Properties

Label 672.4.h.a.575.1
Level $672$
Weight $4$
Character 672.575
Analytic conductor $39.649$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(575,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.575"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,0,0,0,0,0,-132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 575.1
Character \(\chi\) \(=\) 672.575
Dual form 672.4.h.a.575.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.18300 - 0.369441i) q^{3} -10.4214i q^{5} -7.00000i q^{7} +(26.7270 + 3.82963i) q^{9} -53.7484 q^{11} -40.4940 q^{13} +(-3.85011 + 54.0143i) q^{15} -23.2039i q^{17} +138.453i q^{19} +(-2.58609 + 36.2810i) q^{21} -23.4309 q^{23} +16.3938 q^{25} +(-137.111 - 29.7230i) q^{27} -19.7264i q^{29} -251.588i q^{31} +(278.578 + 19.8569i) q^{33} -72.9500 q^{35} -123.492 q^{37} +(209.880 + 14.9601i) q^{39} -45.1280i q^{41} +229.969i q^{43} +(39.9102 - 278.534i) q^{45} -559.181 q^{47} -49.0000 q^{49} +(-8.57248 + 120.266i) q^{51} -289.888i q^{53} +560.136i q^{55} +(51.1504 - 717.604i) q^{57} +371.528 q^{59} +518.829 q^{61} +(26.8074 - 187.089i) q^{63} +422.005i q^{65} +668.064i q^{67} +(121.442 + 8.65635i) q^{69} +1052.74 q^{71} +1166.35 q^{73} +(-84.9689 - 6.05653i) q^{75} +376.239i q^{77} +1091.01i q^{79} +(699.668 + 204.709i) q^{81} +253.374 q^{83} -241.818 q^{85} +(-7.28774 + 102.242i) q^{87} -190.115i q^{89} +283.458i q^{91} +(-92.9470 + 1303.98i) q^{93} +1442.88 q^{95} +117.271 q^{97} +(-1436.54 - 205.837i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 132 q^{9} - 120 q^{13} + 28 q^{21} - 756 q^{25} + 40 q^{33} + 672 q^{37} + 304 q^{45} - 1764 q^{49} + 1624 q^{57} + 2472 q^{61} - 1224 q^{69} - 2376 q^{73} + 468 q^{81} + 5160 q^{85} - 648 q^{93}+ \cdots - 4488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.18300 0.369441i −0.997469 0.0710990i
\(4\) 0 0
\(5\) 10.4214i 0.932121i −0.884753 0.466061i \(-0.845673\pi\)
0.884753 0.466061i \(-0.154327\pi\)
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) 26.7270 + 3.82963i 0.989890 + 0.141838i
\(10\) 0 0
\(11\) −53.7484 −1.47325 −0.736626 0.676301i \(-0.763582\pi\)
−0.736626 + 0.676301i \(0.763582\pi\)
\(12\) 0 0
\(13\) −40.4940 −0.863923 −0.431962 0.901892i \(-0.642178\pi\)
−0.431962 + 0.901892i \(0.642178\pi\)
\(14\) 0 0
\(15\) −3.85011 + 54.0143i −0.0662729 + 0.929762i
\(16\) 0 0
\(17\) 23.2039i 0.331045i −0.986206 0.165523i \(-0.947069\pi\)
0.986206 0.165523i \(-0.0529311\pi\)
\(18\) 0 0
\(19\) 138.453i 1.67176i 0.548914 + 0.835879i \(0.315041\pi\)
−0.548914 + 0.835879i \(0.684959\pi\)
\(20\) 0 0
\(21\) −2.58609 + 36.2810i −0.0268729 + 0.377008i
\(22\) 0 0
\(23\) −23.4309 −0.212421 −0.106211 0.994344i \(-0.533872\pi\)
−0.106211 + 0.994344i \(0.533872\pi\)
\(24\) 0 0
\(25\) 16.3938 0.131150
\(26\) 0 0
\(27\) −137.111 29.7230i −0.977300 0.211859i
\(28\) 0 0
\(29\) 19.7264i 0.126314i −0.998004 0.0631568i \(-0.979883\pi\)
0.998004 0.0631568i \(-0.0201168\pi\)
\(30\) 0 0
\(31\) 251.588i 1.45763i −0.684710 0.728816i \(-0.740071\pi\)
0.684710 0.728816i \(-0.259929\pi\)
\(32\) 0 0
\(33\) 278.578 + 19.8569i 1.46952 + 0.104747i
\(34\) 0 0
\(35\) −72.9500 −0.352309
\(36\) 0 0
\(37\) −123.492 −0.548700 −0.274350 0.961630i \(-0.588463\pi\)
−0.274350 + 0.961630i \(0.588463\pi\)
\(38\) 0 0
\(39\) 209.880 + 14.9601i 0.861737 + 0.0614241i
\(40\) 0 0
\(41\) 45.1280i 0.171898i −0.996300 0.0859489i \(-0.972608\pi\)
0.996300 0.0859489i \(-0.0273922\pi\)
\(42\) 0 0
\(43\) 229.969i 0.815579i 0.913076 + 0.407790i \(0.133700\pi\)
−0.913076 + 0.407790i \(0.866300\pi\)
\(44\) 0 0
\(45\) 39.9102 278.534i 0.132210 0.922697i
\(46\) 0 0
\(47\) −559.181 −1.73542 −0.867712 0.497068i \(-0.834410\pi\)
−0.867712 + 0.497068i \(0.834410\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −8.57248 + 120.266i −0.0235370 + 0.330208i
\(52\) 0 0
\(53\) 289.888i 0.751304i −0.926761 0.375652i \(-0.877419\pi\)
0.926761 0.375652i \(-0.122581\pi\)
\(54\) 0 0
\(55\) 560.136i 1.37325i
\(56\) 0 0
\(57\) 51.1504 717.604i 0.118860 1.66753i
\(58\) 0 0
\(59\) 371.528 0.819810 0.409905 0.912128i \(-0.365562\pi\)
0.409905 + 0.912128i \(0.365562\pi\)
\(60\) 0 0
\(61\) 518.829 1.08900 0.544502 0.838760i \(-0.316719\pi\)
0.544502 + 0.838760i \(0.316719\pi\)
\(62\) 0 0
\(63\) 26.8074 187.089i 0.0536098 0.374143i
\(64\) 0 0
\(65\) 422.005i 0.805281i
\(66\) 0 0
\(67\) 668.064i 1.21816i 0.793107 + 0.609082i \(0.208462\pi\)
−0.793107 + 0.609082i \(0.791538\pi\)
\(68\) 0 0
\(69\) 121.442 + 8.65635i 0.211883 + 0.0151029i
\(70\) 0 0
\(71\) 1052.74 1.75967 0.879837 0.475275i \(-0.157651\pi\)
0.879837 + 0.475275i \(0.157651\pi\)
\(72\) 0 0
\(73\) 1166.35 1.87001 0.935006 0.354631i \(-0.115394\pi\)
0.935006 + 0.354631i \(0.115394\pi\)
\(74\) 0 0
\(75\) −84.9689 6.05653i −0.130818 0.00932464i
\(76\) 0 0
\(77\) 376.239i 0.556837i
\(78\) 0 0
\(79\) 1091.01i 1.55378i 0.629639 + 0.776888i \(0.283203\pi\)
−0.629639 + 0.776888i \(0.716797\pi\)
\(80\) 0 0
\(81\) 699.668 + 204.709i 0.959764 + 0.280808i
\(82\) 0 0
\(83\) 253.374 0.335077 0.167539 0.985866i \(-0.446418\pi\)
0.167539 + 0.985866i \(0.446418\pi\)
\(84\) 0 0
\(85\) −241.818 −0.308574
\(86\) 0 0
\(87\) −7.28774 + 102.242i −0.00898078 + 0.125994i
\(88\) 0 0
\(89\) 190.115i 0.226429i −0.993571 0.113214i \(-0.963885\pi\)
0.993571 0.113214i \(-0.0361147\pi\)
\(90\) 0 0
\(91\) 283.458i 0.326532i
\(92\) 0 0
\(93\) −92.9470 + 1303.98i −0.103636 + 1.45394i
\(94\) 0 0
\(95\) 1442.88 1.55828
\(96\) 0 0
\(97\) 117.271 0.122754 0.0613768 0.998115i \(-0.480451\pi\)
0.0613768 + 0.998115i \(0.480451\pi\)
\(98\) 0 0
\(99\) −1436.54 205.837i −1.45836 0.208963i
\(100\) 0 0
\(101\) 1020.77i 1.00565i 0.864388 + 0.502825i \(0.167706\pi\)
−0.864388 + 0.502825i \(0.832294\pi\)
\(102\) 0 0
\(103\) 182.050i 0.174154i −0.996202 0.0870771i \(-0.972247\pi\)
0.996202 0.0870771i \(-0.0277527\pi\)
\(104\) 0 0
\(105\) 378.100 + 26.9507i 0.351417 + 0.0250488i
\(106\) 0 0
\(107\) 168.192 0.151960 0.0759800 0.997109i \(-0.475791\pi\)
0.0759800 + 0.997109i \(0.475791\pi\)
\(108\) 0 0
\(109\) 153.395 0.134794 0.0673972 0.997726i \(-0.478531\pi\)
0.0673972 + 0.997726i \(0.478531\pi\)
\(110\) 0 0
\(111\) 640.057 + 45.6229i 0.547311 + 0.0390120i
\(112\) 0 0
\(113\) 896.301i 0.746167i 0.927798 + 0.373084i \(0.121700\pi\)
−0.927798 + 0.373084i \(0.878300\pi\)
\(114\) 0 0
\(115\) 244.184i 0.198002i
\(116\) 0 0
\(117\) −1082.28 155.077i −0.855189 0.122537i
\(118\) 0 0
\(119\) −162.427 −0.125123
\(120\) 0 0
\(121\) 1557.89 1.17047
\(122\) 0 0
\(123\) −16.6721 + 233.899i −0.0122218 + 0.171463i
\(124\) 0 0
\(125\) 1473.53i 1.05437i
\(126\) 0 0
\(127\) 1423.18i 0.994386i 0.867640 + 0.497193i \(0.165636\pi\)
−0.867640 + 0.497193i \(0.834364\pi\)
\(128\) 0 0
\(129\) 84.9600 1191.93i 0.0579869 0.813515i
\(130\) 0 0
\(131\) −2597.12 −1.73215 −0.866074 0.499916i \(-0.833364\pi\)
−0.866074 + 0.499916i \(0.833364\pi\)
\(132\) 0 0
\(133\) 969.174 0.631865
\(134\) 0 0
\(135\) −309.757 + 1428.90i −0.197479 + 0.910962i
\(136\) 0 0
\(137\) 2309.65i 1.44034i 0.693796 + 0.720172i \(0.255937\pi\)
−0.693796 + 0.720172i \(0.744063\pi\)
\(138\) 0 0
\(139\) 138.217i 0.0843411i −0.999110 0.0421706i \(-0.986573\pi\)
0.999110 0.0421706i \(-0.0134273\pi\)
\(140\) 0 0
\(141\) 2898.24 + 206.584i 1.73103 + 0.123387i
\(142\) 0 0
\(143\) 2176.49 1.27278
\(144\) 0 0
\(145\) −205.577 −0.117740
\(146\) 0 0
\(147\) 253.967 + 18.1026i 0.142496 + 0.0101570i
\(148\) 0 0
\(149\) 140.228i 0.0771003i 0.999257 + 0.0385502i \(0.0122739\pi\)
−0.999257 + 0.0385502i \(0.987726\pi\)
\(150\) 0 0
\(151\) 871.982i 0.469940i −0.972003 0.234970i \(-0.924501\pi\)
0.972003 0.234970i \(-0.0754991\pi\)
\(152\) 0 0
\(153\) 88.8623 620.171i 0.0469549 0.327698i
\(154\) 0 0
\(155\) −2621.91 −1.35869
\(156\) 0 0
\(157\) 1195.25 0.607589 0.303795 0.952738i \(-0.401746\pi\)
0.303795 + 0.952738i \(0.401746\pi\)
\(158\) 0 0
\(159\) −107.096 + 1502.49i −0.0534170 + 0.749403i
\(160\) 0 0
\(161\) 164.016i 0.0802876i
\(162\) 0 0
\(163\) 944.806i 0.454006i −0.973894 0.227003i \(-0.927107\pi\)
0.973894 0.227003i \(-0.0728927\pi\)
\(164\) 0 0
\(165\) 206.937 2903.18i 0.0976366 1.36977i
\(166\) 0 0
\(167\) 3198.72 1.48218 0.741091 0.671405i \(-0.234309\pi\)
0.741091 + 0.671405i \(0.234309\pi\)
\(168\) 0 0
\(169\) −557.240 −0.253637
\(170\) 0 0
\(171\) −530.225 + 3700.45i −0.237119 + 1.65486i
\(172\) 0 0
\(173\) 1742.98i 0.765992i −0.923750 0.382996i \(-0.874892\pi\)
0.923750 0.382996i \(-0.125108\pi\)
\(174\) 0 0
\(175\) 114.756i 0.0495701i
\(176\) 0 0
\(177\) −1925.63 137.258i −0.817736 0.0582877i
\(178\) 0 0
\(179\) 1492.58 0.623242 0.311621 0.950206i \(-0.399128\pi\)
0.311621 + 0.950206i \(0.399128\pi\)
\(180\) 0 0
\(181\) 3032.55 1.24535 0.622673 0.782482i \(-0.286047\pi\)
0.622673 + 0.782482i \(0.286047\pi\)
\(182\) 0 0
\(183\) −2689.09 191.677i −1.08625 0.0774271i
\(184\) 0 0
\(185\) 1286.96i 0.511455i
\(186\) 0 0
\(187\) 1247.17i 0.487713i
\(188\) 0 0
\(189\) −208.061 + 959.780i −0.0800753 + 0.369385i
\(190\) 0 0
\(191\) 2864.32 1.08510 0.542552 0.840022i \(-0.317458\pi\)
0.542552 + 0.840022i \(0.317458\pi\)
\(192\) 0 0
\(193\) −5136.39 −1.91568 −0.957839 0.287306i \(-0.907240\pi\)
−0.957839 + 0.287306i \(0.907240\pi\)
\(194\) 0 0
\(195\) 155.906 2187.25i 0.0572547 0.803243i
\(196\) 0 0
\(197\) 2218.23i 0.802244i 0.916025 + 0.401122i \(0.131380\pi\)
−0.916025 + 0.401122i \(0.868620\pi\)
\(198\) 0 0
\(199\) 3740.27i 1.33237i −0.745788 0.666183i \(-0.767927\pi\)
0.745788 0.666183i \(-0.232073\pi\)
\(200\) 0 0
\(201\) 246.810 3462.58i 0.0866102 1.21508i
\(202\) 0 0
\(203\) −138.085 −0.0477421
\(204\) 0 0
\(205\) −470.298 −0.160230
\(206\) 0 0
\(207\) −626.239 89.7317i −0.210273 0.0301294i
\(208\) 0 0
\(209\) 7441.65i 2.46292i
\(210\) 0 0
\(211\) 3469.64i 1.13204i −0.824392 0.566019i \(-0.808483\pi\)
0.824392 0.566019i \(-0.191517\pi\)
\(212\) 0 0
\(213\) −5456.34 388.924i −1.75522 0.125111i
\(214\) 0 0
\(215\) 2396.60 0.760219
\(216\) 0 0
\(217\) −1761.12 −0.550933
\(218\) 0 0
\(219\) −6045.19 430.898i −1.86528 0.132956i
\(220\) 0 0
\(221\) 939.617i 0.285998i
\(222\) 0 0
\(223\) 142.329i 0.0427400i −0.999772 0.0213700i \(-0.993197\pi\)
0.999772 0.0213700i \(-0.00680280\pi\)
\(224\) 0 0
\(225\) 438.157 + 62.7820i 0.129824 + 0.0186021i
\(226\) 0 0
\(227\) −3729.72 −1.09053 −0.545264 0.838264i \(-0.683571\pi\)
−0.545264 + 0.838264i \(0.683571\pi\)
\(228\) 0 0
\(229\) 1178.54 0.340086 0.170043 0.985437i \(-0.445609\pi\)
0.170043 + 0.985437i \(0.445609\pi\)
\(230\) 0 0
\(231\) 138.998 1950.05i 0.0395905 0.555427i
\(232\) 0 0
\(233\) 3975.79i 1.11787i 0.829213 + 0.558933i \(0.188789\pi\)
−0.829213 + 0.558933i \(0.811211\pi\)
\(234\) 0 0
\(235\) 5827.47i 1.61763i
\(236\) 0 0
\(237\) 403.064 5654.71i 0.110472 1.54984i
\(238\) 0 0
\(239\) −3272.80 −0.885774 −0.442887 0.896577i \(-0.646046\pi\)
−0.442887 + 0.896577i \(0.646046\pi\)
\(240\) 0 0
\(241\) −511.709 −0.136772 −0.0683860 0.997659i \(-0.521785\pi\)
−0.0683860 + 0.997659i \(0.521785\pi\)
\(242\) 0 0
\(243\) −3550.75 1319.49i −0.937370 0.348336i
\(244\) 0 0
\(245\) 510.650i 0.133160i
\(246\) 0 0
\(247\) 5606.53i 1.44427i
\(248\) 0 0
\(249\) −1313.24 93.6068i −0.334229 0.0238237i
\(250\) 0 0
\(251\) 3238.52 0.814397 0.407198 0.913340i \(-0.366506\pi\)
0.407198 + 0.913340i \(0.366506\pi\)
\(252\) 0 0
\(253\) 1259.38 0.312950
\(254\) 0 0
\(255\) 1253.34 + 89.3375i 0.307793 + 0.0219393i
\(256\) 0 0
\(257\) 7057.09i 1.71288i 0.516251 + 0.856438i \(0.327327\pi\)
−0.516251 + 0.856438i \(0.672673\pi\)
\(258\) 0 0
\(259\) 864.441i 0.207389i
\(260\) 0 0
\(261\) 75.5447 527.228i 0.0179161 0.125037i
\(262\) 0 0
\(263\) 4755.41 1.11495 0.557473 0.830195i \(-0.311771\pi\)
0.557473 + 0.830195i \(0.311771\pi\)
\(264\) 0 0
\(265\) −3021.04 −0.700307
\(266\) 0 0
\(267\) −70.2363 + 985.366i −0.0160988 + 0.225856i
\(268\) 0 0
\(269\) 152.943i 0.0346658i 0.999850 + 0.0173329i \(0.00551752\pi\)
−0.999850 + 0.0173329i \(0.994482\pi\)
\(270\) 0 0
\(271\) 7405.36i 1.65994i 0.557808 + 0.829970i \(0.311642\pi\)
−0.557808 + 0.829970i \(0.688358\pi\)
\(272\) 0 0
\(273\) 104.721 1469.16i 0.0232161 0.325706i
\(274\) 0 0
\(275\) −881.139 −0.193217
\(276\) 0 0
\(277\) −3128.91 −0.678693 −0.339346 0.940661i \(-0.610206\pi\)
−0.339346 + 0.940661i \(0.610206\pi\)
\(278\) 0 0
\(279\) 963.489 6724.20i 0.206748 1.44289i
\(280\) 0 0
\(281\) 6334.25i 1.34473i 0.740219 + 0.672366i \(0.234722\pi\)
−0.740219 + 0.672366i \(0.765278\pi\)
\(282\) 0 0
\(283\) 7926.87i 1.66503i −0.554002 0.832515i \(-0.686900\pi\)
0.554002 0.832515i \(-0.313100\pi\)
\(284\) 0 0
\(285\) −7478.46 533.060i −1.55434 0.110792i
\(286\) 0 0
\(287\) −315.896 −0.0649713
\(288\) 0 0
\(289\) 4374.58 0.890409
\(290\) 0 0
\(291\) −607.817 43.3248i −0.122443 0.00872765i
\(292\) 0 0
\(293\) 9212.99i 1.83696i 0.395470 + 0.918479i \(0.370582\pi\)
−0.395470 + 0.918479i \(0.629418\pi\)
\(294\) 0 0
\(295\) 3871.85i 0.764163i
\(296\) 0 0
\(297\) 7369.52 + 1597.57i 1.43981 + 0.312122i
\(298\) 0 0
\(299\) 948.810 0.183515
\(300\) 0 0
\(301\) 1609.78 0.308260
\(302\) 0 0
\(303\) 377.116 5290.67i 0.0715008 1.00311i
\(304\) 0 0
\(305\) 5406.94i 1.01508i
\(306\) 0 0
\(307\) 7367.55i 1.36967i −0.728699 0.684834i \(-0.759875\pi\)
0.728699 0.684834i \(-0.240125\pi\)
\(308\) 0 0
\(309\) −67.2567 + 943.564i −0.0123822 + 0.173714i
\(310\) 0 0
\(311\) 4776.99 0.870991 0.435495 0.900191i \(-0.356573\pi\)
0.435495 + 0.900191i \(0.356573\pi\)
\(312\) 0 0
\(313\) −4555.75 −0.822704 −0.411352 0.911476i \(-0.634943\pi\)
−0.411352 + 0.911476i \(0.634943\pi\)
\(314\) 0 0
\(315\) −1949.74 279.372i −0.348747 0.0499708i
\(316\) 0 0
\(317\) 3955.67i 0.700860i 0.936589 + 0.350430i \(0.113965\pi\)
−0.936589 + 0.350430i \(0.886035\pi\)
\(318\) 0 0
\(319\) 1060.26i 0.186092i
\(320\) 0 0
\(321\) −871.738 62.1370i −0.151575 0.0108042i
\(322\) 0 0
\(323\) 3212.66 0.553427
\(324\) 0 0
\(325\) −663.848 −0.113304
\(326\) 0 0
\(327\) −795.047 56.6705i −0.134453 0.00958375i
\(328\) 0 0
\(329\) 3914.27i 0.655928i
\(330\) 0 0
\(331\) 10762.9i 1.78726i 0.448802 + 0.893631i \(0.351851\pi\)
−0.448802 + 0.893631i \(0.648149\pi\)
\(332\) 0 0
\(333\) −3300.56 472.927i −0.543152 0.0778266i
\(334\) 0 0
\(335\) 6962.18 1.13548
\(336\) 0 0
\(337\) −12223.9 −1.97590 −0.987950 0.154773i \(-0.950535\pi\)
−0.987950 + 0.154773i \(0.950535\pi\)
\(338\) 0 0
\(339\) 331.131 4645.53i 0.0530518 0.744279i
\(340\) 0 0
\(341\) 13522.5i 2.14746i
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 90.2115 1265.60i 0.0140778 0.197501i
\(346\) 0 0
\(347\) 688.805 0.106562 0.0532810 0.998580i \(-0.483032\pi\)
0.0532810 + 0.998580i \(0.483032\pi\)
\(348\) 0 0
\(349\) −2607.05 −0.399863 −0.199931 0.979810i \(-0.564072\pi\)
−0.199931 + 0.979810i \(0.564072\pi\)
\(350\) 0 0
\(351\) 5552.18 + 1203.60i 0.844312 + 0.183030i
\(352\) 0 0
\(353\) 6979.37i 1.05234i −0.850381 0.526168i \(-0.823628\pi\)
0.850381 0.526168i \(-0.176372\pi\)
\(354\) 0 0
\(355\) 10971.0i 1.64023i
\(356\) 0 0
\(357\) 841.861 + 60.0073i 0.124807 + 0.00889615i
\(358\) 0 0
\(359\) −9153.20 −1.34565 −0.672824 0.739803i \(-0.734919\pi\)
−0.672824 + 0.739803i \(0.734919\pi\)
\(360\) 0 0
\(361\) −12310.3 −1.79477
\(362\) 0 0
\(363\) −8074.57 575.551i −1.16751 0.0832192i
\(364\) 0 0
\(365\) 12155.0i 1.74308i
\(366\) 0 0
\(367\) 4536.80i 0.645284i −0.946521 0.322642i \(-0.895429\pi\)
0.946521 0.322642i \(-0.104571\pi\)
\(368\) 0 0
\(369\) 172.824 1206.14i 0.0243817 0.170160i
\(370\) 0 0
\(371\) −2029.21 −0.283966
\(372\) 0 0
\(373\) −5368.30 −0.745202 −0.372601 0.927992i \(-0.621534\pi\)
−0.372601 + 0.927992i \(0.621534\pi\)
\(374\) 0 0
\(375\) −544.381 + 7637.29i −0.0749646 + 1.05170i
\(376\) 0 0
\(377\) 798.799i 0.109125i
\(378\) 0 0
\(379\) 9684.95i 1.31262i −0.754492 0.656309i \(-0.772117\pi\)
0.754492 0.656309i \(-0.227883\pi\)
\(380\) 0 0
\(381\) 525.783 7376.36i 0.0706999 0.991870i
\(382\) 0 0
\(383\) 4960.01 0.661735 0.330868 0.943677i \(-0.392659\pi\)
0.330868 + 0.943677i \(0.392659\pi\)
\(384\) 0 0
\(385\) 3920.95 0.519039
\(386\) 0 0
\(387\) −880.695 + 6146.38i −0.115680 + 0.807334i
\(388\) 0 0
\(389\) 145.505i 0.0189650i 0.999955 + 0.00948251i \(0.00301842\pi\)
−0.999955 + 0.00948251i \(0.996982\pi\)
\(390\) 0 0
\(391\) 543.688i 0.0703210i
\(392\) 0 0
\(393\) 13460.9 + 959.483i 1.72776 + 0.123154i
\(394\) 0 0
\(395\) 11369.9 1.44831
\(396\) 0 0
\(397\) −3493.53 −0.441651 −0.220825 0.975313i \(-0.570875\pi\)
−0.220825 + 0.975313i \(0.570875\pi\)
\(398\) 0 0
\(399\) −5023.23 358.053i −0.630266 0.0449250i
\(400\) 0 0
\(401\) 599.088i 0.0746060i −0.999304 0.0373030i \(-0.988123\pi\)
0.999304 0.0373030i \(-0.0118767\pi\)
\(402\) 0 0
\(403\) 10187.8i 1.25928i
\(404\) 0 0
\(405\) 2133.36 7291.54i 0.261747 0.894616i
\(406\) 0 0
\(407\) 6637.48 0.808373
\(408\) 0 0
\(409\) 5305.67 0.641439 0.320719 0.947174i \(-0.396075\pi\)
0.320719 + 0.947174i \(0.396075\pi\)
\(410\) 0 0
\(411\) 853.282 11970.9i 0.102407 1.43670i
\(412\) 0 0
\(413\) 2600.70i 0.309859i
\(414\) 0 0
\(415\) 2640.52i 0.312333i
\(416\) 0 0
\(417\) −51.0631 + 716.379i −0.00599657 + 0.0841277i
\(418\) 0 0
\(419\) 5439.40 0.634206 0.317103 0.948391i \(-0.397290\pi\)
0.317103 + 0.948391i \(0.397290\pi\)
\(420\) 0 0
\(421\) 46.1434 0.00534179 0.00267089 0.999996i \(-0.499150\pi\)
0.00267089 + 0.999996i \(0.499150\pi\)
\(422\) 0 0
\(423\) −14945.2 2141.46i −1.71788 0.246149i
\(424\) 0 0
\(425\) 380.399i 0.0434166i
\(426\) 0 0
\(427\) 3631.80i 0.411605i
\(428\) 0 0
\(429\) −11280.7 804.084i −1.26956 0.0904931i
\(430\) 0 0
\(431\) −4710.85 −0.526481 −0.263241 0.964730i \(-0.584791\pi\)
−0.263241 + 0.964730i \(0.584791\pi\)
\(432\) 0 0
\(433\) 15397.5 1.70890 0.854451 0.519531i \(-0.173893\pi\)
0.854451 + 0.519531i \(0.173893\pi\)
\(434\) 0 0
\(435\) 1065.51 + 75.9487i 0.117442 + 0.00837117i
\(436\) 0 0
\(437\) 3244.09i 0.355116i
\(438\) 0 0
\(439\) 14074.5i 1.53016i 0.643936 + 0.765080i \(0.277300\pi\)
−0.643936 + 0.765080i \(0.722700\pi\)
\(440\) 0 0
\(441\) −1309.62 187.652i −0.141413 0.0202626i
\(442\) 0 0
\(443\) 8176.03 0.876874 0.438437 0.898762i \(-0.355532\pi\)
0.438437 + 0.898762i \(0.355532\pi\)
\(444\) 0 0
\(445\) −1981.27 −0.211059
\(446\) 0 0
\(447\) 51.8061 726.803i 0.00548175 0.0769052i
\(448\) 0 0
\(449\) 10401.4i 1.09326i 0.837374 + 0.546631i \(0.184090\pi\)
−0.837374 + 0.546631i \(0.815910\pi\)
\(450\) 0 0
\(451\) 2425.56i 0.253249i
\(452\) 0 0
\(453\) −322.146 + 4519.48i −0.0334122 + 0.468750i
\(454\) 0 0
\(455\) 2954.03 0.304368
\(456\) 0 0
\(457\) −13676.5 −1.39991 −0.699957 0.714185i \(-0.746798\pi\)
−0.699957 + 0.714185i \(0.746798\pi\)
\(458\) 0 0
\(459\) −689.690 + 3181.52i −0.0701351 + 0.323531i
\(460\) 0 0
\(461\) 8754.98i 0.884512i 0.896889 + 0.442256i \(0.145822\pi\)
−0.896889 + 0.442256i \(0.854178\pi\)
\(462\) 0 0
\(463\) 1335.87i 0.134089i 0.997750 + 0.0670445i \(0.0213569\pi\)
−0.997750 + 0.0670445i \(0.978643\pi\)
\(464\) 0 0
\(465\) 13589.4 + 968.641i 1.35525 + 0.0966014i
\(466\) 0 0
\(467\) −519.731 −0.0514996 −0.0257498 0.999668i \(-0.508197\pi\)
−0.0257498 + 0.999668i \(0.508197\pi\)
\(468\) 0 0
\(469\) 4676.45 0.460423
\(470\) 0 0
\(471\) −6195.00 441.576i −0.606052 0.0431990i
\(472\) 0 0
\(473\) 12360.5i 1.20155i
\(474\) 0 0
\(475\) 2269.77i 0.219251i
\(476\) 0 0
\(477\) 1110.16 7747.83i 0.106564 0.743708i
\(478\) 0 0
\(479\) −10277.1 −0.980319 −0.490160 0.871633i \(-0.663062\pi\)
−0.490160 + 0.871633i \(0.663062\pi\)
\(480\) 0 0
\(481\) 5000.66 0.474035
\(482\) 0 0
\(483\) 60.5944 850.097i 0.00570837 0.0800844i
\(484\) 0 0
\(485\) 1222.13i 0.114421i
\(486\) 0 0
\(487\) 4494.88i 0.418239i −0.977890 0.209120i \(-0.932940\pi\)
0.977890 0.209120i \(-0.0670598\pi\)
\(488\) 0 0
\(489\) −349.050 + 4896.93i −0.0322793 + 0.452857i
\(490\) 0 0
\(491\) −5758.70 −0.529301 −0.264650 0.964344i \(-0.585257\pi\)
−0.264650 + 0.964344i \(0.585257\pi\)
\(492\) 0 0
\(493\) −457.729 −0.0418156
\(494\) 0 0
\(495\) −2145.11 + 14970.8i −0.194779 + 1.35936i
\(496\) 0 0
\(497\) 7369.16i 0.665094i
\(498\) 0 0
\(499\) 18455.1i 1.65564i 0.560996 + 0.827818i \(0.310418\pi\)
−0.560996 + 0.827818i \(0.689582\pi\)
\(500\) 0 0
\(501\) −16579.0 1181.74i −1.47843 0.105382i
\(502\) 0 0
\(503\) −18376.5 −1.62896 −0.814480 0.580192i \(-0.802977\pi\)
−0.814480 + 0.580192i \(0.802977\pi\)
\(504\) 0 0
\(505\) 10637.9 0.937389
\(506\) 0 0
\(507\) 2888.17 + 205.867i 0.252995 + 0.0180333i
\(508\) 0 0
\(509\) 3769.35i 0.328238i 0.986441 + 0.164119i \(0.0524782\pi\)
−0.986441 + 0.164119i \(0.947522\pi\)
\(510\) 0 0
\(511\) 8164.45i 0.706798i
\(512\) 0 0
\(513\) 4115.26 18983.5i 0.354177 1.63381i
\(514\) 0 0
\(515\) −1897.22 −0.162333
\(516\) 0 0
\(517\) 30055.1 2.55672
\(518\) 0 0
\(519\) −643.930 + 9033.89i −0.0544613 + 0.764054i
\(520\) 0 0
\(521\) 12313.8i 1.03546i 0.855543 + 0.517731i \(0.173223\pi\)
−0.855543 + 0.517731i \(0.826777\pi\)
\(522\) 0 0
\(523\) 14859.7i 1.24239i 0.783655 + 0.621196i \(0.213353\pi\)
−0.783655 + 0.621196i \(0.786647\pi\)
\(524\) 0 0
\(525\) −42.3957 + 594.782i −0.00352438 + 0.0494446i
\(526\) 0 0
\(527\) −5837.82 −0.482542
\(528\) 0 0
\(529\) −11618.0 −0.954877
\(530\) 0 0
\(531\) 9929.84 + 1422.81i 0.811522 + 0.116280i
\(532\) 0 0
\(533\) 1827.41i 0.148507i
\(534\) 0 0
\(535\) 1752.80i 0.141645i
\(536\) 0 0
\(537\) −7736.02 551.419i −0.621665 0.0443119i
\(538\) 0 0
\(539\) 2633.67 0.210464
\(540\) 0 0
\(541\) 7032.83 0.558900 0.279450 0.960160i \(-0.409848\pi\)
0.279450 + 0.960160i \(0.409848\pi\)
\(542\) 0 0
\(543\) −15717.7 1120.35i −1.24219 0.0885428i
\(544\) 0 0
\(545\) 1598.60i 0.125645i
\(546\) 0 0
\(547\) 13364.0i 1.04461i −0.852758 0.522307i \(-0.825072\pi\)
0.852758 0.522307i \(-0.174928\pi\)
\(548\) 0 0
\(549\) 13866.7 + 1986.92i 1.07799 + 0.154462i
\(550\) 0 0
\(551\) 2731.18 0.211166
\(552\) 0 0
\(553\) 7637.07 0.587272
\(554\) 0 0
\(555\) 475.456 6670.31i 0.0363639 0.510160i
\(556\) 0 0
\(557\) 8860.41i 0.674018i 0.941501 + 0.337009i \(0.109415\pi\)
−0.941501 + 0.337009i \(0.890585\pi\)
\(558\) 0 0
\(559\) 9312.35i 0.704598i
\(560\) 0 0
\(561\) 460.757 6464.10i 0.0346759 0.486479i
\(562\) 0 0
\(563\) −15178.5 −1.13623 −0.568113 0.822950i \(-0.692326\pi\)
−0.568113 + 0.822950i \(0.692326\pi\)
\(564\) 0 0
\(565\) 9340.74 0.695518
\(566\) 0 0
\(567\) 1432.96 4897.68i 0.106136 0.362757i
\(568\) 0 0
\(569\) 1604.35i 0.118203i 0.998252 + 0.0591017i \(0.0188236\pi\)
−0.998252 + 0.0591017i \(0.981176\pi\)
\(570\) 0 0
\(571\) 15669.0i 1.14838i 0.818721 + 0.574191i \(0.194683\pi\)
−0.818721 + 0.574191i \(0.805317\pi\)
\(572\) 0 0
\(573\) −14845.8 1058.20i −1.08236 0.0771498i
\(574\) 0 0
\(575\) −384.121 −0.0278590
\(576\) 0 0
\(577\) −4500.34 −0.324700 −0.162350 0.986733i \(-0.551907\pi\)
−0.162350 + 0.986733i \(0.551907\pi\)
\(578\) 0 0
\(579\) 26621.9 + 1897.60i 1.91083 + 0.136203i
\(580\) 0 0
\(581\) 1773.62i 0.126647i
\(582\) 0 0
\(583\) 15581.0i 1.10686i
\(584\) 0 0
\(585\) −1616.12 + 11278.9i −0.114220 + 0.797140i
\(586\) 0 0
\(587\) −5704.29 −0.401093 −0.200546 0.979684i \(-0.564272\pi\)
−0.200546 + 0.979684i \(0.564272\pi\)
\(588\) 0 0
\(589\) 34833.2 2.43680
\(590\) 0 0
\(591\) 819.505 11497.1i 0.0570388 0.800214i
\(592\) 0 0
\(593\) 20645.1i 1.42967i −0.699295 0.714833i \(-0.746503\pi\)
0.699295 0.714833i \(-0.253497\pi\)
\(594\) 0 0
\(595\) 1692.72i 0.116630i
\(596\) 0 0
\(597\) −1381.81 + 19385.8i −0.0947299 + 1.32899i
\(598\) 0 0
\(599\) 6562.46 0.447637 0.223819 0.974631i \(-0.428148\pi\)
0.223819 + 0.974631i \(0.428148\pi\)
\(600\) 0 0
\(601\) −4595.21 −0.311885 −0.155942 0.987766i \(-0.549841\pi\)
−0.155942 + 0.987766i \(0.549841\pi\)
\(602\) 0 0
\(603\) −2558.44 + 17855.4i −0.172782 + 1.20585i
\(604\) 0 0
\(605\) 16235.5i 1.09102i
\(606\) 0 0
\(607\) 22748.8i 1.52116i 0.649244 + 0.760580i \(0.275085\pi\)
−0.649244 + 0.760580i \(0.724915\pi\)
\(608\) 0 0
\(609\) 715.693 + 51.0142i 0.0476213 + 0.00339441i
\(610\) 0 0
\(611\) 22643.4 1.49927
\(612\) 0 0
\(613\) 4586.44 0.302194 0.151097 0.988519i \(-0.451719\pi\)
0.151097 + 0.988519i \(0.451719\pi\)
\(614\) 0 0
\(615\) 2437.56 + 173.748i 0.159824 + 0.0113922i
\(616\) 0 0
\(617\) 21776.7i 1.42090i 0.703748 + 0.710450i \(0.251509\pi\)
−0.703748 + 0.710450i \(0.748491\pi\)
\(618\) 0 0
\(619\) 1712.83i 0.111219i 0.998453 + 0.0556093i \(0.0177101\pi\)
−0.998453 + 0.0556093i \(0.982290\pi\)
\(620\) 0 0
\(621\) 3212.65 + 696.438i 0.207599 + 0.0450034i
\(622\) 0 0
\(623\) −1330.80 −0.0855820
\(624\) 0 0
\(625\) −13307.0 −0.851650
\(626\) 0 0
\(627\) −2749.25 + 38570.1i −0.175111 + 2.45669i
\(628\) 0 0
\(629\) 2865.49i 0.181645i
\(630\) 0 0
\(631\) 14179.2i 0.894556i −0.894395 0.447278i \(-0.852393\pi\)
0.894395 0.447278i \(-0.147607\pi\)
\(632\) 0 0
\(633\) −1281.83 + 17983.1i −0.0804867 + 1.12917i
\(634\) 0 0
\(635\) 14831.6 0.926889
\(636\) 0 0
\(637\) 1984.20 0.123418
\(638\) 0 0
\(639\) 28136.5 + 4031.59i 1.74188 + 0.249589i
\(640\) 0 0
\(641\) 18660.8i 1.14985i 0.818205 + 0.574927i \(0.194969\pi\)
−0.818205 + 0.574927i \(0.805031\pi\)
\(642\) 0 0
\(643\) 19724.7i 1.20974i −0.796322 0.604872i \(-0.793224\pi\)
0.796322 0.604872i \(-0.206776\pi\)
\(644\) 0 0
\(645\) −12421.6 885.404i −0.758295 0.0540508i
\(646\) 0 0
\(647\) 16930.3 1.02875 0.514373 0.857567i \(-0.328025\pi\)
0.514373 + 0.857567i \(0.328025\pi\)
\(648\) 0 0
\(649\) −19969.0 −1.20779
\(650\) 0 0
\(651\) 9127.87 + 650.629i 0.549538 + 0.0391708i
\(652\) 0 0
\(653\) 24102.3i 1.44440i −0.691683 0.722201i \(-0.743131\pi\)
0.691683 0.722201i \(-0.256869\pi\)
\(654\) 0 0
\(655\) 27065.7i 1.61457i
\(656\) 0 0
\(657\) 31173.1 + 4466.69i 1.85111 + 0.265239i
\(658\) 0 0
\(659\) 21973.3 1.29887 0.649437 0.760415i \(-0.275005\pi\)
0.649437 + 0.760415i \(0.275005\pi\)
\(660\) 0 0
\(661\) 18542.2 1.09109 0.545543 0.838083i \(-0.316324\pi\)
0.545543 + 0.838083i \(0.316324\pi\)
\(662\) 0 0
\(663\) 347.133 4870.04i 0.0203342 0.285274i
\(664\) 0 0
\(665\) 10100.2i 0.588975i
\(666\) 0 0
\(667\) 462.207i 0.0268317i
\(668\) 0 0
\(669\) −52.5820 + 737.689i −0.00303877 + 0.0426319i
\(670\) 0 0
\(671\) −27886.2 −1.60438
\(672\) 0 0
\(673\) −2534.71 −0.145179 −0.0725897 0.997362i \(-0.523126\pi\)
−0.0725897 + 0.997362i \(0.523126\pi\)
\(674\) 0 0
\(675\) −2247.77 487.273i −0.128173 0.0277854i
\(676\) 0 0
\(677\) 2515.84i 0.142824i −0.997447 0.0714118i \(-0.977250\pi\)
0.997447 0.0714118i \(-0.0227505\pi\)
\(678\) 0 0
\(679\) 820.899i 0.0463965i
\(680\) 0 0
\(681\) 19331.1 + 1377.91i 1.08777 + 0.0775355i
\(682\) 0 0
\(683\) 16518.6 0.925427 0.462714 0.886508i \(-0.346876\pi\)
0.462714 + 0.886508i \(0.346876\pi\)
\(684\) 0 0
\(685\) 24069.9 1.34257
\(686\) 0 0
\(687\) −6108.35 435.399i −0.339226 0.0241798i
\(688\) 0 0
\(689\) 11738.7i 0.649069i
\(690\) 0 0
\(691\) 6000.93i 0.330371i −0.986263 0.165185i \(-0.947178\pi\)
0.986263 0.165185i \(-0.0528222\pi\)
\(692\) 0 0
\(693\) −1440.86 + 10055.8i −0.0789807 + 0.551207i
\(694\) 0 0
\(695\) −1440.42 −0.0786161
\(696\) 0 0
\(697\) −1047.15 −0.0569060
\(698\) 0 0
\(699\) 1468.82 20606.5i 0.0794792 1.11504i
\(700\) 0 0
\(701\) 16428.0i 0.885129i −0.896737 0.442565i \(-0.854069\pi\)
0.896737 0.442565i \(-0.145931\pi\)
\(702\) 0 0
\(703\) 17097.8i 0.917293i
\(704\) 0 0
\(705\) 2152.91 30203.8i 0.115012 1.61353i
\(706\) 0 0
\(707\) 7145.41 0.380100
\(708\) 0 0
\(709\) 28983.4 1.53525 0.767627 0.640897i \(-0.221438\pi\)
0.767627 + 0.640897i \(0.221438\pi\)
\(710\) 0 0
\(711\) −4178.17 + 29159.5i −0.220385 + 1.53807i
\(712\) 0 0
\(713\) 5894.94i 0.309631i
\(714\) 0 0
\(715\) 22682.1i 1.18638i
\(716\) 0 0
\(717\) 16962.9 + 1209.11i 0.883532 + 0.0629776i
\(718\) 0 0
\(719\) −19080.7 −0.989696 −0.494848 0.868980i \(-0.664776\pi\)
−0.494848 + 0.868980i \(0.664776\pi\)
\(720\) 0 0
\(721\) −1274.35 −0.0658241
\(722\) 0 0
\(723\) 2652.19 + 189.046i 0.136426 + 0.00972436i
\(724\) 0 0
\(725\) 323.390i 0.0165661i
\(726\) 0 0
\(727\) 11317.7i 0.577372i 0.957424 + 0.288686i \(0.0932184\pi\)
−0.957424 + 0.288686i \(0.906782\pi\)
\(728\) 0 0
\(729\) 17916.1 + 8150.74i 0.910231 + 0.414100i
\(730\) 0 0
\(731\) 5336.17 0.269994
\(732\) 0 0
\(733\) −17072.2 −0.860267 −0.430133 0.902765i \(-0.641533\pi\)
−0.430133 + 0.902765i \(0.641533\pi\)
\(734\) 0 0
\(735\) 188.655 2646.70i 0.00946756 0.132823i
\(736\) 0 0
\(737\) 35907.4i 1.79466i
\(738\) 0 0
\(739\) 22709.1i 1.13041i 0.824952 + 0.565203i \(0.191202\pi\)
−0.824952 + 0.565203i \(0.808798\pi\)
\(740\) 0 0
\(741\) −2071.28 + 29058.6i −0.102686 + 1.44061i
\(742\) 0 0
\(743\) −37840.2 −1.86840 −0.934201 0.356746i \(-0.883886\pi\)
−0.934201 + 0.356746i \(0.883886\pi\)
\(744\) 0 0
\(745\) 1461.38 0.0718668
\(746\) 0 0
\(747\) 6771.93 + 970.329i 0.331690 + 0.0475267i
\(748\) 0 0
\(749\) 1177.34i 0.0574355i
\(750\) 0 0
\(751\) 13193.6i 0.641068i −0.947237 0.320534i \(-0.896138\pi\)
0.947237 0.320534i \(-0.103862\pi\)
\(752\) 0 0
\(753\) −16785.3 1196.44i −0.812335 0.0579028i
\(754\) 0 0
\(755\) −9087.30 −0.438041
\(756\) 0 0
\(757\) −34477.6 −1.65536 −0.827680 0.561200i \(-0.810340\pi\)
−0.827680 + 0.561200i \(0.810340\pi\)
\(758\) 0 0
\(759\) −6527.34 465.265i −0.312158 0.0222504i
\(760\) 0 0
\(761\) 7770.28i 0.370134i 0.982726 + 0.185067i \(0.0592503\pi\)
−0.982726 + 0.185067i \(0.940750\pi\)
\(762\) 0 0
\(763\) 1073.77i 0.0509475i
\(764\) 0 0
\(765\) −6463.07 926.073i −0.305455 0.0437676i
\(766\) 0 0
\(767\) −15044.6 −0.708253
\(768\) 0 0
\(769\) 7038.08 0.330039 0.165019 0.986290i \(-0.447231\pi\)
0.165019 + 0.986290i \(0.447231\pi\)
\(770\) 0 0
\(771\) 2607.18 36576.9i 0.121784 1.70854i
\(772\) 0 0
\(773\) 7104.76i 0.330583i 0.986245 + 0.165291i \(0.0528565\pi\)
−0.986245 + 0.165291i \(0.947144\pi\)
\(774\) 0 0
\(775\) 4124.48i 0.191168i
\(776\) 0 0
\(777\) 319.360 4480.40i 0.0147452 0.206864i
\(778\) 0 0
\(779\) 6248.12 0.287371
\(780\) 0 0
\(781\) −56583.0 −2.59244
\(782\) 0 0
\(783\) −586.328 + 2704.71i −0.0267607 + 0.123446i
\(784\) 0 0
\(785\) 12456.2i 0.566347i
\(786\) 0 0
\(787\) 22444.0i 1.01657i 0.861189 + 0.508285i \(0.169720\pi\)
−0.861189 + 0.508285i \(0.830280\pi\)
\(788\) 0 0
\(789\) −24647.3 1756.84i −1.11212 0.0792716i
\(790\) 0 0
\(791\) 6274.11 0.282025
\(792\) 0 0
\(793\) −21009.4 −0.940815
\(794\) 0 0
\(795\) 15658.1 + 1116.10i 0.698534 + 0.0497911i
\(796\) 0 0
\(797\) 705.699i 0.0313640i 0.999877 + 0.0156820i \(0.00499195\pi\)
−0.999877 + 0.0156820i \(0.995008\pi\)
\(798\) 0 0
\(799\) 12975.2i 0.574504i
\(800\) 0 0
\(801\) 728.070 5081.21i 0.0321162 0.224139i
\(802\) 0 0
\(803\) −62689.5 −2.75500
\(804\) 0 0
\(805\) 1709.29 0.0748378
\(806\) 0 0
\(807\) 56.5035 792.705i 0.00246471 0.0345781i
\(808\) 0 0
\(809\) 35229.4i 1.53102i 0.643422 + 0.765512i \(0.277514\pi\)
−0.643422 + 0.765512i \(0.722486\pi\)
\(810\) 0 0
\(811\) 22999.5i 0.995834i −0.867225 0.497917i \(-0.834098\pi\)
0.867225 0.497917i \(-0.165902\pi\)
\(812\) 0 0
\(813\) 2735.85 38382.0i 0.118020 1.65574i
\(814\) 0 0
\(815\) −9846.23 −0.423188
\(816\) 0 0
\(817\) −31840.0 −1.36345
\(818\) 0 0
\(819\) −1085.54 + 7575.98i −0.0463147 + 0.323231i
\(820\) 0 0
\(821\) 29515.7i 1.25470i 0.778739 + 0.627348i \(0.215860\pi\)
−0.778739 + 0.627348i \(0.784140\pi\)
\(822\) 0 0
\(823\) 21664.3i 0.917581i 0.888544 + 0.458791i \(0.151717\pi\)
−0.888544 + 0.458791i \(0.848283\pi\)
\(824\) 0 0
\(825\) 4566.95 + 325.529i 0.192728 + 0.0137375i
\(826\) 0 0
\(827\) 11507.0 0.483842 0.241921 0.970296i \(-0.422222\pi\)
0.241921 + 0.970296i \(0.422222\pi\)
\(828\) 0 0
\(829\) 22226.1 0.931175 0.465587 0.885002i \(-0.345843\pi\)
0.465587 + 0.885002i \(0.345843\pi\)
\(830\) 0 0
\(831\) 16217.1 + 1155.95i 0.676975 + 0.0482544i
\(832\) 0 0
\(833\) 1136.99i 0.0472922i
\(834\) 0 0
\(835\) 33335.2i 1.38157i
\(836\) 0 0
\(837\) −7477.97 + 34495.6i −0.308813 + 1.42454i
\(838\) 0 0
\(839\) −20904.8 −0.860206 −0.430103 0.902780i \(-0.641523\pi\)
−0.430103 + 0.902780i \(0.641523\pi\)
\(840\) 0 0
\(841\) 23999.9 0.984045
\(842\) 0 0
\(843\) 2340.13 32830.4i 0.0956091 1.34133i
\(844\) 0 0
\(845\) 5807.23i 0.236420i
\(846\) 0 0
\(847\) 10905.3i 0.442396i
\(848\) 0 0
\(849\) −2928.51 + 41085.0i −0.118382 + 1.66082i
\(850\) 0 0
\(851\) 2893.52 0.116555
\(852\) 0 0
\(853\) 8866.60 0.355905 0.177952 0.984039i \(-0.443053\pi\)
0.177952 + 0.984039i \(0.443053\pi\)
\(854\) 0 0
\(855\) 38564.0 + 5525.71i 1.54253 + 0.221024i
\(856\) 0 0
\(857\) 5857.25i 0.233465i −0.993163 0.116733i \(-0.962758\pi\)
0.993163 0.116733i \(-0.0372421\pi\)
\(858\) 0 0
\(859\) 32576.7i 1.29395i 0.762511 + 0.646975i \(0.223966\pi\)
−0.762511 + 0.646975i \(0.776034\pi\)
\(860\) 0 0
\(861\) 1637.29 + 116.705i 0.0648068 + 0.00461939i
\(862\) 0 0
\(863\) −2024.38 −0.0798500 −0.0399250 0.999203i \(-0.512712\pi\)
−0.0399250 + 0.999203i \(0.512712\pi\)
\(864\) 0 0
\(865\) −18164.4 −0.713998
\(866\) 0 0
\(867\) −22673.5 1616.15i −0.888156 0.0633072i
\(868\) 0 0
\(869\) 58640.1i 2.28910i
\(870\) 0 0
\(871\) 27052.5i 1.05240i
\(872\) 0 0
\(873\) 3134.31 + 449.105i 0.121512 + 0.0174111i
\(874\) 0 0
\(875\) −10314.7 −0.398514
\(876\) 0 0
\(877\) 10978.9 0.422726 0.211363 0.977408i \(-0.432210\pi\)
0.211363 + 0.977408i \(0.432210\pi\)
\(878\) 0 0
\(879\) 3403.66 47750.9i 0.130606 1.83231i
\(880\) 0 0
\(881\) 27916.7i 1.06758i −0.845617 0.533790i \(-0.820767\pi\)
0.845617 0.533790i \(-0.179233\pi\)
\(882\) 0 0
\(883\) 23688.7i 0.902819i 0.892317 + 0.451410i \(0.149079\pi\)
−0.892317 + 0.451410i \(0.850921\pi\)
\(884\) 0 0
\(885\) −1430.42 + 20067.8i −0.0543312 + 0.762229i
\(886\) 0 0
\(887\) −2921.23 −0.110581 −0.0552905 0.998470i \(-0.517608\pi\)
−0.0552905 + 0.998470i \(0.517608\pi\)
\(888\) 0 0
\(889\) 9962.28 0.375843
\(890\) 0 0
\(891\) −37606.1 11002.8i −1.41397 0.413701i
\(892\) 0 0
\(893\) 77420.5i 2.90121i
\(894\) 0 0
\(895\) 15554.8i 0.580937i
\(896\) 0 0
\(897\) −4917.69 350.530i −0.183051 0.0130478i
\(898\) 0 0
\(899\) −4962.92 −0.184119
\(900\) 0 0
\(901\) −6726.52 −0.248716
\(902\) 0 0
\(903\) −8343.50 594.720i −0.307480 0.0219170i
\(904\) 0 0
\(905\) 31603.5i 1.16081i
\(906\) 0 0
\(907\) 8272.50i 0.302849i −0.988469 0.151424i \(-0.951614\pi\)
0.988469 0.151424i \(-0.0483860\pi\)
\(908\) 0 0
\(909\) −3909.18 + 27282.2i −0.142640 + 0.995484i
\(910\) 0 0
\(911\) 12401.0 0.451004 0.225502 0.974243i \(-0.427598\pi\)
0.225502 + 0.974243i \(0.427598\pi\)
\(912\) 0 0
\(913\) −13618.5 −0.493653
\(914\) 0 0
\(915\) −1997.55 + 28024.2i −0.0721714 + 1.01251i
\(916\) 0 0
\(917\) 18179.8i 0.654690i
\(918\) 0 0
\(919\) 37708.2i 1.35351i 0.736207 + 0.676756i \(0.236615\pi\)
−0.736207 + 0.676756i \(0.763385\pi\)
\(920\) 0 0
\(921\) −2721.88 + 38186.0i −0.0973820 + 1.36620i
\(922\) 0 0
\(923\) −42629.5 −1.52022
\(924\) 0 0
\(925\) −2024.49 −0.0719621
\(926\) 0 0
\(927\) 697.183 4865.65i 0.0247017 0.172394i
\(928\) 0 0
\(929\) 44156.2i 1.55944i −0.626129 0.779719i \(-0.715362\pi\)
0.626129 0.779719i \(-0.284638\pi\)
\(930\) 0 0
\(931\) 6784.22i 0.238822i
\(932\) 0 0
\(933\) −24759.1 1764.82i −0.868786 0.0619266i
\(934\) 0 0
\(935\) 12997.3 0.454608
\(936\) 0 0
\(937\) 9919.81 0.345855 0.172927 0.984935i \(-0.444677\pi\)
0.172927 + 0.984935i \(0.444677\pi\)
\(938\) 0 0
\(939\) 23612.5 + 1683.08i 0.820622 + 0.0584935i
\(940\) 0 0
\(941\) 28232.7i 0.978067i −0.872265 0.489033i \(-0.837350\pi\)
0.872265 0.489033i \(-0.162650\pi\)
\(942\) 0 0
\(943\) 1057.39i 0.0365147i
\(944\) 0 0
\(945\) 10002.3 + 2168.30i 0.344311 + 0.0746399i
\(946\) 0 0
\(947\) 32622.4 1.11941 0.559707 0.828691i \(-0.310914\pi\)
0.559707 + 0.828691i \(0.310914\pi\)
\(948\) 0 0
\(949\) −47230.1 −1.61555
\(950\) 0 0
\(951\) 1461.39 20502.2i 0.0498304 0.699086i
\(952\) 0 0
\(953\) 8187.98i 0.278315i 0.990270 + 0.139158i \(0.0444395\pi\)
−0.990270 + 0.139158i \(0.955560\pi\)
\(954\) 0 0
\(955\) 29850.3i 1.01145i
\(956\) 0 0
\(957\) 391.705 5495.34i 0.0132309 0.185621i
\(958\) 0 0
\(959\) 16167.6 0.544399
\(960\) 0 0
\(961\) −33505.6 −1.12469
\(962\) 0 0
\(963\) 4495.27 + 644.112i 0.150424 + 0.0215537i
\(964\) 0 0
\(965\) 53528.6i 1.78564i
\(966\) 0 0
\(967\) 19861.9i 0.660513i −0.943891 0.330256i \(-0.892865\pi\)
0.943891 0.330256i \(-0.107135\pi\)
\(968\) 0 0
\(969\) −16651.2 1186.89i −0.552027 0.0393481i
\(970\) 0 0
\(971\) −35197.5 −1.16328 −0.581638 0.813448i \(-0.697588\pi\)
−0.581638 + 0.813448i \(0.697588\pi\)
\(972\) 0 0
\(973\) −967.519 −0.0318779
\(974\) 0 0
\(975\) 3440.73 + 245.253i 0.113017 + 0.00805578i
\(976\) 0 0
\(977\) 20640.9i 0.675906i −0.941163 0.337953i \(-0.890266\pi\)
0.941163 0.337953i \(-0.109734\pi\)
\(978\) 0 0
\(979\) 10218.4i 0.333586i
\(980\) 0 0
\(981\) 4099.80 + 587.447i 0.133432 + 0.0191190i
\(982\) 0 0
\(983\) −1251.84 −0.0406181 −0.0203091 0.999794i \(-0.506465\pi\)
−0.0203091 + 0.999794i \(0.506465\pi\)
\(984\) 0 0
\(985\) 23117.1 0.747789
\(986\) 0 0
\(987\) 1446.09 20287.7i 0.0466359 0.654269i
\(988\) 0 0
\(989\) 5388.38i 0.173246i
\(990\) 0 0
\(991\) 730.192i 0.0234060i 0.999932 + 0.0117030i \(0.00372526\pi\)
−0.999932 + 0.0117030i \(0.996275\pi\)
\(992\) 0 0
\(993\) 3976.27 55784.3i 0.127073 1.78274i
\(994\) 0 0
\(995\) −38979.0 −1.24193
\(996\) 0 0
\(997\) 14920.1 0.473947 0.236974 0.971516i \(-0.423845\pi\)
0.236974 + 0.971516i \(0.423845\pi\)
\(998\) 0 0
\(999\) 16932.1 + 3670.55i 0.536245 + 0.116247i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.h.a.575.1 36
3.2 odd 2 inner 672.4.h.a.575.35 yes 36
4.3 odd 2 inner 672.4.h.a.575.36 yes 36
12.11 even 2 inner 672.4.h.a.575.2 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.h.a.575.1 36 1.1 even 1 trivial
672.4.h.a.575.2 yes 36 12.11 even 2 inner
672.4.h.a.575.35 yes 36 3.2 odd 2 inner
672.4.h.a.575.36 yes 36 4.3 odd 2 inner