3.25043 | + | 0.107432i | 0.881548 | + | 0.881548i | 1.79227 | + | 2.18810i | 2.28843i | −1.41344 | − | 0.0467165i | ||
21.19 | −1.02972 | + | 0.969373i | 1.22333 | + | 1.22333i | 0.120632 | − | 1.99636i | −0.707107 | − | 0.707107i | −2.44554 | − | 0.0738200i | 0.937063 | + | 0.937063i | 1.81100 | + | 2.17262i | − | 0.00693262i | 1.41357 | + | 0.0426693i | |
21.20 | −0.894223 | + | 1.09561i | 0.255177 | + | 0.255177i | −0.400731 | − | 1.95944i | 0.707107 | + | 0.707107i | −0.507760 | + | 0.0513899i | −1.97412 | − | 1.97412i | 2.50513 | + | 1.31313i | − | 2.86977i | −1.40703 | + | 0.142404i | |
See next 80 embeddings (of 140 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
17.c | even | 4 | 1 | inner |
136.i | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.ba.b | ✓ | 140 |
8.b | even | 2 | 1 | inner | 680.2.ba.b | ✓ | 140 |
17.c | even | 4 | 1 | inner | 680.2.ba.b | ✓ | 140 |
136.i | even | 4 | 1 | inner | 680.2.ba.b | ✓ | 140 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.ba.b | ✓ | 140 | 1.a | even | 1 | 1 | trivial |
680.2.ba.b | ✓ | 140 | 8.b | even | 2 | 1 | inner |
680.2.ba.b | ✓ | 140 | 17.c | even | 4 | 1 | inner |
680.2.ba.b | ✓ | 140 | 136.i | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{140} + 1000 T_{3}^{136} + 462460 T_{3}^{132} + 131574520 T_{3}^{128} + 25844859558 T_{3}^{124} + \cdots + 31\!\cdots\!36 \)
acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\).