Properties

Label 672.4.h.a.575.8
Level $672$
Weight $4$
Character 672.575
Analytic conductor $39.649$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(575,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.575"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,0,0,0,0,0,-132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 575.8
Character \(\chi\) \(=\) 672.575
Dual form 672.4.h.a.575.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.68812 + 3.66030i) q^{3} +1.63405i q^{5} -7.00000i q^{7} +(0.204455 - 26.9992i) q^{9} -12.7716 q^{11} +4.43850 q^{13} +(-5.98113 - 6.02659i) q^{15} +115.854i q^{17} -126.414i q^{19} +(25.6221 + 25.8168i) q^{21} -80.3969 q^{23} +122.330 q^{25} +(98.0711 + 100.325i) q^{27} -249.311i q^{29} +119.670i q^{31} +(47.1033 - 46.7479i) q^{33} +11.4384 q^{35} +436.818 q^{37} +(-16.3697 + 16.2462i) q^{39} +331.031i q^{41} -126.975i q^{43} +(44.1182 + 0.334090i) q^{45} +135.834 q^{47} -49.0000 q^{49} +(-424.060 - 427.283i) q^{51} +395.400i q^{53} -20.8695i q^{55} +(462.714 + 466.231i) q^{57} -329.339 q^{59} -364.278 q^{61} +(-188.995 - 1.43118i) q^{63} +7.25275i q^{65} +996.255i q^{67} +(296.513 - 294.276i) q^{69} -349.047 q^{71} +211.437 q^{73} +(-451.167 + 447.764i) q^{75} +89.4014i q^{77} +240.806i q^{79} +(-728.916 - 11.0402i) q^{81} -580.873 q^{83} -189.312 q^{85} +(912.553 + 919.490i) q^{87} +1291.93i q^{89} -31.0695i q^{91} +(-438.029 - 441.358i) q^{93} +206.568 q^{95} +1175.97 q^{97} +(-2.61122 + 344.824i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 132 q^{9} - 120 q^{13} + 28 q^{21} - 756 q^{25} + 40 q^{33} + 672 q^{37} + 304 q^{45} - 1764 q^{49} + 1624 q^{57} + 2472 q^{61} - 1224 q^{69} - 2376 q^{73} + 468 q^{81} + 5160 q^{85} - 648 q^{93}+ \cdots - 4488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.68812 + 3.66030i −0.709779 + 0.704424i
\(4\) 0 0
\(5\) 1.63405i 0.146154i 0.997326 + 0.0730772i \(0.0232819\pi\)
−0.997326 + 0.0730772i \(0.976718\pi\)
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) 0.204455 26.9992i 0.00757240 0.999971i
\(10\) 0 0
\(11\) −12.7716 −0.350072 −0.175036 0.984562i \(-0.556004\pi\)
−0.175036 + 0.984562i \(0.556004\pi\)
\(12\) 0 0
\(13\) 4.43850 0.0946938 0.0473469 0.998879i \(-0.484923\pi\)
0.0473469 + 0.998879i \(0.484923\pi\)
\(14\) 0 0
\(15\) −5.98113 6.02659i −0.102955 0.103737i
\(16\) 0 0
\(17\) 115.854i 1.65287i 0.563035 + 0.826433i \(0.309633\pi\)
−0.563035 + 0.826433i \(0.690367\pi\)
\(18\) 0 0
\(19\) 126.414i 1.52639i −0.646168 0.763195i \(-0.723630\pi\)
0.646168 0.763195i \(-0.276370\pi\)
\(20\) 0 0
\(21\) 25.6221 + 25.8168i 0.266247 + 0.268271i
\(22\) 0 0
\(23\) −80.3969 −0.728865 −0.364433 0.931230i \(-0.618737\pi\)
−0.364433 + 0.931230i \(0.618737\pi\)
\(24\) 0 0
\(25\) 122.330 0.978639
\(26\) 0 0
\(27\) 98.0711 + 100.325i 0.699030 + 0.715093i
\(28\) 0 0
\(29\) 249.311i 1.59641i −0.602385 0.798206i \(-0.705783\pi\)
0.602385 0.798206i \(-0.294217\pi\)
\(30\) 0 0
\(31\) 119.670i 0.693336i 0.937988 + 0.346668i \(0.112687\pi\)
−0.937988 + 0.346668i \(0.887313\pi\)
\(32\) 0 0
\(33\) 47.1033 46.7479i 0.248474 0.246599i
\(34\) 0 0
\(35\) 11.4384 0.0552411
\(36\) 0 0
\(37\) 436.818 1.94088 0.970438 0.241352i \(-0.0775909\pi\)
0.970438 + 0.241352i \(0.0775909\pi\)
\(38\) 0 0
\(39\) −16.3697 + 16.2462i −0.0672116 + 0.0667046i
\(40\) 0 0
\(41\) 331.031i 1.26094i 0.776215 + 0.630469i \(0.217137\pi\)
−0.776215 + 0.630469i \(0.782863\pi\)
\(42\) 0 0
\(43\) 126.975i 0.450315i −0.974322 0.225158i \(-0.927710\pi\)
0.974322 0.225158i \(-0.0722897\pi\)
\(44\) 0 0
\(45\) 44.1182 + 0.334090i 0.146150 + 0.00110674i
\(46\) 0 0
\(47\) 135.834 0.421563 0.210781 0.977533i \(-0.432399\pi\)
0.210781 + 0.977533i \(0.432399\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −424.060 427.283i −1.16432 1.17317i
\(52\) 0 0
\(53\) 395.400i 1.02476i 0.858759 + 0.512380i \(0.171236\pi\)
−0.858759 + 0.512380i \(0.828764\pi\)
\(54\) 0 0
\(55\) 20.8695i 0.0511645i
\(56\) 0 0
\(57\) 462.714 + 466.231i 1.07523 + 1.08340i
\(58\) 0 0
\(59\) −329.339 −0.726717 −0.363358 0.931649i \(-0.618370\pi\)
−0.363358 + 0.931649i \(0.618370\pi\)
\(60\) 0 0
\(61\) −364.278 −0.764606 −0.382303 0.924037i \(-0.624869\pi\)
−0.382303 + 0.924037i \(0.624869\pi\)
\(62\) 0 0
\(63\) −188.995 1.43118i −0.377954 0.00286210i
\(64\) 0 0
\(65\) 7.25275i 0.0138399i
\(66\) 0 0
\(67\) 996.255i 1.81660i 0.418324 + 0.908298i \(0.362618\pi\)
−0.418324 + 0.908298i \(0.637382\pi\)
\(68\) 0 0
\(69\) 296.513 294.276i 0.517333 0.513431i
\(70\) 0 0
\(71\) −349.047 −0.583440 −0.291720 0.956504i \(-0.594228\pi\)
−0.291720 + 0.956504i \(0.594228\pi\)
\(72\) 0 0
\(73\) 211.437 0.338997 0.169498 0.985530i \(-0.445785\pi\)
0.169498 + 0.985530i \(0.445785\pi\)
\(74\) 0 0
\(75\) −451.167 + 447.764i −0.694617 + 0.689377i
\(76\) 0 0
\(77\) 89.4014i 0.132315i
\(78\) 0 0
\(79\) 240.806i 0.342947i 0.985189 + 0.171474i \(0.0548528\pi\)
−0.985189 + 0.171474i \(0.945147\pi\)
\(80\) 0 0
\(81\) −728.916 11.0402i −0.999885 0.0151444i
\(82\) 0 0
\(83\) −580.873 −0.768182 −0.384091 0.923295i \(-0.625485\pi\)
−0.384091 + 0.923295i \(0.625485\pi\)
\(84\) 0 0
\(85\) −189.312 −0.241573
\(86\) 0 0
\(87\) 912.553 + 919.490i 1.12455 + 1.13310i
\(88\) 0 0
\(89\) 1291.93i 1.53871i 0.638824 + 0.769353i \(0.279421\pi\)
−0.638824 + 0.769353i \(0.720579\pi\)
\(90\) 0 0
\(91\) 31.0695i 0.0357909i
\(92\) 0 0
\(93\) −438.029 441.358i −0.488403 0.492115i
\(94\) 0 0
\(95\) 206.568 0.223088
\(96\) 0 0
\(97\) 1175.97 1.23095 0.615475 0.788157i \(-0.288964\pi\)
0.615475 + 0.788157i \(0.288964\pi\)
\(98\) 0 0
\(99\) −2.61122 + 344.824i −0.00265088 + 0.350062i
\(100\) 0 0
\(101\) 470.743i 0.463769i 0.972743 + 0.231885i \(0.0744892\pi\)
−0.972743 + 0.231885i \(0.925511\pi\)
\(102\) 0 0
\(103\) 1443.29i 1.38069i 0.723479 + 0.690347i \(0.242542\pi\)
−0.723479 + 0.690347i \(0.757458\pi\)
\(104\) 0 0
\(105\) −42.1861 + 41.8679i −0.0392090 + 0.0389132i
\(106\) 0 0
\(107\) −564.535 −0.510053 −0.255027 0.966934i \(-0.582084\pi\)
−0.255027 + 0.966934i \(0.582084\pi\)
\(108\) 0 0
\(109\) 1889.97 1.66079 0.830396 0.557174i \(-0.188114\pi\)
0.830396 + 0.557174i \(0.188114\pi\)
\(110\) 0 0
\(111\) −1611.04 + 1598.88i −1.37759 + 1.36720i
\(112\) 0 0
\(113\) 579.748i 0.482638i 0.970446 + 0.241319i \(0.0775800\pi\)
−0.970446 + 0.241319i \(0.922420\pi\)
\(114\) 0 0
\(115\) 131.373i 0.106527i
\(116\) 0 0
\(117\) 0.907473 119.836i 0.000717059 0.0946910i
\(118\) 0 0
\(119\) 810.978 0.624724
\(120\) 0 0
\(121\) −1167.89 −0.877450
\(122\) 0 0
\(123\) −1211.67 1220.88i −0.888235 0.894987i
\(124\) 0 0
\(125\) 404.151i 0.289187i
\(126\) 0 0
\(127\) 526.748i 0.368042i 0.982922 + 0.184021i \(0.0589114\pi\)
−0.982922 + 0.184021i \(0.941089\pi\)
\(128\) 0 0
\(129\) 464.767 + 468.300i 0.317213 + 0.319624i
\(130\) 0 0
\(131\) 363.833 0.242658 0.121329 0.992612i \(-0.461284\pi\)
0.121329 + 0.992612i \(0.461284\pi\)
\(132\) 0 0
\(133\) −884.900 −0.576921
\(134\) 0 0
\(135\) −163.936 + 160.254i −0.104514 + 0.102166i
\(136\) 0 0
\(137\) 1419.52i 0.885236i −0.896710 0.442618i \(-0.854050\pi\)
0.896710 0.442618i \(-0.145950\pi\)
\(138\) 0 0
\(139\) 341.346i 0.208292i 0.994562 + 0.104146i \(0.0332109\pi\)
−0.994562 + 0.104146i \(0.966789\pi\)
\(140\) 0 0
\(141\) −500.973 + 497.193i −0.299216 + 0.296959i
\(142\) 0 0
\(143\) −56.6869 −0.0331496
\(144\) 0 0
\(145\) 407.388 0.233322
\(146\) 0 0
\(147\) 180.718 179.355i 0.101397 0.100632i
\(148\) 0 0
\(149\) 2006.58i 1.10326i 0.834090 + 0.551628i \(0.185993\pi\)
−0.834090 + 0.551628i \(0.814007\pi\)
\(150\) 0 0
\(151\) 2571.21i 1.38571i 0.721078 + 0.692854i \(0.243647\pi\)
−0.721078 + 0.692854i \(0.756353\pi\)
\(152\) 0 0
\(153\) 3127.97 + 23.6869i 1.65282 + 0.0125162i
\(154\) 0 0
\(155\) −195.548 −0.101334
\(156\) 0 0
\(157\) 859.216 0.436770 0.218385 0.975863i \(-0.429921\pi\)
0.218385 + 0.975863i \(0.429921\pi\)
\(158\) 0 0
\(159\) −1447.28 1458.28i −0.721866 0.727354i
\(160\) 0 0
\(161\) 562.778i 0.275485i
\(162\) 0 0
\(163\) 1936.14i 0.930371i −0.885213 0.465186i \(-0.845988\pi\)
0.885213 0.465186i \(-0.154012\pi\)
\(164\) 0 0
\(165\) 76.3887 + 76.9693i 0.0360415 + 0.0363155i
\(166\) 0 0
\(167\) 3869.27 1.79289 0.896447 0.443151i \(-0.146140\pi\)
0.896447 + 0.443151i \(0.146140\pi\)
\(168\) 0 0
\(169\) −2177.30 −0.991033
\(170\) 0 0
\(171\) −3413.09 25.8460i −1.52635 0.0115584i
\(172\) 0 0
\(173\) 1342.38i 0.589940i 0.955506 + 0.294970i \(0.0953097\pi\)
−0.955506 + 0.294970i \(0.904690\pi\)
\(174\) 0 0
\(175\) 856.309i 0.369891i
\(176\) 0 0
\(177\) 1214.64 1205.48i 0.515808 0.511917i
\(178\) 0 0
\(179\) −2598.39 −1.08499 −0.542493 0.840060i \(-0.682520\pi\)
−0.542493 + 0.840060i \(0.682520\pi\)
\(180\) 0 0
\(181\) 2220.03 0.911677 0.455838 0.890063i \(-0.349339\pi\)
0.455838 + 0.890063i \(0.349339\pi\)
\(182\) 0 0
\(183\) 1343.50 1333.36i 0.542701 0.538607i
\(184\) 0 0
\(185\) 713.784i 0.283667i
\(186\) 0 0
\(187\) 1479.64i 0.578621i
\(188\) 0 0
\(189\) 702.273 686.498i 0.270280 0.264208i
\(190\) 0 0
\(191\) 2615.71 0.990921 0.495460 0.868630i \(-0.334999\pi\)
0.495460 + 0.868630i \(0.334999\pi\)
\(192\) 0 0
\(193\) −236.696 −0.0882783 −0.0441392 0.999025i \(-0.514054\pi\)
−0.0441392 + 0.999025i \(0.514054\pi\)
\(194\) 0 0
\(195\) −26.5472 26.7490i −0.00974916 0.00982327i
\(196\) 0 0
\(197\) 728.396i 0.263432i 0.991287 + 0.131716i \(0.0420487\pi\)
−0.991287 + 0.131716i \(0.957951\pi\)
\(198\) 0 0
\(199\) 1533.63i 0.546313i −0.961970 0.273156i \(-0.911932\pi\)
0.961970 0.273156i \(-0.0880677\pi\)
\(200\) 0 0
\(201\) −3646.59 3674.31i −1.27965 1.28938i
\(202\) 0 0
\(203\) −1745.18 −0.603387
\(204\) 0 0
\(205\) −540.923 −0.184291
\(206\) 0 0
\(207\) −16.4375 + 2170.65i −0.00551926 + 0.728844i
\(208\) 0 0
\(209\) 1614.51i 0.534346i
\(210\) 0 0
\(211\) 4846.33i 1.58121i −0.612327 0.790605i \(-0.709766\pi\)
0.612327 0.790605i \(-0.290234\pi\)
\(212\) 0 0
\(213\) 1287.33 1277.62i 0.414113 0.410989i
\(214\) 0 0
\(215\) 207.485 0.0658155
\(216\) 0 0
\(217\) 837.692 0.262056
\(218\) 0 0
\(219\) −779.803 + 773.921i −0.240613 + 0.238798i
\(220\) 0 0
\(221\) 514.218i 0.156516i
\(222\) 0 0
\(223\) 4607.48i 1.38359i 0.722096 + 0.691793i \(0.243179\pi\)
−0.722096 + 0.691793i \(0.756821\pi\)
\(224\) 0 0
\(225\) 25.0109 3302.81i 0.00741064 0.978611i
\(226\) 0 0
\(227\) 4313.18 1.26113 0.630564 0.776137i \(-0.282824\pi\)
0.630564 + 0.776137i \(0.282824\pi\)
\(228\) 0 0
\(229\) 343.924 0.0992451 0.0496225 0.998768i \(-0.484198\pi\)
0.0496225 + 0.998768i \(0.484198\pi\)
\(230\) 0 0
\(231\) −327.236 329.723i −0.0932057 0.0939142i
\(232\) 0 0
\(233\) 86.4325i 0.0243021i −0.999926 0.0121510i \(-0.996132\pi\)
0.999926 0.0121510i \(-0.00386789\pi\)
\(234\) 0 0
\(235\) 221.960i 0.0616132i
\(236\) 0 0
\(237\) −881.423 888.123i −0.241580 0.243417i
\(238\) 0 0
\(239\) 1035.70 0.280308 0.140154 0.990130i \(-0.455240\pi\)
0.140154 + 0.990130i \(0.455240\pi\)
\(240\) 0 0
\(241\) 3035.68 0.811392 0.405696 0.914008i \(-0.367029\pi\)
0.405696 + 0.914008i \(0.367029\pi\)
\(242\) 0 0
\(243\) 2728.74 2627.33i 0.720366 0.693595i
\(244\) 0 0
\(245\) 80.0687i 0.0208792i
\(246\) 0 0
\(247\) 561.090i 0.144540i
\(248\) 0 0
\(249\) 2142.33 2126.17i 0.545240 0.541126i
\(250\) 0 0
\(251\) 2264.04 0.569342 0.284671 0.958625i \(-0.408116\pi\)
0.284671 + 0.958625i \(0.408116\pi\)
\(252\) 0 0
\(253\) 1026.80 0.255155
\(254\) 0 0
\(255\) 698.204 692.937i 0.171464 0.170170i
\(256\) 0 0
\(257\) 6365.21i 1.54495i −0.635048 0.772473i \(-0.719020\pi\)
0.635048 0.772473i \(-0.280980\pi\)
\(258\) 0 0
\(259\) 3057.72i 0.733582i
\(260\) 0 0
\(261\) −6731.21 50.9729i −1.59637 0.0120887i
\(262\) 0 0
\(263\) 4360.24 1.02230 0.511148 0.859492i \(-0.329220\pi\)
0.511148 + 0.859492i \(0.329220\pi\)
\(264\) 0 0
\(265\) −646.105 −0.149773
\(266\) 0 0
\(267\) −4728.86 4764.81i −1.08390 1.09214i
\(268\) 0 0
\(269\) 15.6838i 0.00355487i 0.999998 + 0.00177743i \(0.000565775\pi\)
−0.999998 + 0.00177743i \(0.999434\pi\)
\(270\) 0 0
\(271\) 2503.89i 0.561255i −0.959817 0.280628i \(-0.909457\pi\)
0.959817 0.280628i \(-0.0905426\pi\)
\(272\) 0 0
\(273\) 113.724 + 114.588i 0.0252120 + 0.0254036i
\(274\) 0 0
\(275\) −1562.35 −0.342594
\(276\) 0 0
\(277\) −5570.51 −1.20830 −0.604151 0.796870i \(-0.706488\pi\)
−0.604151 + 0.796870i \(0.706488\pi\)
\(278\) 0 0
\(279\) 3231.00 + 24.4672i 0.693316 + 0.00525021i
\(280\) 0 0
\(281\) 6987.62i 1.48344i 0.670710 + 0.741720i \(0.265989\pi\)
−0.670710 + 0.741720i \(0.734011\pi\)
\(282\) 0 0
\(283\) 2067.00i 0.434172i −0.976153 0.217086i \(-0.930345\pi\)
0.976153 0.217086i \(-0.0696552\pi\)
\(284\) 0 0
\(285\) −761.847 + 756.099i −0.158344 + 0.157149i
\(286\) 0 0
\(287\) 2317.22 0.476589
\(288\) 0 0
\(289\) −8509.14 −1.73196
\(290\) 0 0
\(291\) −4337.13 + 4304.41i −0.873702 + 0.867111i
\(292\) 0 0
\(293\) 6164.53i 1.22913i 0.788865 + 0.614566i \(0.210669\pi\)
−0.788865 + 0.614566i \(0.789331\pi\)
\(294\) 0 0
\(295\) 538.158i 0.106213i
\(296\) 0 0
\(297\) −1252.53 1281.31i −0.244710 0.250334i
\(298\) 0 0
\(299\) −356.842 −0.0690190
\(300\) 0 0
\(301\) −888.827 −0.170203
\(302\) 0 0
\(303\) −1723.06 1736.16i −0.326690 0.329174i
\(304\) 0 0
\(305\) 595.250i 0.111751i
\(306\) 0 0
\(307\) 4343.59i 0.807497i 0.914870 + 0.403749i \(0.132293\pi\)
−0.914870 + 0.403749i \(0.867707\pi\)
\(308\) 0 0
\(309\) −5282.86 5323.02i −0.972594 0.979987i
\(310\) 0 0
\(311\) 6682.90 1.21850 0.609249 0.792979i \(-0.291471\pi\)
0.609249 + 0.792979i \(0.291471\pi\)
\(312\) 0 0
\(313\) −7508.56 −1.35594 −0.677969 0.735090i \(-0.737140\pi\)
−0.677969 + 0.735090i \(0.737140\pi\)
\(314\) 0 0
\(315\) 2.33863 308.827i 0.000418308 0.0552396i
\(316\) 0 0
\(317\) 5241.90i 0.928753i −0.885638 0.464376i \(-0.846278\pi\)
0.885638 0.464376i \(-0.153722\pi\)
\(318\) 0 0
\(319\) 3184.11i 0.558859i
\(320\) 0 0
\(321\) 2082.07 2066.37i 0.362025 0.359294i
\(322\) 0 0
\(323\) 14645.6 2.52292
\(324\) 0 0
\(325\) 542.961 0.0926710
\(326\) 0 0
\(327\) −6970.43 + 6917.85i −1.17879 + 1.16990i
\(328\) 0 0
\(329\) 950.839i 0.159336i
\(330\) 0 0
\(331\) 4927.68i 0.818278i −0.912472 0.409139i \(-0.865829\pi\)
0.912472 0.409139i \(-0.134171\pi\)
\(332\) 0 0
\(333\) 89.3094 11793.7i 0.0146971 1.94082i
\(334\) 0 0
\(335\) −1627.93 −0.265503
\(336\) 0 0
\(337\) −2987.62 −0.482926 −0.241463 0.970410i \(-0.577627\pi\)
−0.241463 + 0.970410i \(0.577627\pi\)
\(338\) 0 0
\(339\) −2122.05 2138.18i −0.339982 0.342566i
\(340\) 0 0
\(341\) 1528.38i 0.242717i
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 480.864 + 484.519i 0.0750401 + 0.0756105i
\(346\) 0 0
\(347\) −3228.35 −0.499443 −0.249722 0.968318i \(-0.580339\pi\)
−0.249722 + 0.968318i \(0.580339\pi\)
\(348\) 0 0
\(349\) 9278.67 1.42314 0.711570 0.702615i \(-0.247984\pi\)
0.711570 + 0.702615i \(0.247984\pi\)
\(350\) 0 0
\(351\) 435.289 + 445.292i 0.0661937 + 0.0677148i
\(352\) 0 0
\(353\) 3101.21i 0.467595i 0.972285 + 0.233797i \(0.0751152\pi\)
−0.972285 + 0.233797i \(0.924885\pi\)
\(354\) 0 0
\(355\) 570.362i 0.0852723i
\(356\) 0 0
\(357\) −2990.98 + 2968.42i −0.443416 + 0.440071i
\(358\) 0 0
\(359\) 13340.9 1.96129 0.980646 0.195788i \(-0.0627264\pi\)
0.980646 + 0.195788i \(0.0627264\pi\)
\(360\) 0 0
\(361\) −9121.55 −1.32987
\(362\) 0 0
\(363\) 4307.30 4274.81i 0.622795 0.618097i
\(364\) 0 0
\(365\) 345.499i 0.0495459i
\(366\) 0 0
\(367\) 3668.79i 0.521824i 0.965363 + 0.260912i \(0.0840233\pi\)
−0.965363 + 0.260912i \(0.915977\pi\)
\(368\) 0 0
\(369\) 8937.59 + 67.6809i 1.26090 + 0.00954832i
\(370\) 0 0
\(371\) 2767.80 0.387323
\(372\) 0 0
\(373\) −33.6447 −0.00467040 −0.00233520 0.999997i \(-0.500743\pi\)
−0.00233520 + 0.999997i \(0.500743\pi\)
\(374\) 0 0
\(375\) −1479.31 1490.56i −0.203710 0.205259i
\(376\) 0 0
\(377\) 1106.57i 0.151170i
\(378\) 0 0
\(379\) 4344.58i 0.588828i 0.955678 + 0.294414i \(0.0951245\pi\)
−0.955678 + 0.294414i \(0.904876\pi\)
\(380\) 0 0
\(381\) −1928.05 1942.71i −0.259258 0.261228i
\(382\) 0 0
\(383\) −7664.00 −1.02249 −0.511243 0.859436i \(-0.670815\pi\)
−0.511243 + 0.859436i \(0.670815\pi\)
\(384\) 0 0
\(385\) −146.087 −0.0193384
\(386\) 0 0
\(387\) −3428.23 25.9607i −0.450302 0.00340996i
\(388\) 0 0
\(389\) 9812.91i 1.27901i −0.768788 0.639504i \(-0.779140\pi\)
0.768788 0.639504i \(-0.220860\pi\)
\(390\) 0 0
\(391\) 9314.29i 1.20472i
\(392\) 0 0
\(393\) −1341.86 + 1331.74i −0.172234 + 0.170934i
\(394\) 0 0
\(395\) −393.491 −0.0501232
\(396\) 0 0
\(397\) −10638.6 −1.34493 −0.672466 0.740128i \(-0.734765\pi\)
−0.672466 + 0.740128i \(0.734765\pi\)
\(398\) 0 0
\(399\) 3263.62 3238.99i 0.409487 0.406397i
\(400\) 0 0
\(401\) 72.6321i 0.00904507i 0.999990 + 0.00452254i \(0.00143957\pi\)
−0.999990 + 0.00452254i \(0.998560\pi\)
\(402\) 0 0
\(403\) 531.157i 0.0656546i
\(404\) 0 0
\(405\) 18.0404 1191.09i 0.00221341 0.146138i
\(406\) 0 0
\(407\) −5578.87 −0.679446
\(408\) 0 0
\(409\) −2811.49 −0.339900 −0.169950 0.985453i \(-0.554361\pi\)
−0.169950 + 0.985453i \(0.554361\pi\)
\(410\) 0 0
\(411\) 5195.85 + 5235.34i 0.623582 + 0.628322i
\(412\) 0 0
\(413\) 2305.37i 0.274673i
\(414\) 0 0
\(415\) 949.179i 0.112273i
\(416\) 0 0
\(417\) −1249.43 1258.92i −0.146726 0.147841i
\(418\) 0 0
\(419\) 2892.92 0.337299 0.168650 0.985676i \(-0.446059\pi\)
0.168650 + 0.985676i \(0.446059\pi\)
\(420\) 0 0
\(421\) 11794.5 1.36539 0.682696 0.730703i \(-0.260807\pi\)
0.682696 + 0.730703i \(0.260807\pi\)
\(422\) 0 0
\(423\) 27.7719 3667.42i 0.00319224 0.421551i
\(424\) 0 0
\(425\) 14172.4i 1.61756i
\(426\) 0 0
\(427\) 2549.94i 0.288994i
\(428\) 0 0
\(429\) 209.068 207.491i 0.0235289 0.0233514i
\(430\) 0 0
\(431\) −1662.13 −0.185759 −0.0928795 0.995677i \(-0.529607\pi\)
−0.0928795 + 0.995677i \(0.529607\pi\)
\(432\) 0 0
\(433\) 11414.8 1.26688 0.633440 0.773792i \(-0.281642\pi\)
0.633440 + 0.773792i \(0.281642\pi\)
\(434\) 0 0
\(435\) −1502.50 + 1491.16i −0.165607 + 0.164358i
\(436\) 0 0
\(437\) 10163.3i 1.11253i
\(438\) 0 0
\(439\) 4118.63i 0.447771i −0.974615 0.223885i \(-0.928126\pi\)
0.974615 0.223885i \(-0.0718741\pi\)
\(440\) 0 0
\(441\) −10.0183 + 1322.96i −0.00108177 + 0.142853i
\(442\) 0 0
\(443\) −12153.2 −1.30342 −0.651711 0.758467i \(-0.725948\pi\)
−0.651711 + 0.758467i \(0.725948\pi\)
\(444\) 0 0
\(445\) −2111.09 −0.224888
\(446\) 0 0
\(447\) −7344.67 7400.49i −0.777161 0.783068i
\(448\) 0 0
\(449\) 1682.19i 0.176810i 0.996085 + 0.0884049i \(0.0281769\pi\)
−0.996085 + 0.0884049i \(0.971823\pi\)
\(450\) 0 0
\(451\) 4227.81i 0.441418i
\(452\) 0 0
\(453\) −9411.39 9482.93i −0.976127 0.983547i
\(454\) 0 0
\(455\) 50.7693 0.00523099
\(456\) 0 0
\(457\) 2659.67 0.272241 0.136121 0.990692i \(-0.456537\pi\)
0.136121 + 0.990692i \(0.456537\pi\)
\(458\) 0 0
\(459\) −11623.0 + 11361.9i −1.18195 + 1.15540i
\(460\) 0 0
\(461\) 3117.33i 0.314942i −0.987524 0.157471i \(-0.949666\pi\)
0.987524 0.157471i \(-0.0503341\pi\)
\(462\) 0 0
\(463\) 13481.9i 1.35325i −0.736326 0.676627i \(-0.763441\pi\)
0.736326 0.676627i \(-0.236559\pi\)
\(464\) 0 0
\(465\) 721.204 715.763i 0.0719248 0.0713822i
\(466\) 0 0
\(467\) 12649.6 1.25343 0.626717 0.779247i \(-0.284398\pi\)
0.626717 + 0.779247i \(0.284398\pi\)
\(468\) 0 0
\(469\) 6973.78 0.686609
\(470\) 0 0
\(471\) −3168.89 + 3144.99i −0.310010 + 0.307672i
\(472\) 0 0
\(473\) 1621.68i 0.157643i
\(474\) 0 0
\(475\) 15464.2i 1.49378i
\(476\) 0 0
\(477\) 10675.5 + 80.8413i 1.02473 + 0.00775989i
\(478\) 0 0
\(479\) 15116.4 1.44194 0.720968 0.692969i \(-0.243698\pi\)
0.720968 + 0.692969i \(0.243698\pi\)
\(480\) 0 0
\(481\) 1938.82 0.183789
\(482\) 0 0
\(483\) −2059.93 2075.59i −0.194059 0.195534i
\(484\) 0 0
\(485\) 1921.61i 0.179909i
\(486\) 0 0
\(487\) 8537.59i 0.794405i 0.917731 + 0.397202i \(0.130019\pi\)
−0.917731 + 0.397202i \(0.869981\pi\)
\(488\) 0 0
\(489\) 7086.86 + 7140.73i 0.655376 + 0.660358i
\(490\) 0 0
\(491\) 7424.84 0.682441 0.341220 0.939983i \(-0.389160\pi\)
0.341220 + 0.939983i \(0.389160\pi\)
\(492\) 0 0
\(493\) 28883.7 2.63865
\(494\) 0 0
\(495\) −563.461 4.26687i −0.0511630 0.000387438i
\(496\) 0 0
\(497\) 2443.33i 0.220520i
\(498\) 0 0
\(499\) 16808.7i 1.50794i 0.656908 + 0.753970i \(0.271864\pi\)
−0.656908 + 0.753970i \(0.728136\pi\)
\(500\) 0 0
\(501\) −14270.3 + 14162.7i −1.27256 + 1.26296i
\(502\) 0 0
\(503\) 2365.94 0.209725 0.104863 0.994487i \(-0.466560\pi\)
0.104863 + 0.994487i \(0.466560\pi\)
\(504\) 0 0
\(505\) −769.220 −0.0677819
\(506\) 0 0
\(507\) 8030.14 7969.56i 0.703414 0.698108i
\(508\) 0 0
\(509\) 2691.97i 0.234419i −0.993107 0.117210i \(-0.962605\pi\)
0.993107 0.117210i \(-0.0373949\pi\)
\(510\) 0 0
\(511\) 1480.06i 0.128129i
\(512\) 0 0
\(513\) 12682.5 12397.6i 1.09151 1.06699i
\(514\) 0 0
\(515\) −2358.41 −0.201794
\(516\) 0 0
\(517\) −1734.82 −0.147577
\(518\) 0 0
\(519\) −4913.53 4950.88i −0.415568 0.418727i
\(520\) 0 0
\(521\) 10208.0i 0.858390i 0.903212 + 0.429195i \(0.141203\pi\)
−0.903212 + 0.429195i \(0.858797\pi\)
\(522\) 0 0
\(523\) 12291.9i 1.02770i 0.857880 + 0.513850i \(0.171781\pi\)
−0.857880 + 0.513850i \(0.828219\pi\)
\(524\) 0 0
\(525\) 3134.35 + 3158.17i 0.260560 + 0.262541i
\(526\) 0 0
\(527\) −13864.3 −1.14599
\(528\) 0 0
\(529\) −5703.35 −0.468755
\(530\) 0 0
\(531\) −67.3349 + 8891.90i −0.00550299 + 0.726696i
\(532\) 0 0
\(533\) 1469.28i 0.119403i
\(534\) 0 0
\(535\) 922.482i 0.0745465i
\(536\) 0 0
\(537\) 9583.16 9510.86i 0.770100 0.764291i
\(538\) 0 0
\(539\) 625.810 0.0500102
\(540\) 0 0
\(541\) 2973.08 0.236271 0.118135 0.992997i \(-0.462308\pi\)
0.118135 + 0.992997i \(0.462308\pi\)
\(542\) 0 0
\(543\) −8187.74 + 8125.97i −0.647089 + 0.642207i
\(544\) 0 0
\(545\) 3088.31i 0.242732i
\(546\) 0 0
\(547\) 3140.53i 0.245484i 0.992439 + 0.122742i \(0.0391687\pi\)
−0.992439 + 0.122742i \(0.960831\pi\)
\(548\) 0 0
\(549\) −74.4783 + 9835.22i −0.00578990 + 0.764584i
\(550\) 0 0
\(551\) −31516.5 −2.43675
\(552\) 0 0
\(553\) 1685.64 0.129622
\(554\) 0 0
\(555\) −2612.66 2632.52i −0.199822 0.201341i
\(556\) 0 0
\(557\) 9414.66i 0.716180i −0.933687 0.358090i \(-0.883428\pi\)
0.933687 0.358090i \(-0.116572\pi\)
\(558\) 0 0
\(559\) 563.580i 0.0426420i
\(560\) 0 0
\(561\) 5415.93 + 5457.10i 0.407595 + 0.410693i
\(562\) 0 0
\(563\) −7650.56 −0.572705 −0.286352 0.958124i \(-0.592443\pi\)
−0.286352 + 0.958124i \(0.592443\pi\)
\(564\) 0 0
\(565\) −947.339 −0.0705396
\(566\) 0 0
\(567\) −77.2817 + 5102.41i −0.00572403 + 0.377921i
\(568\) 0 0
\(569\) 7371.22i 0.543089i −0.962426 0.271545i \(-0.912466\pi\)
0.962426 0.271545i \(-0.0875344\pi\)
\(570\) 0 0
\(571\) 21587.2i 1.58213i 0.611730 + 0.791066i \(0.290474\pi\)
−0.611730 + 0.791066i \(0.709526\pi\)
\(572\) 0 0
\(573\) −9647.04 + 9574.26i −0.703335 + 0.698029i
\(574\) 0 0
\(575\) −9834.94 −0.713296
\(576\) 0 0
\(577\) −16742.1 −1.20794 −0.603970 0.797007i \(-0.706415\pi\)
−0.603970 + 0.797007i \(0.706415\pi\)
\(578\) 0 0
\(579\) 872.961 866.376i 0.0626581 0.0621854i
\(580\) 0 0
\(581\) 4066.11i 0.290346i
\(582\) 0 0
\(583\) 5049.89i 0.358740i
\(584\) 0 0
\(585\) 195.819 + 1.48286i 0.0138395 + 0.000104801i
\(586\) 0 0
\(587\) 22992.2 1.61668 0.808339 0.588718i \(-0.200367\pi\)
0.808339 + 0.588718i \(0.200367\pi\)
\(588\) 0 0
\(589\) 15128.0 1.05830
\(590\) 0 0
\(591\) −2666.15 2686.41i −0.185568 0.186978i
\(592\) 0 0
\(593\) 18637.7i 1.29066i −0.763906 0.645328i \(-0.776721\pi\)
0.763906 0.645328i \(-0.223279\pi\)
\(594\) 0 0
\(595\) 1325.18i 0.0913062i
\(596\) 0 0
\(597\) 5613.55 + 5656.22i 0.384836 + 0.387761i
\(598\) 0 0
\(599\) −18988.8 −1.29526 −0.647630 0.761955i \(-0.724240\pi\)
−0.647630 + 0.761955i \(0.724240\pi\)
\(600\) 0 0
\(601\) −17998.7 −1.22160 −0.610801 0.791784i \(-0.709152\pi\)
−0.610801 + 0.791784i \(0.709152\pi\)
\(602\) 0 0
\(603\) 26898.1 + 203.689i 1.81654 + 0.0137560i
\(604\) 0 0
\(605\) 1908.39i 0.128243i
\(606\) 0 0
\(607\) 21235.7i 1.41999i 0.704208 + 0.709994i \(0.251302\pi\)
−0.704208 + 0.709994i \(0.748698\pi\)
\(608\) 0 0
\(609\) 6436.43 6387.87i 0.428271 0.425040i
\(610\) 0 0
\(611\) 602.900 0.0399194
\(612\) 0 0
\(613\) −2865.49 −0.188803 −0.0944013 0.995534i \(-0.530094\pi\)
−0.0944013 + 0.995534i \(0.530094\pi\)
\(614\) 0 0
\(615\) 1994.99 1979.94i 0.130806 0.129819i
\(616\) 0 0
\(617\) 20566.3i 1.34192i 0.741492 + 0.670962i \(0.234119\pi\)
−0.741492 + 0.670962i \(0.765881\pi\)
\(618\) 0 0
\(619\) 20485.5i 1.33018i 0.746764 + 0.665090i \(0.231607\pi\)
−0.746764 + 0.665090i \(0.768393\pi\)
\(620\) 0 0
\(621\) −7884.61 8065.79i −0.509498 0.521206i
\(622\) 0 0
\(623\) 9043.54 0.581576
\(624\) 0 0
\(625\) 14630.8 0.936373
\(626\) 0 0
\(627\) −5909.60 5954.52i −0.376406 0.379268i
\(628\) 0 0
\(629\) 50607.1i 3.20801i
\(630\) 0 0
\(631\) 14167.4i 0.893810i 0.894581 + 0.446905i \(0.147474\pi\)
−0.894581 + 0.446905i \(0.852526\pi\)
\(632\) 0 0
\(633\) 17739.0 + 17873.9i 1.11384 + 1.12231i
\(634\) 0 0
\(635\) −860.734 −0.0537909
\(636\) 0 0
\(637\) −217.487 −0.0135277
\(638\) 0 0
\(639\) −71.3643 + 9423.99i −0.00441804 + 0.583423i
\(640\) 0 0
\(641\) 25353.5i 1.56225i −0.624372 0.781127i \(-0.714645\pi\)
0.624372 0.781127i \(-0.285355\pi\)
\(642\) 0 0
\(643\) 9662.86i 0.592638i −0.955089 0.296319i \(-0.904241\pi\)
0.955089 0.296319i \(-0.0957591\pi\)
\(644\) 0 0
\(645\) −765.228 + 759.455i −0.0467144 + 0.0463620i
\(646\) 0 0
\(647\) −11168.8 −0.678656 −0.339328 0.940668i \(-0.610200\pi\)
−0.339328 + 0.940668i \(0.610200\pi\)
\(648\) 0 0
\(649\) 4206.19 0.254403
\(650\) 0 0
\(651\) −3089.51 + 3066.20i −0.186002 + 0.184599i
\(652\) 0 0
\(653\) 11125.4i 0.666725i 0.942799 + 0.333363i \(0.108183\pi\)
−0.942799 + 0.333363i \(0.891817\pi\)
\(654\) 0 0
\(655\) 594.523i 0.0354656i
\(656\) 0 0
\(657\) 43.2292 5708.62i 0.00256702 0.338987i
\(658\) 0 0
\(659\) −30142.5 −1.78177 −0.890883 0.454234i \(-0.849913\pi\)
−0.890883 + 0.454234i \(0.849913\pi\)
\(660\) 0 0
\(661\) −4282.37 −0.251989 −0.125995 0.992031i \(-0.540212\pi\)
−0.125995 + 0.992031i \(0.540212\pi\)
\(662\) 0 0
\(663\) −1882.19 1896.50i −0.110254 0.111092i
\(664\) 0 0
\(665\) 1445.97i 0.0843195i
\(666\) 0 0
\(667\) 20043.8i 1.16357i
\(668\) 0 0
\(669\) −16864.7 16992.9i −0.974631 0.982040i
\(670\) 0 0
\(671\) 4652.42 0.267667
\(672\) 0 0
\(673\) 4880.18 0.279520 0.139760 0.990185i \(-0.455367\pi\)
0.139760 + 0.990185i \(0.455367\pi\)
\(674\) 0 0
\(675\) 11997.0 + 12272.7i 0.684097 + 0.699818i
\(676\) 0 0
\(677\) 32138.5i 1.82449i 0.409641 + 0.912247i \(0.365654\pi\)
−0.409641 + 0.912247i \(0.634346\pi\)
\(678\) 0 0
\(679\) 8231.82i 0.465255i
\(680\) 0 0
\(681\) −15907.5 + 15787.5i −0.895122 + 0.888369i
\(682\) 0 0
\(683\) −23535.1 −1.31852 −0.659258 0.751917i \(-0.729130\pi\)
−0.659258 + 0.751917i \(0.729130\pi\)
\(684\) 0 0
\(685\) 2319.57 0.129381
\(686\) 0 0
\(687\) −1268.43 + 1258.86i −0.0704421 + 0.0699107i
\(688\) 0 0
\(689\) 1754.98i 0.0970384i
\(690\) 0 0
\(691\) 20492.5i 1.12818i 0.825714 + 0.564089i \(0.190773\pi\)
−0.825714 + 0.564089i \(0.809227\pi\)
\(692\) 0 0
\(693\) 2413.77 + 18.2785i 0.132311 + 0.00100194i
\(694\) 0 0
\(695\) −557.777 −0.0304427
\(696\) 0 0
\(697\) −38351.3 −2.08416
\(698\) 0 0
\(699\) 316.368 + 318.773i 0.0171190 + 0.0172491i
\(700\) 0 0
\(701\) 14101.2i 0.759763i −0.925035 0.379881i \(-0.875965\pi\)
0.925035 0.379881i \(-0.124035\pi\)
\(702\) 0 0
\(703\) 55220.0i 2.96253i
\(704\) 0 0
\(705\) −812.441 818.617i −0.0434018 0.0437318i
\(706\) 0 0
\(707\) 3295.20 0.175288
\(708\) 0 0
\(709\) −17337.2 −0.918352 −0.459176 0.888345i \(-0.651855\pi\)
−0.459176 + 0.888345i \(0.651855\pi\)
\(710\) 0 0
\(711\) 6501.59 + 49.2340i 0.342937 + 0.00259693i
\(712\) 0 0
\(713\) 9621.11i 0.505349i
\(714\) 0 0
\(715\) 92.6294i 0.00484496i
\(716\) 0 0
\(717\) −3819.78 + 3790.96i −0.198957 + 0.197456i
\(718\) 0 0
\(719\) −25469.6 −1.32108 −0.660539 0.750791i \(-0.729672\pi\)
−0.660539 + 0.750791i \(0.729672\pi\)
\(720\) 0 0
\(721\) 10103.0 0.521853
\(722\) 0 0
\(723\) −11196.0 + 11111.5i −0.575909 + 0.571564i
\(724\) 0 0
\(725\) 30498.2i 1.56231i
\(726\) 0 0
\(727\) 34982.4i 1.78463i −0.451412 0.892316i \(-0.649079\pi\)
0.451412 0.892316i \(-0.350921\pi\)
\(728\) 0 0
\(729\) −447.108 + 19677.9i −0.0227155 + 0.999742i
\(730\) 0 0
\(731\) 14710.6 0.744310
\(732\) 0 0
\(733\) 37078.1 1.86836 0.934182 0.356797i \(-0.116131\pi\)
0.934182 + 0.356797i \(0.116131\pi\)
\(734\) 0 0
\(735\) 293.075 + 295.303i 0.0147078 + 0.0148196i
\(736\) 0 0
\(737\) 12723.8i 0.635939i
\(738\) 0 0
\(739\) 4104.04i 0.204289i 0.994770 + 0.102144i \(0.0325704\pi\)
−0.994770 + 0.102144i \(0.967430\pi\)
\(740\) 0 0
\(741\) 2053.75 + 2069.37i 0.101817 + 0.102591i
\(742\) 0 0
\(743\) 14476.2 0.714779 0.357389 0.933955i \(-0.383667\pi\)
0.357389 + 0.933955i \(0.383667\pi\)
\(744\) 0 0
\(745\) −3278.86 −0.161246
\(746\) 0 0
\(747\) −118.762 + 15683.1i −0.00581698 + 0.768160i
\(748\) 0 0
\(749\) 3951.75i 0.192782i
\(750\) 0 0
\(751\) 34702.8i 1.68618i 0.537771 + 0.843091i \(0.319267\pi\)
−0.537771 + 0.843091i \(0.680733\pi\)
\(752\) 0 0
\(753\) −8350.05 + 8287.06i −0.404107 + 0.401059i
\(754\) 0 0
\(755\) −4201.50 −0.202527
\(756\) 0 0
\(757\) 29592.9 1.42083 0.710417 0.703781i \(-0.248506\pi\)
0.710417 + 0.703781i \(0.248506\pi\)
\(758\) 0 0
\(759\) −3786.96 + 3758.39i −0.181104 + 0.179738i
\(760\) 0 0
\(761\) 15694.7i 0.747613i −0.927507 0.373807i \(-0.878052\pi\)
0.927507 0.373807i \(-0.121948\pi\)
\(762\) 0 0
\(763\) 13229.8i 0.627720i
\(764\) 0 0
\(765\) −38.7057 + 5111.27i −0.00182929 + 0.241566i
\(766\) 0 0
\(767\) −1461.77 −0.0688155
\(768\) 0 0
\(769\) 22310.0 1.04619 0.523094 0.852275i \(-0.324778\pi\)
0.523094 + 0.852275i \(0.324778\pi\)
\(770\) 0 0
\(771\) 23298.6 + 23475.7i 1.08830 + 1.09657i
\(772\) 0 0
\(773\) 18819.8i 0.875682i −0.899052 0.437841i \(-0.855743\pi\)
0.899052 0.437841i \(-0.144257\pi\)
\(774\) 0 0
\(775\) 14639.2i 0.678526i
\(776\) 0 0
\(777\) 11192.2 + 11277.3i 0.516753 + 0.520681i
\(778\) 0 0
\(779\) 41847.1 1.92468
\(780\) 0 0
\(781\) 4457.89 0.204246
\(782\) 0 0
\(783\) 25012.1 24450.2i 1.14158 1.11594i
\(784\) 0 0
\(785\) 1404.01i 0.0638359i
\(786\) 0 0
\(787\) 34626.0i 1.56834i −0.620545 0.784171i \(-0.713089\pi\)
0.620545 0.784171i \(-0.286911\pi\)
\(788\) 0 0
\(789\) −16081.1 + 15959.8i −0.725605 + 0.720131i
\(790\) 0 0
\(791\) 4058.23 0.182420
\(792\) 0 0
\(793\) −1616.85 −0.0724034
\(794\) 0 0
\(795\) 2382.91 2364.93i 0.106306 0.105504i
\(796\) 0 0
\(797\) 21365.3i 0.949558i −0.880105 0.474779i \(-0.842528\pi\)
0.880105 0.474779i \(-0.157472\pi\)
\(798\) 0 0
\(799\) 15736.9i 0.696786i
\(800\) 0 0
\(801\) 34881.2 + 264.142i 1.53866 + 0.0116517i
\(802\) 0 0
\(803\) −2700.39 −0.118673
\(804\) 0 0
\(805\) −919.610 −0.0402633
\(806\) 0 0
\(807\) −57.4075 57.8438i −0.00250414 0.00252317i
\(808\) 0 0
\(809\) 7749.36i 0.336777i −0.985721 0.168389i \(-0.946144\pi\)
0.985721 0.168389i \(-0.0538564\pi\)
\(810\) 0 0
\(811\) 22749.9i 0.985025i −0.870305 0.492513i \(-0.836079\pi\)
0.870305 0.492513i \(-0.163921\pi\)
\(812\) 0 0
\(813\) 9164.96 + 9234.63i 0.395362 + 0.398367i
\(814\) 0 0
\(815\) 3163.77 0.135978
\(816\) 0 0
\(817\) −16051.5 −0.687356
\(818\) 0 0
\(819\) −838.853 6.35231i −0.0357898 0.000271023i
\(820\) 0 0
\(821\) 41536.1i 1.76568i −0.469677 0.882838i \(-0.655630\pi\)
0.469677 0.882838i \(-0.344370\pi\)
\(822\) 0 0
\(823\) 8365.48i 0.354316i 0.984182 + 0.177158i \(0.0566904\pi\)
−0.984182 + 0.177158i \(0.943310\pi\)
\(824\) 0 0
\(825\) 5762.14 5718.67i 0.243166 0.241331i
\(826\) 0 0
\(827\) 3152.02 0.132535 0.0662675 0.997802i \(-0.478891\pi\)
0.0662675 + 0.997802i \(0.478891\pi\)
\(828\) 0 0
\(829\) 10968.4 0.459529 0.229765 0.973246i \(-0.426204\pi\)
0.229765 + 0.973246i \(0.426204\pi\)
\(830\) 0 0
\(831\) 20544.7 20389.7i 0.857627 0.851157i
\(832\) 0 0
\(833\) 5676.84i 0.236124i
\(834\) 0 0
\(835\) 6322.60i 0.262039i
\(836\) 0 0
\(837\) −12005.9 + 11736.2i −0.495800 + 0.484662i
\(838\) 0 0
\(839\) −40012.2 −1.64645 −0.823226 0.567714i \(-0.807828\pi\)
−0.823226 + 0.567714i \(0.807828\pi\)
\(840\) 0 0
\(841\) −37767.1 −1.54853
\(842\) 0 0
\(843\) −25576.8 25771.2i −1.04497 1.05291i
\(844\) 0 0
\(845\) 3557.83i 0.144844i
\(846\) 0 0
\(847\) 8175.20i 0.331645i
\(848\) 0 0
\(849\) 7565.85 + 7623.36i 0.305841 + 0.308166i
\(850\) 0 0
\(851\) −35118.8 −1.41464
\(852\) 0 0
\(853\) −43396.7 −1.74194 −0.870970 0.491336i \(-0.836509\pi\)
−0.870970 + 0.491336i \(0.836509\pi\)
\(854\) 0 0
\(855\) 42.2338 5577.17i 0.00168931 0.223082i
\(856\) 0 0
\(857\) 1435.44i 0.0572153i −0.999591 0.0286077i \(-0.990893\pi\)
0.999591 0.0286077i \(-0.00910734\pi\)
\(858\) 0 0
\(859\) 9540.54i 0.378951i −0.981885 0.189476i \(-0.939321\pi\)
0.981885 0.189476i \(-0.0606788\pi\)
\(860\) 0 0
\(861\) −8546.18 + 8481.71i −0.338273 + 0.335721i
\(862\) 0 0
\(863\) 9834.33 0.387908 0.193954 0.981011i \(-0.437869\pi\)
0.193954 + 0.981011i \(0.437869\pi\)
\(864\) 0 0
\(865\) −2193.53 −0.0862223
\(866\) 0 0
\(867\) 31382.7 31146.0i 1.22931 1.22004i
\(868\) 0 0
\(869\) 3075.49i 0.120056i
\(870\) 0 0
\(871\) 4421.88i 0.172020i
\(872\) 0 0
\(873\) 240.433 31750.4i 0.00932124 1.23091i
\(874\) 0 0
\(875\) 2829.05 0.109302
\(876\) 0 0
\(877\) 4647.38 0.178941 0.0894703 0.995989i \(-0.471483\pi\)
0.0894703 + 0.995989i \(0.471483\pi\)
\(878\) 0 0
\(879\) −22564.0 22735.5i −0.865831 0.872412i
\(880\) 0 0
\(881\) 34914.2i 1.33518i 0.744531 + 0.667588i \(0.232673\pi\)
−0.744531 + 0.667588i \(0.767327\pi\)
\(882\) 0 0
\(883\) 32912.2i 1.25434i −0.778881 0.627171i \(-0.784213\pi\)
0.778881 0.627171i \(-0.215787\pi\)
\(884\) 0 0
\(885\) 1969.82 + 1984.79i 0.0748189 + 0.0753876i
\(886\) 0 0
\(887\) −13103.7 −0.496029 −0.248015 0.968756i \(-0.579778\pi\)
−0.248015 + 0.968756i \(0.579778\pi\)
\(888\) 0 0
\(889\) 3687.23 0.139107
\(890\) 0 0
\(891\) 9309.45 + 141.002i 0.350032 + 0.00530161i
\(892\) 0 0
\(893\) 17171.4i 0.643469i
\(894\) 0 0
\(895\) 4245.91i 0.158575i
\(896\) 0 0
\(897\) 1316.07 1306.15i 0.0489882 0.0486187i
\(898\) 0 0
\(899\) 29835.1 1.10685
\(900\) 0 0
\(901\) −45808.6 −1.69379
\(902\) 0 0
\(903\) 3278.10 3253.37i 0.120807 0.119895i
\(904\) 0 0
\(905\) 3627.65i 0.133245i
\(906\) 0 0
\(907\) 12655.0i 0.463288i 0.972801 + 0.231644i \(0.0744104\pi\)
−0.972801 + 0.231644i \(0.925590\pi\)
\(908\) 0 0
\(909\) 12709.7 + 96.2457i 0.463756 + 0.00351185i
\(910\) 0 0
\(911\) 21875.4 0.795569 0.397784 0.917479i \(-0.369779\pi\)
0.397784 + 0.917479i \(0.369779\pi\)
\(912\) 0 0
\(913\) 7418.70 0.268919
\(914\) 0 0
\(915\) 2178.79 + 2195.35i 0.0787198 + 0.0793182i
\(916\) 0 0
\(917\) 2546.83i 0.0917162i
\(918\) 0 0
\(919\) 28815.5i 1.03432i −0.855890 0.517158i \(-0.826990\pi\)
0.855890 0.517158i \(-0.173010\pi\)
\(920\) 0 0
\(921\) −15898.8 16019.7i −0.568821 0.573144i
\(922\) 0 0
\(923\) −1549.24 −0.0552481
\(924\) 0 0
\(925\) 53435.8 1.89942
\(926\) 0 0
\(927\) 38967.7 + 295.087i 1.38065 + 0.0104552i
\(928\) 0 0
\(929\) 29988.8i 1.05909i −0.848280 0.529547i \(-0.822362\pi\)
0.848280 0.529547i \(-0.177638\pi\)
\(930\) 0 0
\(931\) 6194.30i 0.218056i
\(932\) 0 0
\(933\) −24647.4 + 24461.4i −0.864864 + 0.858339i
\(934\) 0 0
\(935\) 2417.82 0.0845680
\(936\) 0 0
\(937\) 3294.71 0.114870 0.0574352 0.998349i \(-0.481708\pi\)
0.0574352 + 0.998349i \(0.481708\pi\)
\(938\) 0 0
\(939\) 27692.5 27483.6i 0.962417 0.955156i
\(940\) 0 0
\(941\) 48458.9i 1.67876i −0.543543 0.839381i \(-0.682918\pi\)
0.543543 0.839381i \(-0.317082\pi\)
\(942\) 0 0
\(943\) 26613.9i 0.919053i
\(944\) 0 0
\(945\) 1121.78 + 1147.55i 0.0386152 + 0.0395025i
\(946\) 0 0
\(947\) −56011.9 −1.92201 −0.961004 0.276536i \(-0.910813\pi\)
−0.961004 + 0.276536i \(0.910813\pi\)
\(948\) 0 0
\(949\) 938.462 0.0321009
\(950\) 0 0
\(951\) 19186.9 + 19332.8i 0.654236 + 0.659209i
\(952\) 0 0
\(953\) 36959.0i 1.25626i 0.778107 + 0.628132i \(0.216180\pi\)
−0.778107 + 0.628132i \(0.783820\pi\)
\(954\) 0 0
\(955\) 4274.21i 0.144827i
\(956\) 0 0
\(957\) −11654.8 11743.4i −0.393674 0.396666i
\(958\) 0 0
\(959\) −9936.61 −0.334588
\(960\) 0 0
\(961\) 15470.0 0.519285
\(962\) 0 0
\(963\) −115.422 + 15242.0i −0.00386233 + 0.510039i
\(964\) 0 0
\(965\) 386.773i 0.0129023i
\(966\) 0 0
\(967\) 39513.6i 1.31404i −0.753875 0.657018i \(-0.771818\pi\)
0.753875 0.657018i \(-0.228182\pi\)
\(968\) 0 0
\(969\) −54014.7 + 53607.2i −1.79071 + 1.77720i
\(970\) 0 0
\(971\) −19526.8 −0.645361 −0.322681 0.946508i \(-0.604584\pi\)
−0.322681 + 0.946508i \(0.604584\pi\)
\(972\) 0 0
\(973\) 2389.42 0.0787269
\(974\) 0 0
\(975\) −2002.51 + 1987.40i −0.0657759 + 0.0652797i
\(976\) 0 0
\(977\) 46524.0i 1.52348i −0.647885 0.761738i \(-0.724346\pi\)
0.647885 0.761738i \(-0.275654\pi\)
\(978\) 0 0
\(979\) 16500.1i 0.538657i
\(980\) 0 0
\(981\) 386.413 51027.7i 0.0125762 1.66074i
\(982\) 0 0
\(983\) 15597.6 0.506089 0.253044 0.967455i \(-0.418568\pi\)
0.253044 + 0.967455i \(0.418568\pi\)
\(984\) 0 0
\(985\) −1190.24 −0.0385017
\(986\) 0 0
\(987\) 3480.35 + 3506.81i 0.112240 + 0.113093i
\(988\) 0 0
\(989\) 10208.4i 0.328219i
\(990\) 0 0
\(991\) 18646.1i 0.597692i 0.954301 + 0.298846i \(0.0966017\pi\)
−0.954301 + 0.298846i \(0.903398\pi\)
\(992\) 0 0
\(993\) 18036.8 + 18173.9i 0.576415 + 0.580797i
\(994\) 0 0
\(995\) 2506.04 0.0798460
\(996\) 0 0
\(997\) 25040.3 0.795422 0.397711 0.917511i \(-0.369805\pi\)
0.397711 + 0.917511i \(0.369805\pi\)
\(998\) 0 0
\(999\) 42839.2 + 43823.6i 1.35673 + 1.38791i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.h.a.575.8 yes 36
3.2 odd 2 inner 672.4.h.a.575.30 yes 36
4.3 odd 2 inner 672.4.h.a.575.29 yes 36
12.11 even 2 inner 672.4.h.a.575.7 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.h.a.575.7 36 12.11 even 2 inner
672.4.h.a.575.8 yes 36 1.1 even 1 trivial
672.4.h.a.575.29 yes 36 4.3 odd 2 inner
672.4.h.a.575.30 yes 36 3.2 odd 2 inner