Properties

Label 672.4.h.a.575.22
Level $672$
Weight $4$
Character 672.575
Analytic conductor $39.649$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(575,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.575"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,0,0,0,0,0,-132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 575.22
Character \(\chi\) \(=\) 672.575
Dual form 672.4.h.a.575.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.49716 + 4.97579i) q^{3} -20.4606i q^{5} -7.00000i q^{7} +(-22.5170 + 14.8991i) q^{9} -20.3078 q^{11} -21.7749 q^{13} +(101.808 - 30.6328i) q^{15} +29.8439i q^{17} -87.0330i q^{19} +(34.8305 - 10.4801i) q^{21} +77.3830 q^{23} -293.635 q^{25} +(-107.847 - 89.7335i) q^{27} +254.794i q^{29} +155.953i q^{31} +(-30.4041 - 101.047i) q^{33} -143.224 q^{35} -324.488 q^{37} +(-32.6005 - 108.347i) q^{39} +241.980i q^{41} +245.969i q^{43} +(304.845 + 460.711i) q^{45} +295.540 q^{47} -49.0000 q^{49} +(-148.497 + 44.6812i) q^{51} +116.148i q^{53} +415.510i q^{55} +(433.058 - 130.303i) q^{57} -244.728 q^{59} +722.221 q^{61} +(104.294 + 157.619i) q^{63} +445.526i q^{65} -64.5032i q^{67} +(115.855 + 385.042i) q^{69} -960.293 q^{71} -673.227 q^{73} +(-439.620 - 1461.07i) q^{75} +142.155i q^{77} +946.494i q^{79} +(285.031 - 670.968i) q^{81} -360.920 q^{83} +610.624 q^{85} +(-1267.80 + 381.468i) q^{87} +1348.41i q^{89} +152.424i q^{91} +(-775.987 + 233.486i) q^{93} -1780.74 q^{95} -936.093 q^{97} +(457.271 - 302.569i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 132 q^{9} - 120 q^{13} + 28 q^{21} - 756 q^{25} + 40 q^{33} + 672 q^{37} + 304 q^{45} - 1764 q^{49} + 1624 q^{57} + 2472 q^{61} - 1224 q^{69} - 2376 q^{73} + 468 q^{81} + 5160 q^{85} - 648 q^{93}+ \cdots - 4488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.49716 + 4.97579i 0.288129 + 0.957592i
\(4\) 0 0
\(5\) 20.4606i 1.83005i −0.403398 0.915025i \(-0.632171\pi\)
0.403398 0.915025i \(-0.367829\pi\)
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) −22.5170 + 14.8991i −0.833963 + 0.551820i
\(10\) 0 0
\(11\) −20.3078 −0.556640 −0.278320 0.960488i \(-0.589778\pi\)
−0.278320 + 0.960488i \(0.589778\pi\)
\(12\) 0 0
\(13\) −21.7749 −0.464558 −0.232279 0.972649i \(-0.574618\pi\)
−0.232279 + 0.972649i \(0.574618\pi\)
\(14\) 0 0
\(15\) 101.808 30.6328i 1.75244 0.527291i
\(16\) 0 0
\(17\) 29.8439i 0.425777i 0.977076 + 0.212889i \(0.0682871\pi\)
−0.977076 + 0.212889i \(0.931713\pi\)
\(18\) 0 0
\(19\) 87.0330i 1.05088i −0.850830 0.525440i \(-0.823901\pi\)
0.850830 0.525440i \(-0.176099\pi\)
\(20\) 0 0
\(21\) 34.8305 10.4801i 0.361936 0.108903i
\(22\) 0 0
\(23\) 77.3830 0.701543 0.350771 0.936461i \(-0.385919\pi\)
0.350771 + 0.936461i \(0.385919\pi\)
\(24\) 0 0
\(25\) −293.635 −2.34908
\(26\) 0 0
\(27\) −107.847 89.7335i −0.768707 0.639601i
\(28\) 0 0
\(29\) 254.794i 1.63152i 0.578393 + 0.815758i \(0.303680\pi\)
−0.578393 + 0.815758i \(0.696320\pi\)
\(30\) 0 0
\(31\) 155.953i 0.903545i 0.892133 + 0.451773i \(0.149208\pi\)
−0.892133 + 0.451773i \(0.850792\pi\)
\(32\) 0 0
\(33\) −30.4041 101.047i −0.160384 0.533034i
\(34\) 0 0
\(35\) −143.224 −0.691694
\(36\) 0 0
\(37\) −324.488 −1.44177 −0.720884 0.693055i \(-0.756264\pi\)
−0.720884 + 0.693055i \(0.756264\pi\)
\(38\) 0 0
\(39\) −32.6005 108.347i −0.133853 0.444857i
\(40\) 0 0
\(41\) 241.980i 0.921731i 0.887470 + 0.460866i \(0.152461\pi\)
−0.887470 + 0.460866i \(0.847539\pi\)
\(42\) 0 0
\(43\) 245.969i 0.872323i 0.899868 + 0.436161i \(0.143662\pi\)
−0.899868 + 0.436161i \(0.856338\pi\)
\(44\) 0 0
\(45\) 304.845 + 460.711i 1.00986 + 1.52619i
\(46\) 0 0
\(47\) 295.540 0.917213 0.458606 0.888640i \(-0.348349\pi\)
0.458606 + 0.888640i \(0.348349\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −148.497 + 44.6812i −0.407721 + 0.122679i
\(52\) 0 0
\(53\) 116.148i 0.301021i 0.988608 + 0.150510i \(0.0480917\pi\)
−0.988608 + 0.150510i \(0.951908\pi\)
\(54\) 0 0
\(55\) 415.510i 1.01868i
\(56\) 0 0
\(57\) 433.058 130.303i 1.00631 0.302789i
\(58\) 0 0
\(59\) −244.728 −0.540016 −0.270008 0.962858i \(-0.587026\pi\)
−0.270008 + 0.962858i \(0.587026\pi\)
\(60\) 0 0
\(61\) 722.221 1.51592 0.757959 0.652302i \(-0.226197\pi\)
0.757959 + 0.652302i \(0.226197\pi\)
\(62\) 0 0
\(63\) 104.294 + 157.619i 0.208568 + 0.315208i
\(64\) 0 0
\(65\) 445.526i 0.850165i
\(66\) 0 0
\(67\) 64.5032i 0.117617i −0.998269 0.0588083i \(-0.981270\pi\)
0.998269 0.0588083i \(-0.0187301\pi\)
\(68\) 0 0
\(69\) 115.855 + 385.042i 0.202135 + 0.671791i
\(70\) 0 0
\(71\) −960.293 −1.60515 −0.802577 0.596549i \(-0.796538\pi\)
−0.802577 + 0.596549i \(0.796538\pi\)
\(72\) 0 0
\(73\) −673.227 −1.07939 −0.539693 0.841862i \(-0.681460\pi\)
−0.539693 + 0.841862i \(0.681460\pi\)
\(74\) 0 0
\(75\) −439.620 1461.07i −0.676839 2.24946i
\(76\) 0 0
\(77\) 142.155i 0.210390i
\(78\) 0 0
\(79\) 946.494i 1.34796i 0.738749 + 0.673980i \(0.235417\pi\)
−0.738749 + 0.673980i \(0.764583\pi\)
\(80\) 0 0
\(81\) 285.031 670.968i 0.390989 0.920395i
\(82\) 0 0
\(83\) −360.920 −0.477303 −0.238652 0.971105i \(-0.576705\pi\)
−0.238652 + 0.971105i \(0.576705\pi\)
\(84\) 0 0
\(85\) 610.624 0.779193
\(86\) 0 0
\(87\) −1267.80 + 381.468i −1.56233 + 0.470087i
\(88\) 0 0
\(89\) 1348.41i 1.60597i 0.596000 + 0.802984i \(0.296756\pi\)
−0.596000 + 0.802984i \(0.703244\pi\)
\(90\) 0 0
\(91\) 152.424i 0.175587i
\(92\) 0 0
\(93\) −775.987 + 233.486i −0.865227 + 0.260338i
\(94\) 0 0
\(95\) −1780.74 −1.92316
\(96\) 0 0
\(97\) −936.093 −0.979854 −0.489927 0.871763i \(-0.662977\pi\)
−0.489927 + 0.871763i \(0.662977\pi\)
\(98\) 0 0
\(99\) 457.271 302.569i 0.464217 0.307165i
\(100\) 0 0
\(101\) 1178.89i 1.16143i −0.814108 0.580713i \(-0.802774\pi\)
0.814108 0.580713i \(-0.197226\pi\)
\(102\) 0 0
\(103\) 1431.11i 1.36904i −0.728994 0.684520i \(-0.760012\pi\)
0.728994 0.684520i \(-0.239988\pi\)
\(104\) 0 0
\(105\) −214.430 712.653i −0.199297 0.662360i
\(106\) 0 0
\(107\) 1026.30 0.927253 0.463627 0.886031i \(-0.346548\pi\)
0.463627 + 0.886031i \(0.346548\pi\)
\(108\) 0 0
\(109\) −1368.47 −1.20253 −0.601264 0.799050i \(-0.705336\pi\)
−0.601264 + 0.799050i \(0.705336\pi\)
\(110\) 0 0
\(111\) −485.811 1614.58i −0.415416 1.38063i
\(112\) 0 0
\(113\) 135.630i 0.112911i −0.998405 0.0564555i \(-0.982020\pi\)
0.998405 0.0564555i \(-0.0179799\pi\)
\(114\) 0 0
\(115\) 1583.30i 1.28386i
\(116\) 0 0
\(117\) 490.305 324.427i 0.387425 0.256353i
\(118\) 0 0
\(119\) 208.907 0.160929
\(120\) 0 0
\(121\) −918.592 −0.690152
\(122\) 0 0
\(123\) −1204.04 + 362.284i −0.882642 + 0.265578i
\(124\) 0 0
\(125\) 3450.37i 2.46889i
\(126\) 0 0
\(127\) 2437.65i 1.70320i −0.524192 0.851600i \(-0.675632\pi\)
0.524192 0.851600i \(-0.324368\pi\)
\(128\) 0 0
\(129\) −1223.89 + 368.255i −0.835329 + 0.251342i
\(130\) 0 0
\(131\) −566.045 −0.377523 −0.188762 0.982023i \(-0.560447\pi\)
−0.188762 + 0.982023i \(0.560447\pi\)
\(132\) 0 0
\(133\) −609.231 −0.397196
\(134\) 0 0
\(135\) −1836.00 + 2206.60i −1.17050 + 1.40677i
\(136\) 0 0
\(137\) 1563.89i 0.975268i 0.873048 + 0.487634i \(0.162140\pi\)
−0.873048 + 0.487634i \(0.837860\pi\)
\(138\) 0 0
\(139\) 3204.60i 1.95547i −0.209844 0.977735i \(-0.567296\pi\)
0.209844 0.977735i \(-0.432704\pi\)
\(140\) 0 0
\(141\) 442.472 + 1470.55i 0.264276 + 0.878315i
\(142\) 0 0
\(143\) 442.200 0.258592
\(144\) 0 0
\(145\) 5213.22 2.98576
\(146\) 0 0
\(147\) −73.3610 243.814i −0.0411613 0.136799i
\(148\) 0 0
\(149\) 3019.60i 1.66024i −0.557587 0.830118i \(-0.688273\pi\)
0.557587 0.830118i \(-0.311727\pi\)
\(150\) 0 0
\(151\) 3583.82i 1.93144i 0.259594 + 0.965718i \(0.416411\pi\)
−0.259594 + 0.965718i \(0.583589\pi\)
\(152\) 0 0
\(153\) −444.649 671.995i −0.234952 0.355082i
\(154\) 0 0
\(155\) 3190.88 1.65353
\(156\) 0 0
\(157\) −471.349 −0.239603 −0.119802 0.992798i \(-0.538226\pi\)
−0.119802 + 0.992798i \(0.538226\pi\)
\(158\) 0 0
\(159\) −577.926 + 173.892i −0.288255 + 0.0867328i
\(160\) 0 0
\(161\) 541.681i 0.265158i
\(162\) 0 0
\(163\) 1275.37i 0.612851i 0.951895 + 0.306426i \(0.0991331\pi\)
−0.951895 + 0.306426i \(0.900867\pi\)
\(164\) 0 0
\(165\) −2067.49 + 622.086i −0.975478 + 0.293511i
\(166\) 0 0
\(167\) −762.580 −0.353355 −0.176677 0.984269i \(-0.556535\pi\)
−0.176677 + 0.984269i \(0.556535\pi\)
\(168\) 0 0
\(169\) −1722.86 −0.784185
\(170\) 0 0
\(171\) 1296.72 + 1959.72i 0.579897 + 0.876396i
\(172\) 0 0
\(173\) 570.667i 0.250792i −0.992107 0.125396i \(-0.959980\pi\)
0.992107 0.125396i \(-0.0400201\pi\)
\(174\) 0 0
\(175\) 2055.45i 0.887869i
\(176\) 0 0
\(177\) −366.398 1217.72i −0.155594 0.517114i
\(178\) 0 0
\(179\) −1158.87 −0.483899 −0.241949 0.970289i \(-0.577787\pi\)
−0.241949 + 0.970289i \(0.577787\pi\)
\(180\) 0 0
\(181\) 892.923 0.366688 0.183344 0.983049i \(-0.441308\pi\)
0.183344 + 0.983049i \(0.441308\pi\)
\(182\) 0 0
\(183\) 1081.28 + 3593.62i 0.436780 + 1.45163i
\(184\) 0 0
\(185\) 6639.20i 2.63851i
\(186\) 0 0
\(187\) 606.065i 0.237004i
\(188\) 0 0
\(189\) −628.134 + 754.927i −0.241746 + 0.290544i
\(190\) 0 0
\(191\) −165.530 −0.0627085 −0.0313542 0.999508i \(-0.509982\pi\)
−0.0313542 + 0.999508i \(0.509982\pi\)
\(192\) 0 0
\(193\) 259.826 0.0969050 0.0484525 0.998825i \(-0.484571\pi\)
0.0484525 + 0.998825i \(0.484571\pi\)
\(194\) 0 0
\(195\) −2216.85 + 667.025i −0.814111 + 0.244957i
\(196\) 0 0
\(197\) 1877.65i 0.679070i 0.940593 + 0.339535i \(0.110270\pi\)
−0.940593 + 0.339535i \(0.889730\pi\)
\(198\) 0 0
\(199\) 1919.19i 0.683659i 0.939762 + 0.341829i \(0.111046\pi\)
−0.939762 + 0.341829i \(0.888954\pi\)
\(200\) 0 0
\(201\) 320.954 96.5717i 0.112629 0.0338888i
\(202\) 0 0
\(203\) 1783.56 0.616655
\(204\) 0 0
\(205\) 4951.06 1.68681
\(206\) 0 0
\(207\) −1742.43 + 1152.94i −0.585061 + 0.387125i
\(208\) 0 0
\(209\) 1767.45i 0.584962i
\(210\) 0 0
\(211\) 3895.07i 1.27084i −0.772166 0.635421i \(-0.780827\pi\)
0.772166 0.635421i \(-0.219173\pi\)
\(212\) 0 0
\(213\) −1437.72 4778.22i −0.462491 1.53708i
\(214\) 0 0
\(215\) 5032.66 1.59639
\(216\) 0 0
\(217\) 1091.67 0.341508
\(218\) 0 0
\(219\) −1007.93 3349.84i −0.311003 1.03361i
\(220\) 0 0
\(221\) 649.847i 0.197798i
\(222\) 0 0
\(223\) 2913.46i 0.874887i 0.899246 + 0.437444i \(0.144116\pi\)
−0.899246 + 0.437444i \(0.855884\pi\)
\(224\) 0 0
\(225\) 6611.78 4374.91i 1.95905 1.29627i
\(226\) 0 0
\(227\) −1254.02 −0.366663 −0.183332 0.983051i \(-0.558688\pi\)
−0.183332 + 0.983051i \(0.558688\pi\)
\(228\) 0 0
\(229\) 1946.83 0.561792 0.280896 0.959738i \(-0.409368\pi\)
0.280896 + 0.959738i \(0.409368\pi\)
\(230\) 0 0
\(231\) −707.332 + 212.829i −0.201468 + 0.0606195i
\(232\) 0 0
\(233\) 2118.26i 0.595587i 0.954630 + 0.297794i \(0.0962507\pi\)
−0.954630 + 0.297794i \(0.903749\pi\)
\(234\) 0 0
\(235\) 6046.93i 1.67854i
\(236\) 0 0
\(237\) −4709.56 + 1417.06i −1.29080 + 0.388387i
\(238\) 0 0
\(239\) 6507.44 1.76122 0.880609 0.473844i \(-0.157134\pi\)
0.880609 + 0.473844i \(0.157134\pi\)
\(240\) 0 0
\(241\) −4705.98 −1.25784 −0.628919 0.777471i \(-0.716502\pi\)
−0.628919 + 0.777471i \(0.716502\pi\)
\(242\) 0 0
\(243\) 3765.34 + 413.706i 0.994018 + 0.109215i
\(244\) 0 0
\(245\) 1002.57i 0.261436i
\(246\) 0 0
\(247\) 1895.13i 0.488195i
\(248\) 0 0
\(249\) −540.357 1795.86i −0.137525 0.457061i
\(250\) 0 0
\(251\) 3963.90 0.996809 0.498404 0.866945i \(-0.333919\pi\)
0.498404 + 0.866945i \(0.333919\pi\)
\(252\) 0 0
\(253\) −1571.48 −0.390506
\(254\) 0 0
\(255\) 914.203 + 3038.34i 0.224508 + 0.746149i
\(256\) 0 0
\(257\) 38.6112i 0.00937160i −0.999989 0.00468580i \(-0.998508\pi\)
0.999989 0.00468580i \(-0.00149154\pi\)
\(258\) 0 0
\(259\) 2271.41i 0.544937i
\(260\) 0 0
\(261\) −3796.21 5737.19i −0.900304 1.36062i
\(262\) 0 0
\(263\) 42.4838 0.00996069 0.00498034 0.999988i \(-0.498415\pi\)
0.00498034 + 0.999988i \(0.498415\pi\)
\(264\) 0 0
\(265\) 2376.45 0.550883
\(266\) 0 0
\(267\) −6709.41 + 2018.79i −1.53786 + 0.462726i
\(268\) 0 0
\(269\) 899.050i 0.203777i 0.994796 + 0.101889i \(0.0324885\pi\)
−0.994796 + 0.101889i \(0.967511\pi\)
\(270\) 0 0
\(271\) 276.446i 0.0619665i 0.999520 + 0.0309832i \(0.00986385\pi\)
−0.999520 + 0.0309832i \(0.990136\pi\)
\(272\) 0 0
\(273\) −758.430 + 228.204i −0.168140 + 0.0505916i
\(274\) 0 0
\(275\) 5963.09 1.30759
\(276\) 0 0
\(277\) −4653.56 −1.00941 −0.504703 0.863293i \(-0.668398\pi\)
−0.504703 + 0.863293i \(0.668398\pi\)
\(278\) 0 0
\(279\) −2323.56 3511.58i −0.498594 0.753523i
\(280\) 0 0
\(281\) 8261.72i 1.75392i −0.480559 0.876962i \(-0.659566\pi\)
0.480559 0.876962i \(-0.340434\pi\)
\(282\) 0 0
\(283\) 4598.84i 0.965981i −0.875626 0.482990i \(-0.839551\pi\)
0.875626 0.482990i \(-0.160449\pi\)
\(284\) 0 0
\(285\) −2666.07 8860.61i −0.554120 1.84161i
\(286\) 0 0
\(287\) 1693.86 0.348382
\(288\) 0 0
\(289\) 4022.34 0.818714
\(290\) 0 0
\(291\) −1401.48 4657.80i −0.282324 0.938300i
\(292\) 0 0
\(293\) 6278.55i 1.25187i 0.779877 + 0.625933i \(0.215282\pi\)
−0.779877 + 0.625933i \(0.784718\pi\)
\(294\) 0 0
\(295\) 5007.28i 0.988255i
\(296\) 0 0
\(297\) 2190.13 + 1822.29i 0.427893 + 0.356027i
\(298\) 0 0
\(299\) −1685.00 −0.325907
\(300\) 0 0
\(301\) 1721.78 0.329707
\(302\) 0 0
\(303\) 5865.92 1764.99i 1.11217 0.334641i
\(304\) 0 0
\(305\) 14777.1i 2.77420i
\(306\) 0 0
\(307\) 2025.63i 0.376576i 0.982114 + 0.188288i \(0.0602938\pi\)
−0.982114 + 0.188288i \(0.939706\pi\)
\(308\) 0 0
\(309\) 7120.89 2142.60i 1.31098 0.394461i
\(310\) 0 0
\(311\) 5442.54 0.992342 0.496171 0.868225i \(-0.334739\pi\)
0.496171 + 0.868225i \(0.334739\pi\)
\(312\) 0 0
\(313\) −7840.20 −1.41583 −0.707914 0.706298i \(-0.750364\pi\)
−0.707914 + 0.706298i \(0.750364\pi\)
\(314\) 0 0
\(315\) 3224.98 2133.92i 0.576847 0.381690i
\(316\) 0 0
\(317\) 9145.28i 1.62035i −0.586190 0.810174i \(-0.699373\pi\)
0.586190 0.810174i \(-0.300627\pi\)
\(318\) 0 0
\(319\) 5174.30i 0.908167i
\(320\) 0 0
\(321\) 1536.54 + 5106.65i 0.267169 + 0.887930i
\(322\) 0 0
\(323\) 2597.40 0.447441
\(324\) 0 0
\(325\) 6393.86 1.09129
\(326\) 0 0
\(327\) −2048.82 6809.22i −0.346483 1.15153i
\(328\) 0 0
\(329\) 2068.78i 0.346674i
\(330\) 0 0
\(331\) 45.8768i 0.00761818i −0.999993 0.00380909i \(-0.998788\pi\)
0.999993 0.00380909i \(-0.00121247\pi\)
\(332\) 0 0
\(333\) 7306.49 4834.59i 1.20238 0.795597i
\(334\) 0 0
\(335\) −1319.77 −0.215244
\(336\) 0 0
\(337\) −8222.68 −1.32913 −0.664567 0.747229i \(-0.731384\pi\)
−0.664567 + 0.747229i \(0.731384\pi\)
\(338\) 0 0
\(339\) 674.864 203.060i 0.108123 0.0325330i
\(340\) 0 0
\(341\) 3167.06i 0.502949i
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 7878.18 2370.46i 1.22941 0.369917i
\(346\) 0 0
\(347\) 3395.84 0.525355 0.262678 0.964884i \(-0.415394\pi\)
0.262678 + 0.964884i \(0.415394\pi\)
\(348\) 0 0
\(349\) −1106.81 −0.169761 −0.0848803 0.996391i \(-0.527051\pi\)
−0.0848803 + 0.996391i \(0.527051\pi\)
\(350\) 0 0
\(351\) 2348.35 + 1953.93i 0.357109 + 0.297132i
\(352\) 0 0
\(353\) 9738.66i 1.46838i 0.678946 + 0.734188i \(0.262437\pi\)
−0.678946 + 0.734188i \(0.737563\pi\)
\(354\) 0 0
\(355\) 19648.2i 2.93751i
\(356\) 0 0
\(357\) 312.768 + 1039.48i 0.0463682 + 0.154104i
\(358\) 0 0
\(359\) −5628.36 −0.827447 −0.413724 0.910403i \(-0.635772\pi\)
−0.413724 + 0.910403i \(0.635772\pi\)
\(360\) 0 0
\(361\) −715.737 −0.104350
\(362\) 0 0
\(363\) −1375.28 4570.72i −0.198853 0.660884i
\(364\) 0 0
\(365\) 13774.6i 1.97533i
\(366\) 0 0
\(367\) 18.2412i 0.00259450i 0.999999 + 0.00129725i \(0.000412928\pi\)
−0.999999 + 0.00129725i \(0.999587\pi\)
\(368\) 0 0
\(369\) −3605.30 5448.67i −0.508630 0.768690i
\(370\) 0 0
\(371\) 813.033 0.113775
\(372\) 0 0
\(373\) 6437.22 0.893584 0.446792 0.894638i \(-0.352566\pi\)
0.446792 + 0.894638i \(0.352566\pi\)
\(374\) 0 0
\(375\) −17168.3 + 5165.77i −2.36418 + 0.711358i
\(376\) 0 0
\(377\) 5548.09i 0.757935i
\(378\) 0 0
\(379\) 1912.12i 0.259154i 0.991569 + 0.129577i \(0.0413619\pi\)
−0.991569 + 0.129577i \(0.958638\pi\)
\(380\) 0 0
\(381\) 12129.2 3649.56i 1.63097 0.490742i
\(382\) 0 0
\(383\) −7362.83 −0.982306 −0.491153 0.871073i \(-0.663424\pi\)
−0.491153 + 0.871073i \(0.663424\pi\)
\(384\) 0 0
\(385\) 2908.57 0.385024
\(386\) 0 0
\(387\) −3664.72 5538.48i −0.481365 0.727485i
\(388\) 0 0
\(389\) 11862.8i 1.54619i 0.634291 + 0.773094i \(0.281292\pi\)
−0.634291 + 0.773094i \(0.718708\pi\)
\(390\) 0 0
\(391\) 2309.41i 0.298701i
\(392\) 0 0
\(393\) −847.461 2816.52i −0.108776 0.361513i
\(394\) 0 0
\(395\) 19365.8 2.46683
\(396\) 0 0
\(397\) 4925.05 0.622622 0.311311 0.950308i \(-0.399232\pi\)
0.311311 + 0.950308i \(0.399232\pi\)
\(398\) 0 0
\(399\) −912.118 3031.41i −0.114444 0.380351i
\(400\) 0 0
\(401\) 1630.09i 0.202999i 0.994836 + 0.101500i \(0.0323641\pi\)
−0.994836 + 0.101500i \(0.967636\pi\)
\(402\) 0 0
\(403\) 3395.84i 0.419750i
\(404\) 0 0
\(405\) −13728.4 5831.90i −1.68437 0.715529i
\(406\) 0 0
\(407\) 6589.64 0.802546
\(408\) 0 0
\(409\) −9699.95 −1.17269 −0.586347 0.810060i \(-0.699434\pi\)
−0.586347 + 0.810060i \(0.699434\pi\)
\(410\) 0 0
\(411\) −7781.57 + 2341.39i −0.933909 + 0.281003i
\(412\) 0 0
\(413\) 1713.10i 0.204107i
\(414\) 0 0
\(415\) 7384.64i 0.873488i
\(416\) 0 0
\(417\) 15945.4 4797.80i 1.87254 0.563428i
\(418\) 0 0
\(419\) 3120.60 0.363846 0.181923 0.983313i \(-0.441768\pi\)
0.181923 + 0.983313i \(0.441768\pi\)
\(420\) 0 0
\(421\) −8807.80 −1.01963 −0.509817 0.860283i \(-0.670287\pi\)
−0.509817 + 0.860283i \(0.670287\pi\)
\(422\) 0 0
\(423\) −6654.68 + 4403.30i −0.764922 + 0.506136i
\(424\) 0 0
\(425\) 8763.22i 1.00019i
\(426\) 0 0
\(427\) 5055.55i 0.572963i
\(428\) 0 0
\(429\) 662.045 + 2200.29i 0.0745078 + 0.247625i
\(430\) 0 0
\(431\) −2743.35 −0.306595 −0.153298 0.988180i \(-0.548989\pi\)
−0.153298 + 0.988180i \(0.548989\pi\)
\(432\) 0 0
\(433\) −3612.22 −0.400906 −0.200453 0.979703i \(-0.564241\pi\)
−0.200453 + 0.979703i \(0.564241\pi\)
\(434\) 0 0
\(435\) 7805.05 + 25939.9i 0.860283 + 2.85913i
\(436\) 0 0
\(437\) 6734.88i 0.737237i
\(438\) 0 0
\(439\) 9777.00i 1.06294i 0.847077 + 0.531470i \(0.178360\pi\)
−0.847077 + 0.531470i \(0.821640\pi\)
\(440\) 0 0
\(441\) 1103.33 730.058i 0.119138 0.0788314i
\(442\) 0 0
\(443\) 14301.0 1.53378 0.766888 0.641781i \(-0.221804\pi\)
0.766888 + 0.641781i \(0.221804\pi\)
\(444\) 0 0
\(445\) 27589.2 2.93900
\(446\) 0 0
\(447\) 15024.9 4520.83i 1.58983 0.478363i
\(448\) 0 0
\(449\) 12280.8i 1.29080i 0.763846 + 0.645398i \(0.223309\pi\)
−0.763846 + 0.645398i \(0.776691\pi\)
\(450\) 0 0
\(451\) 4914.09i 0.513072i
\(452\) 0 0
\(453\) −17832.3 + 5365.56i −1.84953 + 0.556503i
\(454\) 0 0
\(455\) 3118.68 0.321332
\(456\) 0 0
\(457\) −11290.1 −1.15565 −0.577823 0.816162i \(-0.696098\pi\)
−0.577823 + 0.816162i \(0.696098\pi\)
\(458\) 0 0
\(459\) 2678.00 3218.57i 0.272327 0.327298i
\(460\) 0 0
\(461\) 13225.8i 1.33619i 0.744074 + 0.668097i \(0.232891\pi\)
−0.744074 + 0.668097i \(0.767109\pi\)
\(462\) 0 0
\(463\) 13749.5i 1.38011i −0.723755 0.690057i \(-0.757585\pi\)
0.723755 0.690057i \(-0.242415\pi\)
\(464\) 0 0
\(465\) 4777.27 + 15877.1i 0.476431 + 1.58341i
\(466\) 0 0
\(467\) −18155.9 −1.79904 −0.899521 0.436877i \(-0.856084\pi\)
−0.899521 + 0.436877i \(0.856084\pi\)
\(468\) 0 0
\(469\) −451.522 −0.0444549
\(470\) 0 0
\(471\) −705.686 2345.33i −0.0690367 0.229442i
\(472\) 0 0
\(473\) 4995.09i 0.485570i
\(474\) 0 0
\(475\) 25555.9i 2.46860i
\(476\) 0 0
\(477\) −1730.50 2615.29i −0.166109 0.251040i
\(478\) 0 0
\(479\) 3212.69 0.306454 0.153227 0.988191i \(-0.451033\pi\)
0.153227 + 0.988191i \(0.451033\pi\)
\(480\) 0 0
\(481\) 7065.67 0.669786
\(482\) 0 0
\(483\) 2695.29 810.985i 0.253913 0.0763998i
\(484\) 0 0
\(485\) 19153.0i 1.79318i
\(486\) 0 0
\(487\) 19360.3i 1.80144i −0.434404 0.900718i \(-0.643041\pi\)
0.434404 0.900718i \(-0.356959\pi\)
\(488\) 0 0
\(489\) −6345.98 + 1909.44i −0.586861 + 0.176580i
\(490\) 0 0
\(491\) −4235.18 −0.389269 −0.194634 0.980876i \(-0.562352\pi\)
−0.194634 + 0.980876i \(0.562352\pi\)
\(492\) 0 0
\(493\) −7604.04 −0.694662
\(494\) 0 0
\(495\) −6190.74 9356.03i −0.562127 0.849540i
\(496\) 0 0
\(497\) 6722.05i 0.606691i
\(498\) 0 0
\(499\) 19854.7i 1.78120i −0.454788 0.890600i \(-0.650285\pi\)
0.454788 0.890600i \(-0.349715\pi\)
\(500\) 0 0
\(501\) −1141.71 3794.44i −0.101812 0.338370i
\(502\) 0 0
\(503\) 21829.5 1.93505 0.967526 0.252770i \(-0.0813417\pi\)
0.967526 + 0.252770i \(0.0813417\pi\)
\(504\) 0 0
\(505\) −24120.8 −2.12547
\(506\) 0 0
\(507\) −2579.40 8572.57i −0.225947 0.750929i
\(508\) 0 0
\(509\) 10217.9i 0.889781i −0.895585 0.444890i \(-0.853243\pi\)
0.895585 0.444890i \(-0.146757\pi\)
\(510\) 0 0
\(511\) 4712.59i 0.407970i
\(512\) 0 0
\(513\) −7809.77 + 9386.22i −0.672144 + 0.807820i
\(514\) 0 0
\(515\) −29281.3 −2.50541
\(516\) 0 0
\(517\) −6001.78 −0.510557
\(518\) 0 0
\(519\) 2839.52 854.381i 0.240156 0.0722604i
\(520\) 0 0
\(521\) 6347.75i 0.533781i −0.963727 0.266890i \(-0.914004\pi\)
0.963727 0.266890i \(-0.0859962\pi\)
\(522\) 0 0
\(523\) 9870.31i 0.825236i 0.910904 + 0.412618i \(0.135386\pi\)
−0.910904 + 0.412618i \(0.864614\pi\)
\(524\) 0 0
\(525\) −10227.5 + 3077.34i −0.850216 + 0.255821i
\(526\) 0 0
\(527\) −4654.23 −0.384709
\(528\) 0 0
\(529\) −6178.87 −0.507838
\(530\) 0 0
\(531\) 5510.55 3646.24i 0.450353 0.297991i
\(532\) 0 0
\(533\) 5269.09i 0.428198i
\(534\) 0 0
\(535\) 20998.7i 1.69692i
\(536\) 0 0
\(537\) −1735.01 5766.28i −0.139425 0.463377i
\(538\) 0 0
\(539\) 995.083 0.0795200
\(540\) 0 0
\(541\) 6586.32 0.523416 0.261708 0.965147i \(-0.415714\pi\)
0.261708 + 0.965147i \(0.415714\pi\)
\(542\) 0 0
\(543\) 1336.85 + 4443.00i 0.105653 + 0.351137i
\(544\) 0 0
\(545\) 27999.7i 2.20069i
\(546\) 0 0
\(547\) 1579.47i 0.123461i −0.998093 0.0617306i \(-0.980338\pi\)
0.998093 0.0617306i \(-0.0196620\pi\)
\(548\) 0 0
\(549\) −16262.3 + 10760.5i −1.26422 + 0.836514i
\(550\) 0 0
\(551\) 22175.4 1.71453
\(552\) 0 0
\(553\) 6625.46 0.509481
\(554\) 0 0
\(555\) −33035.3 + 9939.97i −2.52661 + 0.760231i
\(556\) 0 0
\(557\) 15675.2i 1.19242i −0.802828 0.596211i \(-0.796672\pi\)
0.802828 0.596211i \(-0.203328\pi\)
\(558\) 0 0
\(559\) 5355.93i 0.405245i
\(560\) 0 0
\(561\) 3015.65 907.378i 0.226953 0.0682879i
\(562\) 0 0
\(563\) −10592.5 −0.792929 −0.396465 0.918050i \(-0.629763\pi\)
−0.396465 + 0.918050i \(0.629763\pi\)
\(564\) 0 0
\(565\) −2775.06 −0.206633
\(566\) 0 0
\(567\) −4696.78 1995.22i −0.347877 0.147780i
\(568\) 0 0
\(569\) 6998.96i 0.515662i −0.966190 0.257831i \(-0.916992\pi\)
0.966190 0.257831i \(-0.0830077\pi\)
\(570\) 0 0
\(571\) 7891.16i 0.578345i −0.957277 0.289172i \(-0.906620\pi\)
0.957277 0.289172i \(-0.0933801\pi\)
\(572\) 0 0
\(573\) −247.825 823.642i −0.0180681 0.0600491i
\(574\) 0 0
\(575\) −22722.4 −1.64798
\(576\) 0 0
\(577\) 6592.33 0.475636 0.237818 0.971310i \(-0.423568\pi\)
0.237818 + 0.971310i \(0.423568\pi\)
\(578\) 0 0
\(579\) 389.001 + 1292.84i 0.0279211 + 0.0927954i
\(580\) 0 0
\(581\) 2526.44i 0.180404i
\(582\) 0 0
\(583\) 2358.70i 0.167560i
\(584\) 0 0
\(585\) −6637.96 10031.9i −0.469138 0.709006i
\(586\) 0 0
\(587\) −6607.11 −0.464573 −0.232287 0.972647i \(-0.574621\pi\)
−0.232287 + 0.972647i \(0.574621\pi\)
\(588\) 0 0
\(589\) 13573.0 0.949518
\(590\) 0 0
\(591\) −9342.78 + 2811.15i −0.650272 + 0.195660i
\(592\) 0 0
\(593\) 20893.4i 1.44686i 0.690398 + 0.723429i \(0.257435\pi\)
−0.690398 + 0.723429i \(0.742565\pi\)
\(594\) 0 0
\(595\) 4274.36i 0.294507i
\(596\) 0 0
\(597\) −9549.51 + 2873.35i −0.654666 + 0.196982i
\(598\) 0 0
\(599\) −20486.5 −1.39742 −0.698712 0.715403i \(-0.746243\pi\)
−0.698712 + 0.715403i \(0.746243\pi\)
\(600\) 0 0
\(601\) 14843.4 1.00744 0.503722 0.863866i \(-0.331964\pi\)
0.503722 + 0.863866i \(0.331964\pi\)
\(602\) 0 0
\(603\) 961.042 + 1452.42i 0.0649032 + 0.0980879i
\(604\) 0 0
\(605\) 18794.9i 1.26301i
\(606\) 0 0
\(607\) 23443.2i 1.56760i −0.621014 0.783799i \(-0.713279\pi\)
0.621014 0.783799i \(-0.286721\pi\)
\(608\) 0 0
\(609\) 2670.27 + 8874.60i 0.177676 + 0.590504i
\(610\) 0 0
\(611\) −6435.35 −0.426099
\(612\) 0 0
\(613\) −2857.55 −0.188280 −0.0941399 0.995559i \(-0.530010\pi\)
−0.0941399 + 0.995559i \(0.530010\pi\)
\(614\) 0 0
\(615\) 7412.54 + 24635.4i 0.486020 + 1.61528i
\(616\) 0 0
\(617\) 19473.7i 1.27064i 0.772250 + 0.635319i \(0.219131\pi\)
−0.772250 + 0.635319i \(0.780869\pi\)
\(618\) 0 0
\(619\) 19016.0i 1.23476i 0.786664 + 0.617381i \(0.211806\pi\)
−0.786664 + 0.617381i \(0.788194\pi\)
\(620\) 0 0
\(621\) −8345.50 6943.85i −0.539281 0.448707i
\(622\) 0 0
\(623\) 9438.87 0.606999
\(624\) 0 0
\(625\) 33892.2 2.16910
\(626\) 0 0
\(627\) −8794.46 + 2646.16i −0.560155 + 0.168545i
\(628\) 0 0
\(629\) 9683.98i 0.613872i
\(630\) 0 0
\(631\) 30755.6i 1.94035i −0.242399 0.970177i \(-0.577934\pi\)
0.242399 0.970177i \(-0.422066\pi\)
\(632\) 0 0
\(633\) 19381.0 5831.55i 1.21695 0.366166i
\(634\) 0 0
\(635\) −49875.7 −3.11694
\(636\) 0 0
\(637\) 1066.97 0.0663655
\(638\) 0 0
\(639\) 21622.9 14307.5i 1.33864 0.885756i
\(640\) 0 0
\(641\) 25291.0i 1.55840i −0.626775 0.779201i \(-0.715625\pi\)
0.626775 0.779201i \(-0.284375\pi\)
\(642\) 0 0
\(643\) 11833.0i 0.725738i 0.931840 + 0.362869i \(0.118203\pi\)
−0.931840 + 0.362869i \(0.881797\pi\)
\(644\) 0 0
\(645\) 7534.71 + 25041.5i 0.459968 + 1.52869i
\(646\) 0 0
\(647\) 26639.0 1.61868 0.809342 0.587338i \(-0.199824\pi\)
0.809342 + 0.587338i \(0.199824\pi\)
\(648\) 0 0
\(649\) 4969.90 0.300594
\(650\) 0 0
\(651\) 1634.40 + 5431.91i 0.0983984 + 0.327025i
\(652\) 0 0
\(653\) 15802.1i 0.946992i −0.880796 0.473496i \(-0.842992\pi\)
0.880796 0.473496i \(-0.157008\pi\)
\(654\) 0 0
\(655\) 11581.6i 0.690887i
\(656\) 0 0
\(657\) 15159.0 10030.5i 0.900169 0.595627i
\(658\) 0 0
\(659\) 127.301 0.00752496 0.00376248 0.999993i \(-0.498802\pi\)
0.00376248 + 0.999993i \(0.498802\pi\)
\(660\) 0 0
\(661\) 7619.97 0.448385 0.224192 0.974545i \(-0.428026\pi\)
0.224192 + 0.974545i \(0.428026\pi\)
\(662\) 0 0
\(663\) 3233.50 972.927i 0.189410 0.0569915i
\(664\) 0 0
\(665\) 12465.2i 0.726888i
\(666\) 0 0
\(667\) 19716.7i 1.14458i
\(668\) 0 0
\(669\) −14496.8 + 4361.93i −0.837785 + 0.252081i
\(670\) 0 0
\(671\) −14666.7 −0.843820
\(672\) 0 0
\(673\) −17220.6 −0.986338 −0.493169 0.869933i \(-0.664162\pi\)
−0.493169 + 0.869933i \(0.664162\pi\)
\(674\) 0 0
\(675\) 31667.6 + 26348.9i 1.80576 + 1.50247i
\(676\) 0 0
\(677\) 2038.86i 0.115745i 0.998324 + 0.0578727i \(0.0184317\pi\)
−0.998324 + 0.0578727i \(0.981568\pi\)
\(678\) 0 0
\(679\) 6552.65i 0.370350i
\(680\) 0 0
\(681\) −1877.48 6239.76i −0.105646 0.351113i
\(682\) 0 0
\(683\) 7126.18 0.399233 0.199616 0.979874i \(-0.436030\pi\)
0.199616 + 0.979874i \(0.436030\pi\)
\(684\) 0 0
\(685\) 31998.0 1.78479
\(686\) 0 0
\(687\) 2914.73 + 9687.04i 0.161869 + 0.537967i
\(688\) 0 0
\(689\) 2529.10i 0.139842i
\(690\) 0 0
\(691\) 11456.6i 0.630725i −0.948971 0.315362i \(-0.897874\pi\)
0.948971 0.315362i \(-0.102126\pi\)
\(692\) 0 0
\(693\) −2117.98 3200.90i −0.116097 0.175458i
\(694\) 0 0
\(695\) −65567.9 −3.57861
\(696\) 0 0
\(697\) −7221.64 −0.392452
\(698\) 0 0
\(699\) −10540.0 + 3171.38i −0.570329 + 0.171606i
\(700\) 0 0
\(701\) 12593.4i 0.678525i 0.940692 + 0.339262i \(0.110177\pi\)
−0.940692 + 0.339262i \(0.889823\pi\)
\(702\) 0 0
\(703\) 28241.1i 1.51513i
\(704\) 0 0
\(705\) 30088.2 9053.24i 1.60736 0.483638i
\(706\) 0 0
\(707\) −8252.24 −0.438978
\(708\) 0 0
\(709\) −29125.4 −1.54278 −0.771389 0.636364i \(-0.780437\pi\)
−0.771389 + 0.636364i \(0.780437\pi\)
\(710\) 0 0
\(711\) −14101.9 21312.2i −0.743832 1.12415i
\(712\) 0 0
\(713\) 12068.1i 0.633875i
\(714\) 0 0
\(715\) 9047.66i 0.473236i
\(716\) 0 0
\(717\) 9742.69 + 32379.6i 0.507458 + 1.68653i
\(718\) 0 0
\(719\) −30927.1 −1.60415 −0.802077 0.597220i \(-0.796272\pi\)
−0.802077 + 0.597220i \(0.796272\pi\)
\(720\) 0 0
\(721\) −10017.8 −0.517449
\(722\) 0 0
\(723\) −7045.63 23416.0i −0.362420 1.20450i
\(724\) 0 0
\(725\) 74816.3i 3.83256i
\(726\) 0 0
\(727\) 3678.29i 0.187648i −0.995589 0.0938242i \(-0.970091\pi\)
0.995589 0.0938242i \(-0.0299092\pi\)
\(728\) 0 0
\(729\) 3578.80 + 19354.9i 0.181822 + 0.983331i
\(730\) 0 0
\(731\) −7340.67 −0.371415
\(732\) 0 0
\(733\) 3527.22 0.177736 0.0888682 0.996043i \(-0.471675\pi\)
0.0888682 + 0.996043i \(0.471675\pi\)
\(734\) 0 0
\(735\) −4988.57 + 1501.01i −0.250349 + 0.0753272i
\(736\) 0 0
\(737\) 1309.92i 0.0654701i
\(738\) 0 0
\(739\) 7635.17i 0.380060i −0.981778 0.190030i \(-0.939142\pi\)
0.981778 0.190030i \(-0.0608585\pi\)
\(740\) 0 0
\(741\) −9429.78 + 2837.32i −0.467492 + 0.140663i
\(742\) 0 0
\(743\) 12182.7 0.601534 0.300767 0.953698i \(-0.402757\pi\)
0.300767 + 0.953698i \(0.402757\pi\)
\(744\) 0 0
\(745\) −61782.7 −3.03832
\(746\) 0 0
\(747\) 8126.85 5377.40i 0.398053 0.263385i
\(748\) 0 0
\(749\) 7184.09i 0.350469i
\(750\) 0 0
\(751\) 12153.7i 0.590540i −0.955414 0.295270i \(-0.904590\pi\)
0.955414 0.295270i \(-0.0954097\pi\)
\(752\) 0 0
\(753\) 5934.60 + 19723.5i 0.287210 + 0.954536i
\(754\) 0 0
\(755\) 73326.9 3.53462
\(756\) 0 0
\(757\) 14004.1 0.672375 0.336187 0.941795i \(-0.390862\pi\)
0.336187 + 0.941795i \(0.390862\pi\)
\(758\) 0 0
\(759\) −2352.76 7819.36i −0.112516 0.373946i
\(760\) 0 0
\(761\) 5193.12i 0.247373i 0.992321 + 0.123686i \(0.0394717\pi\)
−0.992321 + 0.123686i \(0.960528\pi\)
\(762\) 0 0
\(763\) 9579.28i 0.454513i
\(764\) 0 0
\(765\) −13749.4 + 9097.77i −0.649818 + 0.429974i
\(766\) 0 0
\(767\) 5328.93 0.250869
\(768\) 0 0
\(769\) 6212.79 0.291338 0.145669 0.989333i \(-0.453467\pi\)
0.145669 + 0.989333i \(0.453467\pi\)
\(770\) 0 0
\(771\) 192.121 57.8073i 0.00897417 0.00270023i
\(772\) 0 0
\(773\) 35834.8i 1.66739i 0.552228 + 0.833693i \(0.313778\pi\)
−0.552228 + 0.833693i \(0.686222\pi\)
\(774\) 0 0
\(775\) 45793.1i 2.12250i
\(776\) 0 0
\(777\) −11302.1 + 3400.68i −0.521827 + 0.157012i
\(778\) 0 0
\(779\) 21060.3 0.968629
\(780\) 0 0
\(781\) 19501.5 0.893492
\(782\) 0 0
\(783\) 22863.5 27478.6i 1.04352 1.25416i
\(784\) 0 0
\(785\) 9644.07i 0.438486i
\(786\) 0 0
\(787\) 13358.7i 0.605063i 0.953139 + 0.302532i \(0.0978318\pi\)
−0.953139 + 0.302532i \(0.902168\pi\)
\(788\) 0 0
\(789\) 63.6051 + 211.390i 0.00286996 + 0.00953827i
\(790\) 0 0
\(791\) −949.407 −0.0426764
\(792\) 0 0
\(793\) −15726.3 −0.704232
\(794\) 0 0
\(795\) 3557.93 + 11824.7i 0.158725 + 0.527521i
\(796\) 0 0
\(797\) 28233.5i 1.25481i −0.778695 0.627403i \(-0.784118\pi\)
0.778695 0.627403i \(-0.215882\pi\)
\(798\) 0 0
\(799\) 8820.08i 0.390528i
\(800\) 0 0
\(801\) −20090.2 30362.2i −0.886206 1.33932i
\(802\) 0 0
\(803\) 13671.8 0.600830
\(804\) 0 0
\(805\) −11083.1 −0.485253
\(806\) 0 0
\(807\) −4473.49 + 1346.02i −0.195135 + 0.0587141i
\(808\) 0 0
\(809\) 15336.0i 0.666482i −0.942842 0.333241i \(-0.891858\pi\)
0.942842 0.333241i \(-0.108142\pi\)
\(810\) 0 0
\(811\) 10086.1i 0.436709i −0.975869 0.218355i \(-0.929931\pi\)
0.975869 0.218355i \(-0.0700690\pi\)
\(812\) 0 0
\(813\) −1375.54 + 413.885i −0.0593386 + 0.0178543i
\(814\) 0 0
\(815\) 26094.8 1.12155
\(816\) 0 0
\(817\) 21407.4 0.916707
\(818\) 0 0
\(819\) −2270.99 3432.13i −0.0968922 0.146433i
\(820\) 0 0
\(821\) 24168.3i 1.02738i −0.857975 0.513691i \(-0.828278\pi\)
0.857975 0.513691i \(-0.171722\pi\)
\(822\) 0 0
\(823\) 41459.1i 1.75598i 0.478679 + 0.877990i \(0.341116\pi\)
−0.478679 + 0.877990i \(0.658884\pi\)
\(824\) 0 0
\(825\) 8927.72 + 29671.1i 0.376755 + 1.25214i
\(826\) 0 0
\(827\) −14214.2 −0.597674 −0.298837 0.954304i \(-0.596599\pi\)
−0.298837 + 0.954304i \(0.596599\pi\)
\(828\) 0 0
\(829\) 10720.2 0.449127 0.224564 0.974459i \(-0.427904\pi\)
0.224564 + 0.974459i \(0.427904\pi\)
\(830\) 0 0
\(831\) −6967.14 23155.1i −0.290839 0.966598i
\(832\) 0 0
\(833\) 1462.35i 0.0608253i
\(834\) 0 0
\(835\) 15602.8i 0.646657i
\(836\) 0 0
\(837\) 13994.2 16819.0i 0.577908 0.694562i
\(838\) 0 0
\(839\) 4364.99 0.179614 0.0898071 0.995959i \(-0.471375\pi\)
0.0898071 + 0.995959i \(0.471375\pi\)
\(840\) 0 0
\(841\) −40530.8 −1.66185
\(842\) 0 0
\(843\) 41108.6 12369.1i 1.67954 0.505357i
\(844\) 0 0
\(845\) 35250.6i 1.43510i
\(846\) 0 0
\(847\) 6430.15i 0.260853i
\(848\) 0 0
\(849\) 22882.9 6885.21i 0.925015 0.278327i
\(850\) 0 0
\(851\) −25109.8 −1.01146
\(852\) 0 0
\(853\) −44761.3 −1.79672 −0.898358 0.439263i \(-0.855239\pi\)
−0.898358 + 0.439263i \(0.855239\pi\)
\(854\) 0 0
\(855\) 40097.0 26531.6i 1.60385 1.06124i
\(856\) 0 0
\(857\) 27438.9i 1.09369i −0.837233 0.546846i \(-0.815828\pi\)
0.837233 0.546846i \(-0.184172\pi\)
\(858\) 0 0
\(859\) 3336.47i 0.132525i 0.997802 + 0.0662623i \(0.0211074\pi\)
−0.997802 + 0.0662623i \(0.978893\pi\)
\(860\) 0 0
\(861\) 2535.99 + 8428.31i 0.100379 + 0.333607i
\(862\) 0 0
\(863\) −2569.38 −0.101347 −0.0506737 0.998715i \(-0.516137\pi\)
−0.0506737 + 0.998715i \(0.516137\pi\)
\(864\) 0 0
\(865\) −11676.2 −0.458961
\(866\) 0 0
\(867\) 6022.10 + 20014.3i 0.235895 + 0.783993i
\(868\) 0 0
\(869\) 19221.2i 0.750328i
\(870\) 0 0
\(871\) 1404.55i 0.0546398i
\(872\) 0 0
\(873\) 21078.0 13947.0i 0.817162 0.540703i
\(874\) 0 0
\(875\) 24152.6 0.933151
\(876\) 0 0
\(877\) −43209.1 −1.66370 −0.831851 0.554999i \(-0.812719\pi\)
−0.831851 + 0.554999i \(0.812719\pi\)
\(878\) 0 0
\(879\) −31240.8 + 9400.02i −1.19878 + 0.360699i
\(880\) 0 0
\(881\) 38789.8i 1.48339i −0.670740 0.741693i \(-0.734023\pi\)
0.670740 0.741693i \(-0.265977\pi\)
\(882\) 0 0
\(883\) 2928.14i 0.111596i −0.998442 0.0557982i \(-0.982230\pi\)
0.998442 0.0557982i \(-0.0177703\pi\)
\(884\) 0 0
\(885\) −24915.2 + 7496.72i −0.946345 + 0.284745i
\(886\) 0 0
\(887\) 19695.8 0.745570 0.372785 0.927918i \(-0.378403\pi\)
0.372785 + 0.927918i \(0.378403\pi\)
\(888\) 0 0
\(889\) −17063.6 −0.643749
\(890\) 0 0
\(891\) −5788.36 + 13625.9i −0.217640 + 0.512329i
\(892\) 0 0
\(893\) 25721.8i 0.963881i
\(894\) 0 0
\(895\) 23711.1i 0.885558i
\(896\) 0 0
\(897\) −2522.73 8384.23i −0.0939035 0.312086i
\(898\) 0 0
\(899\) −39735.7 −1.47415
\(900\) 0 0
\(901\) −3466.30 −0.128168
\(902\) 0 0
\(903\) 2577.79 + 8567.22i 0.0949982 + 0.315725i
\(904\) 0 0
\(905\) 18269.7i 0.671056i
\(906\) 0 0
\(907\) 36489.9i 1.33586i 0.744223 + 0.667931i \(0.232820\pi\)
−0.744223 + 0.667931i \(0.767180\pi\)
\(908\) 0 0
\(909\) 17564.5 + 26545.1i 0.640898 + 0.968587i
\(910\) 0 0
\(911\) −3110.23 −0.113114 −0.0565569 0.998399i \(-0.518012\pi\)
−0.0565569 + 0.998399i \(0.518012\pi\)
\(912\) 0 0
\(913\) 7329.51 0.265686
\(914\) 0 0
\(915\) 73527.6 22123.7i 2.65655 0.799329i
\(916\) 0 0
\(917\) 3962.31i 0.142690i
\(918\) 0 0
\(919\) 15010.4i 0.538789i 0.963030 + 0.269394i \(0.0868235\pi\)
−0.963030 + 0.269394i \(0.913177\pi\)
\(920\) 0 0
\(921\) −10079.1 + 3032.70i −0.360606 + 0.108502i
\(922\) 0 0
\(923\) 20910.3 0.745687
\(924\) 0 0
\(925\) 95281.0 3.38683
\(926\) 0 0
\(927\) 21322.3 + 32224.3i 0.755464 + 1.14173i
\(928\) 0 0
\(929\) 21624.5i 0.763699i −0.924225 0.381849i \(-0.875287\pi\)
0.924225 0.381849i \(-0.124713\pi\)
\(930\) 0 0
\(931\) 4264.62i 0.150126i
\(932\) 0 0
\(933\) 8148.37 + 27081.0i 0.285923 + 0.950258i
\(934\) 0 0
\(935\) −12400.4 −0.433730
\(936\) 0 0
\(937\) 5630.85 0.196320 0.0981600 0.995171i \(-0.468704\pi\)
0.0981600 + 0.995171i \(0.468704\pi\)
\(938\) 0 0
\(939\) −11738.1 39011.2i −0.407942 1.35579i
\(940\) 0 0
\(941\) 16267.6i 0.563559i 0.959479 + 0.281779i \(0.0909247\pi\)
−0.959479 + 0.281779i \(0.909075\pi\)
\(942\) 0 0
\(943\) 18725.2i 0.646634i
\(944\) 0 0
\(945\) 15446.2 + 12852.0i 0.531710 + 0.442408i
\(946\) 0 0
\(947\) 6835.81 0.234566 0.117283 0.993099i \(-0.462582\pi\)
0.117283 + 0.993099i \(0.462582\pi\)
\(948\) 0 0
\(949\) 14659.4 0.501438
\(950\) 0 0
\(951\) 45505.0 13692.0i 1.55163 0.466869i
\(952\) 0 0
\(953\) 15089.7i 0.512909i −0.966556 0.256455i \(-0.917446\pi\)
0.966556 0.256455i \(-0.0825544\pi\)
\(954\) 0 0
\(955\) 3386.84i 0.114760i
\(956\) 0 0
\(957\) 25746.2 7746.77i 0.869653 0.261669i
\(958\) 0 0
\(959\) 10947.2 0.368617
\(960\) 0 0
\(961\) 5469.80 0.183606
\(962\) 0 0
\(963\) −23109.2 + 15291.0i −0.773295 + 0.511677i
\(964\) 0 0
\(965\) 5316.18i 0.177341i
\(966\) 0 0
\(967\) 50988.4i 1.69563i 0.530289 + 0.847817i \(0.322083\pi\)
−0.530289 + 0.847817i \(0.677917\pi\)
\(968\) 0 0
\(969\) 3888.74 + 12924.1i 0.128921 + 0.428466i
\(970\) 0 0
\(971\) −53178.9 −1.75756 −0.878781 0.477225i \(-0.841643\pi\)
−0.878781 + 0.477225i \(0.841643\pi\)
\(972\) 0 0
\(973\) −22432.2 −0.739098
\(974\) 0 0
\(975\) 9572.66 + 31814.5i 0.314431 + 1.04501i
\(976\) 0 0
\(977\) 10968.1i 0.359162i 0.983743 + 0.179581i \(0.0574741\pi\)
−0.983743 + 0.179581i \(0.942526\pi\)
\(978\) 0 0
\(979\) 27383.3i 0.893946i
\(980\) 0 0
\(981\) 30813.8 20389.0i 1.00286 0.663579i
\(982\) 0 0
\(983\) 32839.7 1.06554 0.532769 0.846261i \(-0.321152\pi\)
0.532769 + 0.846261i \(0.321152\pi\)
\(984\) 0 0
\(985\) 38417.8 1.24273
\(986\) 0 0
\(987\) 10293.8 3097.31i 0.331972 0.0998868i
\(988\) 0 0
\(989\) 19033.8i 0.611971i
\(990\) 0 0
\(991\) 9292.22i 0.297858i 0.988848 + 0.148929i \(0.0475826\pi\)
−0.988848 + 0.148929i \(0.952417\pi\)
\(992\) 0 0
\(993\) 228.273 68.6851i 0.00729510 0.00219502i
\(994\) 0 0
\(995\) 39267.8 1.25113
\(996\) 0 0
\(997\) 22458.1 0.713395 0.356697 0.934220i \(-0.383903\pi\)
0.356697 + 0.934220i \(0.383903\pi\)
\(998\) 0 0
\(999\) 34994.9 + 29117.4i 1.10830 + 0.922156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.h.a.575.22 yes 36
3.2 odd 2 inner 672.4.h.a.575.16 yes 36
4.3 odd 2 inner 672.4.h.a.575.15 36
12.11 even 2 inner 672.4.h.a.575.21 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.h.a.575.15 36 4.3 odd 2 inner
672.4.h.a.575.16 yes 36 3.2 odd 2 inner
672.4.h.a.575.21 yes 36 12.11 even 2 inner
672.4.h.a.575.22 yes 36 1.1 even 1 trivial