Properties

Label 672.4.bb.a.271.42
Level $672$
Weight $4$
Character 672.271
Analytic conductor $39.649$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(271,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.42
Character \(\chi\) \(=\) 672.271
Dual form 672.4.bb.a.367.42

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.59808 - 1.50000i) q^{3} +(5.68130 - 9.84030i) q^{5} +(1.38512 + 18.4684i) q^{7} +(4.50000 - 7.79423i) q^{9} +(9.93039 + 17.1999i) q^{11} +31.0152 q^{13} -34.0878i q^{15} +(37.4442 - 21.6184i) q^{17} +(30.9280 + 17.8563i) q^{19} +(31.3012 + 45.9046i) q^{21} +(-77.4445 - 44.7126i) q^{23} +(-2.05428 - 3.55811i) q^{25} -27.0000i q^{27} +149.567i q^{29} +(72.4769 + 125.534i) q^{31} +(51.5998 + 29.7912i) q^{33} +(189.604 + 91.2944i) q^{35} +(255.281 + 147.387i) q^{37} +(80.5798 - 46.5228i) q^{39} -340.542i q^{41} +382.268 q^{43} +(-51.1317 - 88.5627i) q^{45} +(46.6383 - 80.7798i) q^{47} +(-339.163 + 51.1619i) q^{49} +(64.8552 - 112.333i) q^{51} +(-629.932 + 363.692i) q^{53} +225.670 q^{55} +107.138 q^{57} +(495.394 - 286.016i) q^{59} +(-7.77051 + 13.4589i) q^{61} +(150.180 + 72.3118i) q^{63} +(176.206 - 305.198i) q^{65} +(55.2285 + 95.6585i) q^{67} -268.276 q^{69} -518.920i q^{71} +(948.097 - 547.384i) q^{73} +(-10.6743 - 6.16283i) q^{75} +(-303.901 + 207.222i) q^{77} +(-288.366 - 166.488i) q^{79} +(-40.5000 - 70.1481i) q^{81} -934.727i q^{83} -491.282i q^{85} +(224.350 + 388.586i) q^{87} +(361.563 + 208.749i) q^{89} +(42.9597 + 572.800i) q^{91} +(376.601 + 217.431i) q^{93} +(351.423 - 202.894i) q^{95} +477.327i q^{97} +178.747 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 432 q^{9} - 40 q^{11} - 1200 q^{25} - 456 q^{35} + 1616 q^{43} - 360 q^{49} - 336 q^{57} - 4128 q^{59} + 1440 q^{67} - 648 q^{73} - 3888 q^{81} + 104 q^{91} - 720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.59808 1.50000i 0.500000 0.288675i
\(4\) 0 0
\(5\) 5.68130 9.84030i 0.508151 0.880143i −0.491805 0.870705i \(-0.663663\pi\)
0.999955 0.00943729i \(-0.00300403\pi\)
\(6\) 0 0
\(7\) 1.38512 + 18.4684i 0.0747894 + 0.997199i
\(8\) 0 0
\(9\) 4.50000 7.79423i 0.166667 0.288675i
\(10\) 0 0
\(11\) 9.93039 + 17.1999i 0.272193 + 0.471453i 0.969423 0.245395i \(-0.0789177\pi\)
−0.697230 + 0.716848i \(0.745584\pi\)
\(12\) 0 0
\(13\) 31.0152 0.661697 0.330848 0.943684i \(-0.392665\pi\)
0.330848 + 0.943684i \(0.392665\pi\)
\(14\) 0 0
\(15\) 34.0878i 0.586762i
\(16\) 0 0
\(17\) 37.4442 21.6184i 0.534209 0.308426i −0.208520 0.978018i \(-0.566865\pi\)
0.742729 + 0.669593i \(0.233531\pi\)
\(18\) 0 0
\(19\) 30.9280 + 17.8563i 0.373441 + 0.215606i 0.674961 0.737854i \(-0.264161\pi\)
−0.301520 + 0.953460i \(0.597494\pi\)
\(20\) 0 0
\(21\) 31.3012 + 45.9046i 0.325261 + 0.477010i
\(22\) 0 0
\(23\) −77.4445 44.7126i −0.702100 0.405357i 0.106029 0.994363i \(-0.466186\pi\)
−0.808129 + 0.589006i \(0.799520\pi\)
\(24\) 0 0
\(25\) −2.05428 3.55811i −0.0164342 0.0284649i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 149.567i 0.957718i 0.877892 + 0.478859i \(0.158950\pi\)
−0.877892 + 0.478859i \(0.841050\pi\)
\(30\) 0 0
\(31\) 72.4769 + 125.534i 0.419911 + 0.727307i 0.995930 0.0901295i \(-0.0287281\pi\)
−0.576019 + 0.817436i \(0.695395\pi\)
\(32\) 0 0
\(33\) 51.5998 + 29.7912i 0.272193 + 0.157151i
\(34\) 0 0
\(35\) 189.604 + 91.2944i 0.915682 + 0.440902i
\(36\) 0 0
\(37\) 255.281 + 147.387i 1.13427 + 0.654871i 0.945005 0.327055i \(-0.106056\pi\)
0.189265 + 0.981926i \(0.439390\pi\)
\(38\) 0 0
\(39\) 80.5798 46.5228i 0.330848 0.191015i
\(40\) 0 0
\(41\) 340.542i 1.29716i −0.761145 0.648582i \(-0.775362\pi\)
0.761145 0.648582i \(-0.224638\pi\)
\(42\) 0 0
\(43\) 382.268 1.35571 0.677853 0.735197i \(-0.262910\pi\)
0.677853 + 0.735197i \(0.262910\pi\)
\(44\) 0 0
\(45\) −51.1317 88.5627i −0.169384 0.293381i
\(46\) 0 0
\(47\) 46.6383 80.7798i 0.144742 0.250701i −0.784534 0.620085i \(-0.787098\pi\)
0.929277 + 0.369384i \(0.120431\pi\)
\(48\) 0 0
\(49\) −339.163 + 51.1619i −0.988813 + 0.149160i
\(50\) 0 0
\(51\) 64.8552 112.333i 0.178070 0.308426i
\(52\) 0 0
\(53\) −629.932 + 363.692i −1.63260 + 0.942583i −0.649314 + 0.760520i \(0.724944\pi\)
−0.983287 + 0.182062i \(0.941723\pi\)
\(54\) 0 0
\(55\) 225.670 0.553261
\(56\) 0 0
\(57\) 107.138 0.248961
\(58\) 0 0
\(59\) 495.394 286.016i 1.09313 0.631121i 0.158724 0.987323i \(-0.449262\pi\)
0.934409 + 0.356202i \(0.115929\pi\)
\(60\) 0 0
\(61\) −7.77051 + 13.4589i −0.0163100 + 0.0282498i −0.874065 0.485809i \(-0.838525\pi\)
0.857755 + 0.514058i \(0.171859\pi\)
\(62\) 0 0
\(63\) 150.180 + 72.3118i 0.300332 + 0.144610i
\(64\) 0 0
\(65\) 176.206 305.198i 0.336242 0.582388i
\(66\) 0 0
\(67\) 55.2285 + 95.6585i 0.100705 + 0.174426i 0.911975 0.410245i \(-0.134557\pi\)
−0.811270 + 0.584671i \(0.801224\pi\)
\(68\) 0 0
\(69\) −268.276 −0.468066
\(70\) 0 0
\(71\) 518.920i 0.867387i −0.901060 0.433693i \(-0.857210\pi\)
0.901060 0.433693i \(-0.142790\pi\)
\(72\) 0 0
\(73\) 948.097 547.384i 1.52009 0.877623i 0.520368 0.853942i \(-0.325795\pi\)
0.999720 0.0236803i \(-0.00753837\pi\)
\(74\) 0 0
\(75\) −10.6743 6.16283i −0.0164342 0.00948829i
\(76\) 0 0
\(77\) −303.901 + 207.222i −0.449775 + 0.306691i
\(78\) 0 0
\(79\) −288.366 166.488i −0.410680 0.237106i 0.280402 0.959883i \(-0.409532\pi\)
−0.691082 + 0.722777i \(0.742866\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 934.727i 1.23614i −0.786123 0.618070i \(-0.787915\pi\)
0.786123 0.618070i \(-0.212085\pi\)
\(84\) 0 0
\(85\) 491.282i 0.626907i
\(86\) 0 0
\(87\) 224.350 + 388.586i 0.276469 + 0.478859i
\(88\) 0 0
\(89\) 361.563 + 208.749i 0.430625 + 0.248621i 0.699613 0.714522i \(-0.253356\pi\)
−0.268988 + 0.963144i \(0.586689\pi\)
\(90\) 0 0
\(91\) 42.9597 + 572.800i 0.0494879 + 0.659844i
\(92\) 0 0
\(93\) 376.601 + 217.431i 0.419911 + 0.242436i
\(94\) 0 0
\(95\) 351.423 202.894i 0.379528 0.219121i
\(96\) 0 0
\(97\) 477.327i 0.499642i 0.968292 + 0.249821i \(0.0803717\pi\)
−0.968292 + 0.249821i \(0.919628\pi\)
\(98\) 0 0
\(99\) 178.747 0.181462
\(100\) 0 0
\(101\) 330.374 + 572.225i 0.325480 + 0.563748i 0.981609 0.190901i \(-0.0611408\pi\)
−0.656129 + 0.754648i \(0.727807\pi\)
\(102\) 0 0
\(103\) −452.718 + 784.131i −0.433084 + 0.750124i −0.997137 0.0756149i \(-0.975908\pi\)
0.564053 + 0.825739i \(0.309241\pi\)
\(104\) 0 0
\(105\) 629.546 47.2157i 0.585119 0.0438836i
\(106\) 0 0
\(107\) 680.592 1178.82i 0.614909 1.06505i −0.375491 0.926826i \(-0.622526\pi\)
0.990400 0.138228i \(-0.0441406\pi\)
\(108\) 0 0
\(109\) 841.623 485.911i 0.739568 0.426990i −0.0823444 0.996604i \(-0.526241\pi\)
0.821912 + 0.569614i \(0.192907\pi\)
\(110\) 0 0
\(111\) 884.320 0.756180
\(112\) 0 0
\(113\) −1694.16 −1.41038 −0.705189 0.709019i \(-0.749138\pi\)
−0.705189 + 0.709019i \(0.749138\pi\)
\(114\) 0 0
\(115\) −879.970 + 508.051i −0.713545 + 0.411965i
\(116\) 0 0
\(117\) 139.568 241.739i 0.110283 0.191015i
\(118\) 0 0
\(119\) 451.122 + 661.590i 0.347515 + 0.509646i
\(120\) 0 0
\(121\) 468.275 811.075i 0.351822 0.609373i
\(122\) 0 0
\(123\) −510.813 884.754i −0.374459 0.648582i
\(124\) 0 0
\(125\) 1373.64 0.982897
\(126\) 0 0
\(127\) 627.533i 0.438461i 0.975673 + 0.219231i \(0.0703547\pi\)
−0.975673 + 0.219231i \(0.929645\pi\)
\(128\) 0 0
\(129\) 993.162 573.403i 0.677853 0.391359i
\(130\) 0 0
\(131\) 1540.25 + 889.263i 1.02727 + 0.593094i 0.916201 0.400719i \(-0.131240\pi\)
0.111067 + 0.993813i \(0.464573\pi\)
\(132\) 0 0
\(133\) −286.938 + 595.924i −0.187073 + 0.388520i
\(134\) 0 0
\(135\) −265.688 153.395i −0.169384 0.0977936i
\(136\) 0 0
\(137\) 486.966 + 843.450i 0.303681 + 0.525991i 0.976967 0.213391i \(-0.0684509\pi\)
−0.673286 + 0.739382i \(0.735118\pi\)
\(138\) 0 0
\(139\) 2556.40i 1.55994i −0.625819 0.779969i \(-0.715235\pi\)
0.625819 0.779969i \(-0.284765\pi\)
\(140\) 0 0
\(141\) 279.830i 0.167134i
\(142\) 0 0
\(143\) 307.993 + 533.459i 0.180109 + 0.311959i
\(144\) 0 0
\(145\) 1471.78 + 849.733i 0.842929 + 0.486665i
\(146\) 0 0
\(147\) −804.428 + 641.667i −0.451348 + 0.360026i
\(148\) 0 0
\(149\) 2474.68 + 1428.76i 1.36063 + 0.785559i 0.989707 0.143105i \(-0.0457088\pi\)
0.370921 + 0.928664i \(0.379042\pi\)
\(150\) 0 0
\(151\) −2143.73 + 1237.68i −1.15532 + 0.667027i −0.950179 0.311705i \(-0.899100\pi\)
−0.205145 + 0.978732i \(0.565767\pi\)
\(152\) 0 0
\(153\) 389.131i 0.205617i
\(154\) 0 0
\(155\) 1647.05 0.853511
\(156\) 0 0
\(157\) −1225.00 2121.76i −0.622709 1.07856i −0.988979 0.148056i \(-0.952699\pi\)
0.366270 0.930509i \(-0.380635\pi\)
\(158\) 0 0
\(159\) −1091.07 + 1889.80i −0.544200 + 0.942583i
\(160\) 0 0
\(161\) 718.500 1492.21i 0.351713 0.730450i
\(162\) 0 0
\(163\) −1608.40 + 2785.83i −0.772882 + 1.33867i 0.163095 + 0.986610i \(0.447852\pi\)
−0.935977 + 0.352061i \(0.885481\pi\)
\(164\) 0 0
\(165\) 586.308 338.505i 0.276630 0.159713i
\(166\) 0 0
\(167\) 882.107 0.408739 0.204370 0.978894i \(-0.434486\pi\)
0.204370 + 0.978894i \(0.434486\pi\)
\(168\) 0 0
\(169\) −1235.06 −0.562157
\(170\) 0 0
\(171\) 278.352 160.707i 0.124480 0.0718687i
\(172\) 0 0
\(173\) −584.827 + 1012.95i −0.257015 + 0.445163i −0.965441 0.260622i \(-0.916072\pi\)
0.708426 + 0.705785i \(0.249406\pi\)
\(174\) 0 0
\(175\) 62.8671 42.8676i 0.0271561 0.0185170i
\(176\) 0 0
\(177\) 858.048 1486.18i 0.364378 0.631121i
\(178\) 0 0
\(179\) −216.382 374.785i −0.0903528 0.156496i 0.817307 0.576203i \(-0.195466\pi\)
−0.907660 + 0.419707i \(0.862133\pi\)
\(180\) 0 0
\(181\) −698.293 −0.286761 −0.143380 0.989668i \(-0.545797\pi\)
−0.143380 + 0.989668i \(0.545797\pi\)
\(182\) 0 0
\(183\) 46.6231i 0.0188332i
\(184\) 0 0
\(185\) 2900.66 1674.70i 1.15276 0.665546i
\(186\) 0 0
\(187\) 743.671 + 429.359i 0.290816 + 0.167903i
\(188\) 0 0
\(189\) 498.647 37.3982i 0.191911 0.0143932i
\(190\) 0 0
\(191\) −2801.97 1617.72i −1.06148 0.612848i −0.135642 0.990758i \(-0.543310\pi\)
−0.925842 + 0.377910i \(0.876643\pi\)
\(192\) 0 0
\(193\) 1731.02 + 2998.21i 0.645603 + 1.11822i 0.984162 + 0.177271i \(0.0567270\pi\)
−0.338559 + 0.940945i \(0.609940\pi\)
\(194\) 0 0
\(195\) 1057.24i 0.388259i
\(196\) 0 0
\(197\) 2199.91i 0.795618i −0.917468 0.397809i \(-0.869771\pi\)
0.917468 0.397809i \(-0.130229\pi\)
\(198\) 0 0
\(199\) −1592.88 2758.94i −0.567417 0.982795i −0.996820 0.0796820i \(-0.974610\pi\)
0.429404 0.903113i \(-0.358724\pi\)
\(200\) 0 0
\(201\) 286.975 + 165.685i 0.100705 + 0.0581420i
\(202\) 0 0
\(203\) −2762.26 + 207.168i −0.955036 + 0.0716272i
\(204\) 0 0
\(205\) −3351.03 1934.72i −1.14169 0.659154i
\(206\) 0 0
\(207\) −697.000 + 402.413i −0.234033 + 0.135119i
\(208\) 0 0
\(209\) 709.280i 0.234746i
\(210\) 0 0
\(211\) −683.474 −0.222997 −0.111498 0.993765i \(-0.535565\pi\)
−0.111498 + 0.993765i \(0.535565\pi\)
\(212\) 0 0
\(213\) −778.380 1348.19i −0.250393 0.433693i
\(214\) 0 0
\(215\) 2171.78 3761.63i 0.688903 1.19322i
\(216\) 0 0
\(217\) −2218.01 + 1512.41i −0.693865 + 0.473129i
\(218\) 0 0
\(219\) 1642.15 2844.29i 0.506696 0.877623i
\(220\) 0 0
\(221\) 1161.34 670.499i 0.353484 0.204084i
\(222\) 0 0
\(223\) 4932.98 1.48133 0.740665 0.671874i \(-0.234510\pi\)
0.740665 + 0.671874i \(0.234510\pi\)
\(224\) 0 0
\(225\) −36.9770 −0.0109561
\(226\) 0 0
\(227\) 2717.56 1568.98i 0.794584 0.458753i −0.0469897 0.998895i \(-0.514963\pi\)
0.841574 + 0.540142i \(0.181629\pi\)
\(228\) 0 0
\(229\) −2141.45 + 3709.10i −0.617952 + 1.07032i 0.371907 + 0.928270i \(0.378704\pi\)
−0.989859 + 0.142054i \(0.954629\pi\)
\(230\) 0 0
\(231\) −478.723 + 994.230i −0.136354 + 0.283184i
\(232\) 0 0
\(233\) −150.884 + 261.339i −0.0424238 + 0.0734802i −0.886458 0.462810i \(-0.846841\pi\)
0.844034 + 0.536290i \(0.180175\pi\)
\(234\) 0 0
\(235\) −529.932 917.868i −0.147102 0.254788i
\(236\) 0 0
\(237\) −998.929 −0.273787
\(238\) 0 0
\(239\) 3412.31i 0.923530i 0.887002 + 0.461765i \(0.152784\pi\)
−0.887002 + 0.461765i \(0.847216\pi\)
\(240\) 0 0
\(241\) −3873.71 + 2236.49i −1.03538 + 0.597779i −0.918522 0.395369i \(-0.870617\pi\)
−0.116861 + 0.993148i \(0.537283\pi\)
\(242\) 0 0
\(243\) −210.444 121.500i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) −1423.44 + 3628.13i −0.371184 + 0.946092i
\(246\) 0 0
\(247\) 959.238 + 553.816i 0.247105 + 0.142666i
\(248\) 0 0
\(249\) −1402.09 2428.49i −0.356843 0.618070i
\(250\) 0 0
\(251\) 2427.14i 0.610358i 0.952295 + 0.305179i \(0.0987164\pi\)
−0.952295 + 0.305179i \(0.901284\pi\)
\(252\) 0 0
\(253\) 1776.05i 0.441342i
\(254\) 0 0
\(255\) −736.924 1276.39i −0.180972 0.313453i
\(256\) 0 0
\(257\) −5476.85 3162.06i −1.32932 0.767486i −0.344129 0.938922i \(-0.611826\pi\)
−0.985195 + 0.171436i \(0.945159\pi\)
\(258\) 0 0
\(259\) −2368.40 + 4918.78i −0.568206 + 1.18007i
\(260\) 0 0
\(261\) 1165.76 + 673.050i 0.276469 + 0.159620i
\(262\) 0 0
\(263\) −1779.35 + 1027.31i −0.417184 + 0.240862i −0.693872 0.720098i \(-0.744097\pi\)
0.276688 + 0.960960i \(0.410763\pi\)
\(264\) 0 0
\(265\) 8264.96i 1.91590i
\(266\) 0 0
\(267\) 1252.49 0.287083
\(268\) 0 0
\(269\) −61.4698 106.469i −0.0139326 0.0241320i 0.858975 0.512017i \(-0.171102\pi\)
−0.872908 + 0.487885i \(0.837768\pi\)
\(270\) 0 0
\(271\) −206.365 + 357.435i −0.0462576 + 0.0801204i −0.888227 0.459405i \(-0.848063\pi\)
0.841970 + 0.539525i \(0.181396\pi\)
\(272\) 0 0
\(273\) 970.813 + 1423.74i 0.215224 + 0.315636i
\(274\) 0 0
\(275\) 40.7995 70.6669i 0.00894656 0.0154959i
\(276\) 0 0
\(277\) 1971.50 1138.25i 0.427639 0.246897i −0.270701 0.962663i \(-0.587256\pi\)
0.698340 + 0.715766i \(0.253922\pi\)
\(278\) 0 0
\(279\) 1304.58 0.279940
\(280\) 0 0
\(281\) −7937.53 −1.68510 −0.842551 0.538617i \(-0.818947\pi\)
−0.842551 + 0.538617i \(0.818947\pi\)
\(282\) 0 0
\(283\) −6710.48 + 3874.30i −1.40953 + 0.813792i −0.995343 0.0963997i \(-0.969267\pi\)
−0.414187 + 0.910192i \(0.635934\pi\)
\(284\) 0 0
\(285\) 608.682 1054.27i 0.126509 0.219121i
\(286\) 0 0
\(287\) 6289.26 471.691i 1.29353 0.0970141i
\(288\) 0 0
\(289\) −1521.79 + 2635.82i −0.309747 + 0.536498i
\(290\) 0 0
\(291\) 715.991 + 1240.13i 0.144234 + 0.249821i
\(292\) 0 0
\(293\) 1805.31 0.359957 0.179978 0.983671i \(-0.442397\pi\)
0.179978 + 0.983671i \(0.442397\pi\)
\(294\) 0 0
\(295\) 6499.77i 1.28282i
\(296\) 0 0
\(297\) 464.399 268.121i 0.0907311 0.0523836i
\(298\) 0 0
\(299\) −2401.95 1386.77i −0.464577 0.268224i
\(300\) 0 0
\(301\) 529.487 + 7059.88i 0.101393 + 1.35191i
\(302\) 0 0
\(303\) 1716.67 + 991.123i 0.325480 + 0.187916i
\(304\) 0 0
\(305\) 88.2932 + 152.928i 0.0165759 + 0.0287103i
\(306\) 0 0
\(307\) 5699.24i 1.05952i 0.848148 + 0.529760i \(0.177718\pi\)
−0.848148 + 0.529760i \(0.822282\pi\)
\(308\) 0 0
\(309\) 2716.31i 0.500082i
\(310\) 0 0
\(311\) −2294.28 3973.81i −0.418317 0.724546i 0.577453 0.816424i \(-0.304047\pi\)
−0.995770 + 0.0918773i \(0.970713\pi\)
\(312\) 0 0
\(313\) −5418.90 3128.61i −0.978577 0.564982i −0.0767366 0.997051i \(-0.524450\pi\)
−0.901840 + 0.432070i \(0.857783\pi\)
\(314\) 0 0
\(315\) 1564.79 1066.99i 0.279891 0.190851i
\(316\) 0 0
\(317\) −5675.91 3276.99i −1.00565 0.580612i −0.0957345 0.995407i \(-0.530520\pi\)
−0.909915 + 0.414795i \(0.863853\pi\)
\(318\) 0 0
\(319\) −2572.54 + 1485.26i −0.451519 + 0.260685i
\(320\) 0 0
\(321\) 4083.55i 0.710036i
\(322\) 0 0
\(323\) 1544.10 0.265994
\(324\) 0 0
\(325\) −63.7137 110.355i −0.0108745 0.0188351i
\(326\) 0 0
\(327\) 1457.73 2524.87i 0.246523 0.426990i
\(328\) 0 0
\(329\) 1556.47 + 749.444i 0.260824 + 0.125587i
\(330\) 0 0
\(331\) −5624.81 + 9742.45i −0.934040 + 1.61781i −0.157704 + 0.987486i \(0.550409\pi\)
−0.776336 + 0.630319i \(0.782924\pi\)
\(332\) 0 0
\(333\) 2297.53 1326.48i 0.378090 0.218290i
\(334\) 0 0
\(335\) 1255.08 0.204693
\(336\) 0 0
\(337\) −4766.06 −0.770397 −0.385199 0.922834i \(-0.625867\pi\)
−0.385199 + 0.922834i \(0.625867\pi\)
\(338\) 0 0
\(339\) −4401.55 + 2541.23i −0.705189 + 0.407141i
\(340\) 0 0
\(341\) −1439.45 + 2493.20i −0.228594 + 0.395936i
\(342\) 0 0
\(343\) −1414.66 6192.93i −0.222695 0.974888i
\(344\) 0 0
\(345\) −1524.15 + 2639.91i −0.237848 + 0.411965i
\(346\) 0 0
\(347\) 2363.60 + 4093.87i 0.365662 + 0.633344i 0.988882 0.148702i \(-0.0475094\pi\)
−0.623221 + 0.782046i \(0.714176\pi\)
\(348\) 0 0
\(349\) −3269.10 −0.501407 −0.250703 0.968064i \(-0.580662\pi\)
−0.250703 + 0.968064i \(0.580662\pi\)
\(350\) 0 0
\(351\) 837.410i 0.127344i
\(352\) 0 0
\(353\) 5356.02 3092.30i 0.807571 0.466251i −0.0385409 0.999257i \(-0.512271\pi\)
0.846112 + 0.533006i \(0.178938\pi\)
\(354\) 0 0
\(355\) −5106.33 2948.14i −0.763424 0.440763i
\(356\) 0 0
\(357\) 2164.43 + 1042.18i 0.320879 + 0.154504i
\(358\) 0 0
\(359\) −10170.1 5871.73i −1.49515 0.863226i −0.495167 0.868798i \(-0.664893\pi\)
−0.999984 + 0.00557116i \(0.998227\pi\)
\(360\) 0 0
\(361\) −2791.80 4835.55i −0.407028 0.704993i
\(362\) 0 0
\(363\) 2809.65i 0.406249i
\(364\) 0 0
\(365\) 12439.4i 1.78386i
\(366\) 0 0
\(367\) −1562.19 2705.80i −0.222196 0.384855i 0.733279 0.679928i \(-0.237989\pi\)
−0.955474 + 0.295074i \(0.904656\pi\)
\(368\) 0 0
\(369\) −2654.26 1532.44i −0.374459 0.216194i
\(370\) 0 0
\(371\) −7589.33 11130.1i −1.06204 1.55753i
\(372\) 0 0
\(373\) −5214.58 3010.64i −0.723862 0.417922i 0.0923105 0.995730i \(-0.470575\pi\)
−0.816172 + 0.577808i \(0.803908\pi\)
\(374\) 0 0
\(375\) 3568.82 2060.46i 0.491449 0.283738i
\(376\) 0 0
\(377\) 4638.84i 0.633719i
\(378\) 0 0
\(379\) 11131.0 1.50860 0.754300 0.656530i \(-0.227976\pi\)
0.754300 + 0.656530i \(0.227976\pi\)
\(380\) 0 0
\(381\) 941.299 + 1630.38i 0.126573 + 0.219231i
\(382\) 0 0
\(383\) −7412.83 + 12839.4i −0.988977 + 1.71296i −0.366254 + 0.930515i \(0.619360\pi\)
−0.622722 + 0.782443i \(0.713973\pi\)
\(384\) 0 0
\(385\) 312.580 + 4167.76i 0.0413781 + 0.551711i
\(386\) 0 0
\(387\) 1720.21 2979.49i 0.225951 0.391359i
\(388\) 0 0
\(389\) −1408.72 + 813.323i −0.183611 + 0.106008i −0.588988 0.808142i \(-0.700474\pi\)
0.405377 + 0.914150i \(0.367140\pi\)
\(390\) 0 0
\(391\) −3866.46 −0.500090
\(392\) 0 0
\(393\) 5335.58 0.684845
\(394\) 0 0
\(395\) −3276.59 + 1891.74i −0.417374 + 0.240971i
\(396\) 0 0
\(397\) 4545.33 7872.74i 0.574618 0.995268i −0.421465 0.906845i \(-0.638484\pi\)
0.996083 0.0884234i \(-0.0281828\pi\)
\(398\) 0 0
\(399\) 148.399 + 1978.66i 0.0186196 + 0.248263i
\(400\) 0 0
\(401\) 2090.65 3621.11i 0.260354 0.450947i −0.705982 0.708230i \(-0.749494\pi\)
0.966336 + 0.257283i \(0.0828273\pi\)
\(402\) 0 0
\(403\) 2247.88 + 3893.45i 0.277854 + 0.481257i
\(404\) 0 0
\(405\) −920.370 −0.112922
\(406\) 0 0
\(407\) 5854.43i 0.713006i
\(408\) 0 0
\(409\) −10120.3 + 5842.94i −1.22351 + 0.706393i −0.965664 0.259793i \(-0.916346\pi\)
−0.257845 + 0.966186i \(0.583012\pi\)
\(410\) 0 0
\(411\) 2530.35 + 1460.90i 0.303681 + 0.175330i
\(412\) 0 0
\(413\) 5968.44 + 8752.97i 0.711108 + 1.04287i
\(414\) 0 0
\(415\) −9197.99 5310.46i −1.08798 0.628146i
\(416\) 0 0
\(417\) −3834.60 6641.73i −0.450315 0.779969i
\(418\) 0 0
\(419\) 6630.39i 0.773068i −0.922275 0.386534i \(-0.873672\pi\)
0.922275 0.386534i \(-0.126328\pi\)
\(420\) 0 0
\(421\) 8062.94i 0.933406i −0.884414 0.466703i \(-0.845442\pi\)
0.884414 0.466703i \(-0.154558\pi\)
\(422\) 0 0
\(423\) −419.744 727.018i −0.0482474 0.0835670i
\(424\) 0 0
\(425\) −153.841 88.8203i −0.0175586 0.0101375i
\(426\) 0 0
\(427\) −259.328 124.867i −0.0293905 0.0141516i
\(428\) 0 0
\(429\) 1600.38 + 923.978i 0.180109 + 0.103986i
\(430\) 0 0
\(431\) 11197.4 6464.82i 1.25141 0.722505i 0.280024 0.959993i \(-0.409657\pi\)
0.971390 + 0.237488i \(0.0763242\pi\)
\(432\) 0 0
\(433\) 15425.1i 1.71197i 0.516999 + 0.855986i \(0.327049\pi\)
−0.516999 + 0.855986i \(0.672951\pi\)
\(434\) 0 0
\(435\) 5098.40 0.561953
\(436\) 0 0
\(437\) −1596.80 2765.74i −0.174795 0.302754i
\(438\) 0 0
\(439\) −7687.49 + 13315.1i −0.835772 + 1.44760i 0.0576279 + 0.998338i \(0.481646\pi\)
−0.893400 + 0.449262i \(0.851687\pi\)
\(440\) 0 0
\(441\) −1127.47 + 2873.74i −0.121743 + 0.310306i
\(442\) 0 0
\(443\) −2141.57 + 3709.31i −0.229682 + 0.397820i −0.957714 0.287723i \(-0.907102\pi\)
0.728032 + 0.685543i \(0.240435\pi\)
\(444\) 0 0
\(445\) 4108.29 2371.92i 0.437645 0.252674i
\(446\) 0 0
\(447\) 8572.54 0.907086
\(448\) 0 0
\(449\) 14674.6 1.54240 0.771201 0.636592i \(-0.219656\pi\)
0.771201 + 0.636592i \(0.219656\pi\)
\(450\) 0 0
\(451\) 5857.30 3381.71i 0.611551 0.353079i
\(452\) 0 0
\(453\) −3713.04 + 6431.18i −0.385108 + 0.667027i
\(454\) 0 0
\(455\) 5880.59 + 2831.51i 0.605904 + 0.291744i
\(456\) 0 0
\(457\) 8662.00 15003.0i 0.886633 1.53569i 0.0428020 0.999084i \(-0.486372\pi\)
0.843831 0.536609i \(-0.180295\pi\)
\(458\) 0 0
\(459\) −583.697 1010.99i −0.0593565 0.102809i
\(460\) 0 0
\(461\) −6377.83 −0.644349 −0.322175 0.946680i \(-0.604414\pi\)
−0.322175 + 0.946680i \(0.604414\pi\)
\(462\) 0 0
\(463\) 7592.70i 0.762123i 0.924550 + 0.381061i \(0.124441\pi\)
−0.924550 + 0.381061i \(0.875559\pi\)
\(464\) 0 0
\(465\) 4279.16 2470.58i 0.426756 0.246388i
\(466\) 0 0
\(467\) −4571.40 2639.30i −0.452975 0.261525i 0.256111 0.966647i \(-0.417559\pi\)
−0.709086 + 0.705122i \(0.750892\pi\)
\(468\) 0 0
\(469\) −1690.16 + 1152.48i −0.166406 + 0.113468i
\(470\) 0 0
\(471\) −6365.27 3674.99i −0.622709 0.359521i
\(472\) 0 0
\(473\) 3796.07 + 6574.99i 0.369014 + 0.639151i
\(474\) 0 0
\(475\) 146.727i 0.0141733i
\(476\) 0 0
\(477\) 6546.45i 0.628388i
\(478\) 0 0
\(479\) 7795.95 + 13503.0i 0.743645 + 1.28803i 0.950825 + 0.309728i \(0.100238\pi\)
−0.207180 + 0.978303i \(0.566429\pi\)
\(480\) 0 0
\(481\) 7917.59 + 4571.22i 0.750543 + 0.433326i
\(482\) 0 0
\(483\) −371.594 4954.62i −0.0350064 0.466756i
\(484\) 0 0
\(485\) 4697.04 + 2711.84i 0.439756 + 0.253893i
\(486\) 0 0
\(487\) 9084.27 5244.80i 0.845272 0.488018i −0.0137808 0.999905i \(-0.504387\pi\)
0.859053 + 0.511887i \(0.171053\pi\)
\(488\) 0 0
\(489\) 9650.41i 0.892447i
\(490\) 0 0
\(491\) −7949.83 −0.730694 −0.365347 0.930871i \(-0.619050\pi\)
−0.365347 + 0.930871i \(0.619050\pi\)
\(492\) 0 0
\(493\) 3233.39 + 5600.40i 0.295385 + 0.511621i
\(494\) 0 0
\(495\) 1015.52 1758.92i 0.0922101 0.159713i
\(496\) 0 0
\(497\) 9583.62 718.766i 0.864958 0.0648714i
\(498\) 0 0
\(499\) 2422.80 4196.41i 0.217353 0.376467i −0.736645 0.676280i \(-0.763591\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(500\) 0 0
\(501\) 2291.78 1323.16i 0.204370 0.117993i
\(502\) 0 0
\(503\) −546.557 −0.0484488 −0.0242244 0.999707i \(-0.507712\pi\)
−0.0242244 + 0.999707i \(0.507712\pi\)
\(504\) 0 0
\(505\) 7507.82 0.661571
\(506\) 0 0
\(507\) −3208.78 + 1852.59i −0.281079 + 0.162281i
\(508\) 0 0
\(509\) 1123.03 1945.14i 0.0977944 0.169385i −0.812977 0.582296i \(-0.802155\pi\)
0.910771 + 0.412911i \(0.135488\pi\)
\(510\) 0 0
\(511\) 11422.5 + 16751.6i 0.988851 + 1.45019i
\(512\) 0 0
\(513\) 482.120 835.057i 0.0414934 0.0718687i
\(514\) 0 0
\(515\) 5144.05 + 8909.76i 0.440144 + 0.762352i
\(516\) 0 0
\(517\) 1852.54 0.157592
\(518\) 0 0
\(519\) 3508.96i 0.296775i
\(520\) 0 0
\(521\) 6742.95 3893.04i 0.567013 0.327365i −0.188942 0.981988i \(-0.560506\pi\)
0.755956 + 0.654623i \(0.227173\pi\)
\(522\) 0 0
\(523\) −10196.9 5887.21i −0.852545 0.492217i 0.00896379 0.999960i \(-0.497147\pi\)
−0.861509 + 0.507743i \(0.830480\pi\)
\(524\) 0 0
\(525\) 99.0323 205.674i 0.00823261 0.0170978i
\(526\) 0 0
\(527\) 5427.67 + 3133.67i 0.448640 + 0.259022i
\(528\) 0 0
\(529\) −2085.07 3611.44i −0.171371 0.296823i
\(530\) 0 0
\(531\) 5148.29i 0.420747i
\(532\) 0 0
\(533\) 10562.0i 0.858329i
\(534\) 0 0
\(535\) −7733.29 13394.4i −0.624933 1.08242i
\(536\) 0 0
\(537\) −1124.35 649.146i −0.0903528 0.0521652i
\(538\) 0 0
\(539\) −4248.00 5325.53i −0.339470 0.425578i
\(540\) 0 0
\(541\) 5410.37 + 3123.68i 0.429963 + 0.248239i 0.699331 0.714798i \(-0.253481\pi\)
−0.269368 + 0.963037i \(0.586815\pi\)
\(542\) 0 0
\(543\) −1814.22 + 1047.44i −0.143380 + 0.0827807i
\(544\) 0 0
\(545\) 11042.4i 0.867900i
\(546\) 0 0
\(547\) 3021.26 0.236160 0.118080 0.993004i \(-0.462326\pi\)
0.118080 + 0.993004i \(0.462326\pi\)
\(548\) 0 0
\(549\) 69.9346 + 121.130i 0.00543668 + 0.00941660i
\(550\) 0 0
\(551\) −2670.71 + 4625.80i −0.206490 + 0.357651i
\(552\) 0 0
\(553\) 2675.35 5556.26i 0.205728 0.427263i
\(554\) 0 0
\(555\) 5024.09 8701.97i 0.384253 0.665546i
\(556\) 0 0
\(557\) 5016.95 2896.54i 0.381643 0.220342i −0.296890 0.954912i \(-0.595949\pi\)
0.678533 + 0.734570i \(0.262616\pi\)
\(558\) 0 0
\(559\) 11856.1 0.897067
\(560\) 0 0
\(561\) 2576.15 0.193877
\(562\) 0 0
\(563\) 20719.3 11962.3i 1.55100 0.895470i 0.552939 0.833221i \(-0.313506\pi\)
0.998061 0.0622488i \(-0.0198272\pi\)
\(564\) 0 0
\(565\) −9625.01 + 16671.0i −0.716685 + 1.24133i
\(566\) 0 0
\(567\) 1239.42 845.133i 0.0918006 0.0625966i
\(568\) 0 0
\(569\) 4267.57 7391.65i 0.314422 0.544594i −0.664893 0.746939i \(-0.731523\pi\)
0.979314 + 0.202345i \(0.0648561\pi\)
\(570\) 0 0
\(571\) 4647.94 + 8050.46i 0.340648 + 0.590020i 0.984553 0.175086i \(-0.0560202\pi\)
−0.643905 + 0.765105i \(0.722687\pi\)
\(572\) 0 0
\(573\) −9706.31 −0.707656
\(574\) 0 0
\(575\) 367.408i 0.0266469i
\(576\) 0 0
\(577\) −8890.70 + 5133.05i −0.641464 + 0.370349i −0.785178 0.619270i \(-0.787429\pi\)
0.143714 + 0.989619i \(0.454095\pi\)
\(578\) 0 0
\(579\) 8994.63 + 5193.05i 0.645603 + 0.372739i
\(580\) 0 0
\(581\) 17262.9 1294.71i 1.23268 0.0924502i
\(582\) 0 0
\(583\) −12510.9 7223.20i −0.888766 0.513129i
\(584\) 0 0
\(585\) −1585.86 2746.79i −0.112081 0.194129i
\(586\) 0 0
\(587\) 9195.89i 0.646601i 0.946296 + 0.323301i \(0.104792\pi\)
−0.946296 + 0.323301i \(0.895208\pi\)
\(588\) 0 0
\(589\) 5176.68i 0.362141i
\(590\) 0 0
\(591\) −3299.86 5715.52i −0.229675 0.397809i
\(592\) 0 0
\(593\) −12551.0 7246.30i −0.869150 0.501804i −0.00208435 0.999998i \(-0.500663\pi\)
−0.867066 + 0.498194i \(0.833997\pi\)
\(594\) 0 0
\(595\) 9073.19 680.485i 0.625151 0.0468860i
\(596\) 0 0
\(597\) −8276.82 4778.63i −0.567417 0.327598i
\(598\) 0 0
\(599\) 8877.36 5125.35i 0.605541 0.349609i −0.165677 0.986180i \(-0.552981\pi\)
0.771218 + 0.636571i \(0.219648\pi\)
\(600\) 0 0
\(601\) 7735.54i 0.525024i −0.964929 0.262512i \(-0.915449\pi\)
0.964929 0.262512i \(-0.0845509\pi\)
\(602\) 0 0
\(603\) 994.112 0.0671366
\(604\) 0 0
\(605\) −5320.81 9215.92i −0.357557 0.619307i
\(606\) 0 0
\(607\) −11358.6 + 19673.6i −0.759523 + 1.31553i 0.183572 + 0.983006i \(0.441234\pi\)
−0.943094 + 0.332525i \(0.892099\pi\)
\(608\) 0 0
\(609\) −6865.80 + 4681.62i −0.456841 + 0.311509i
\(610\) 0 0
\(611\) 1446.49 2505.40i 0.0957755 0.165888i
\(612\) 0 0
\(613\) 11301.1 6524.70i 0.744613 0.429902i −0.0791312 0.996864i \(-0.525215\pi\)
0.823744 + 0.566962i \(0.191881\pi\)
\(614\) 0 0
\(615\) −11608.3 −0.761126
\(616\) 0 0
\(617\) 3941.58 0.257183 0.128592 0.991698i \(-0.458954\pi\)
0.128592 + 0.991698i \(0.458954\pi\)
\(618\) 0 0
\(619\) 11457.4 6614.93i 0.743960 0.429526i −0.0795473 0.996831i \(-0.525347\pi\)
0.823507 + 0.567306i \(0.192014\pi\)
\(620\) 0 0
\(621\) −1207.24 + 2091.00i −0.0780111 + 0.135119i
\(622\) 0 0
\(623\) −3354.44 + 6966.63i −0.215719 + 0.448013i
\(624\) 0 0
\(625\) 8060.84 13961.8i 0.515894 0.893555i
\(626\) 0 0
\(627\) 1063.92 + 1842.76i 0.0677654 + 0.117373i
\(628\) 0 0
\(629\) 12745.1 0.807916
\(630\) 0 0
\(631\) 20182.5i 1.27330i −0.771154 0.636649i \(-0.780320\pi\)
0.771154 0.636649i \(-0.219680\pi\)
\(632\) 0 0
\(633\) −1775.72 + 1025.21i −0.111498 + 0.0643736i
\(634\) 0 0
\(635\) 6175.11 + 3565.20i 0.385908 + 0.222804i
\(636\) 0 0
\(637\) −10519.2 + 1586.79i −0.654295 + 0.0986987i
\(638\) 0 0
\(639\) −4044.58 2335.14i −0.250393 0.144564i
\(640\) 0 0
\(641\) 8885.98 + 15391.0i 0.547543 + 0.948373i 0.998442 + 0.0557977i \(0.0177702\pi\)
−0.450899 + 0.892575i \(0.648896\pi\)
\(642\) 0 0
\(643\) 7636.64i 0.468366i −0.972192 0.234183i \(-0.924758\pi\)
0.972192 0.234183i \(-0.0752416\pi\)
\(644\) 0 0
\(645\) 13030.7i 0.795477i
\(646\) 0 0
\(647\) −2958.17 5123.70i −0.179749 0.311335i 0.762045 0.647524i \(-0.224195\pi\)
−0.941795 + 0.336189i \(0.890862\pi\)
\(648\) 0 0
\(649\) 9838.92 + 5680.50i 0.595087 + 0.343574i
\(650\) 0 0
\(651\) −3493.96 + 7256.38i −0.210352 + 0.436866i
\(652\) 0 0
\(653\) −16261.3 9388.47i −0.974509 0.562633i −0.0739010 0.997266i \(-0.523545\pi\)
−0.900608 + 0.434633i \(0.856878\pi\)
\(654\) 0 0
\(655\) 17501.2 10104.3i 1.04401 0.602762i
\(656\) 0 0
\(657\) 9852.91i 0.585082i
\(658\) 0 0
\(659\) 1477.88 0.0873594 0.0436797 0.999046i \(-0.486092\pi\)
0.0436797 + 0.999046i \(0.486092\pi\)
\(660\) 0 0
\(661\) 12988.8 + 22497.3i 0.764307 + 1.32382i 0.940612 + 0.339484i \(0.110252\pi\)
−0.176305 + 0.984336i \(0.556414\pi\)
\(662\) 0 0
\(663\) 2011.50 3484.01i 0.117828 0.204084i
\(664\) 0 0
\(665\) 4233.89 + 6209.18i 0.246892 + 0.362078i
\(666\) 0 0
\(667\) 6687.51 11583.1i 0.388218 0.672414i
\(668\) 0 0
\(669\) 12816.3 7399.47i 0.740665 0.427623i
\(670\) 0 0
\(671\) −308.657 −0.0177579
\(672\) 0 0
\(673\) 3291.08 0.188502 0.0942509 0.995548i \(-0.469954\pi\)
0.0942509 + 0.995548i \(0.469954\pi\)
\(674\) 0 0
\(675\) −96.0690 + 55.4654i −0.00547807 + 0.00316276i
\(676\) 0 0
\(677\) −9665.86 + 16741.8i −0.548728 + 0.950425i 0.449634 + 0.893213i \(0.351555\pi\)
−0.998362 + 0.0572123i \(0.981779\pi\)
\(678\) 0 0
\(679\) −8815.46 + 661.155i −0.498242 + 0.0373679i
\(680\) 0 0
\(681\) 4706.95 8152.67i 0.264861 0.458753i
\(682\) 0 0
\(683\) −1480.32 2563.99i −0.0829325 0.143643i 0.821576 0.570099i \(-0.193095\pi\)
−0.904508 + 0.426456i \(0.859762\pi\)
\(684\) 0 0
\(685\) 11066.4 0.617263
\(686\) 0 0
\(687\) 12848.7i 0.713549i
\(688\) 0 0
\(689\) −19537.5 + 11280.0i −1.08029 + 0.623704i
\(690\) 0 0
\(691\) −19776.3 11417.8i −1.08875 0.628589i −0.155506 0.987835i \(-0.549701\pi\)
−0.933243 + 0.359246i \(0.883034\pi\)
\(692\) 0 0
\(693\) 247.586 + 3301.17i 0.0135715 + 0.180954i
\(694\) 0 0
\(695\) −25155.8 14523.7i −1.37297 0.792683i
\(696\) 0 0
\(697\) −7361.97 12751.3i −0.400078 0.692956i
\(698\) 0 0
\(699\) 905.304i 0.0489868i
\(700\) 0 0
\(701\) 34253.9i 1.84558i 0.385300 + 0.922791i \(0.374098\pi\)
−0.385300 + 0.922791i \(0.625902\pi\)
\(702\) 0 0
\(703\) 5263.56 + 9116.76i 0.282388 + 0.489111i
\(704\) 0 0
\(705\) −2753.60 1589.79i −0.147102 0.0849293i
\(706\) 0 0
\(707\) −10110.5 + 6894.08i −0.537826 + 0.366731i
\(708\) 0 0
\(709\) −20019.3 11558.2i −1.06042 0.612237i −0.134875 0.990863i \(-0.543063\pi\)
−0.925550 + 0.378626i \(0.876397\pi\)
\(710\) 0 0
\(711\) −2595.29 + 1498.39i −0.136893 + 0.0790354i
\(712\) 0 0
\(713\) 12962.5i 0.680856i
\(714\) 0 0
\(715\) 6999.20 0.366091
\(716\) 0 0
\(717\) 5118.46 + 8865.43i 0.266600 + 0.461765i
\(718\) 0 0
\(719\) −5504.81 + 9534.61i −0.285528 + 0.494550i −0.972737 0.231910i \(-0.925502\pi\)
0.687209 + 0.726460i \(0.258836\pi\)
\(720\) 0 0
\(721\) −15108.7 7274.86i −0.780413 0.375770i
\(722\) 0 0
\(723\) −6709.46 + 11621.1i −0.345128 + 0.597779i
\(724\) 0 0
\(725\) 532.175 307.251i 0.0272613 0.0157393i
\(726\) 0 0
\(727\) 31122.9 1.58774 0.793869 0.608089i \(-0.208064\pi\)
0.793869 + 0.608089i \(0.208064\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 14313.7 8264.03i 0.724230 0.418134i
\(732\) 0 0
\(733\) −15353.3 + 26592.7i −0.773653 + 1.34001i 0.161896 + 0.986808i \(0.448239\pi\)
−0.935549 + 0.353198i \(0.885094\pi\)
\(734\) 0 0
\(735\) 1743.99 + 11561.3i 0.0875214 + 0.580198i
\(736\) 0 0
\(737\) −1096.88 + 1899.85i −0.0548224 + 0.0949552i
\(738\) 0 0
\(739\) 2219.89 + 3844.96i 0.110501 + 0.191393i 0.915972 0.401242i \(-0.131421\pi\)
−0.805472 + 0.592634i \(0.798088\pi\)
\(740\) 0 0
\(741\) 3322.90 0.164736
\(742\) 0 0
\(743\) 20548.4i 1.01460i −0.861770 0.507299i \(-0.830644\pi\)
0.861770 0.507299i \(-0.169356\pi\)
\(744\) 0 0
\(745\) 28118.8 16234.4i 1.38281 0.798365i
\(746\) 0 0
\(747\) −7285.48 4206.27i −0.356843 0.206023i
\(748\) 0 0
\(749\) 22713.6 + 10936.6i 1.10806 + 0.533532i
\(750\) 0 0
\(751\) 18835.5 + 10874.7i 0.915205 + 0.528394i 0.882102 0.471058i \(-0.156128\pi\)
0.0331028 + 0.999452i \(0.489461\pi\)
\(752\) 0 0
\(753\) 3640.72 + 6305.90i 0.176195 + 0.305179i
\(754\) 0 0
\(755\) 28126.5i 1.35580i
\(756\) 0 0
\(757\) 29296.1i 1.40658i −0.710901 0.703292i \(-0.751713\pi\)
0.710901 0.703292i \(-0.248287\pi\)
\(758\) 0 0
\(759\) −2664.08 4614.33i −0.127405 0.220671i
\(760\) 0 0
\(761\) −24098.1 13913.1i −1.14791 0.662744i −0.199530 0.979892i \(-0.563942\pi\)
−0.948376 + 0.317148i \(0.897275\pi\)
\(762\) 0 0
\(763\) 10139.8 + 14870.4i 0.481106 + 0.705562i
\(764\) 0 0
\(765\) −3829.17 2210.77i −0.180972 0.104484i
\(766\) 0 0
\(767\) 15364.7 8870.84i 0.723323 0.417611i
\(768\) 0 0
\(769\) 3210.87i 0.150568i −0.997162 0.0752840i \(-0.976014\pi\)
0.997162 0.0752840i \(-0.0239863\pi\)
\(770\) 0 0
\(771\) −18972.4 −0.886216
\(772\) 0 0
\(773\) −4752.28 8231.20i −0.221123 0.382996i 0.734027 0.679121i \(-0.237639\pi\)
−0.955149 + 0.296125i \(0.904305\pi\)
\(774\) 0 0
\(775\) 297.775 515.761i 0.0138018 0.0239054i
\(776\) 0 0
\(777\) 1224.89 + 16332.0i 0.0565543 + 0.754062i
\(778\) 0 0
\(779\) 6080.82 10532.3i 0.279676 0.484414i
\(780\) 0 0
\(781\) 8925.40 5153.08i 0.408932 0.236097i
\(782\) 0 0
\(783\) 4038.30 0.184313
\(784\) 0 0
\(785\) −27838.3 −1.26572
\(786\) 0 0
\(787\) 4458.68 2574.22i 0.201950 0.116596i −0.395615 0.918417i \(-0.629468\pi\)
0.597565 + 0.801821i \(0.296135\pi\)
\(788\) 0 0
\(789\) −3081.93 + 5338.05i −0.139061 + 0.240862i
\(790\) 0 0
\(791\) −2346.61 31288.3i −0.105481 1.40643i
\(792\) 0 0
\(793\) −241.004 + 417.431i −0.0107923 + 0.0186928i
\(794\) 0 0
\(795\) 12397.4 + 21473.0i 0.553072 + 0.957948i
\(796\) 0 0
\(797\) −24018.5 −1.06748 −0.533738 0.845650i \(-0.679213\pi\)
−0.533738 + 0.845650i \(0.679213\pi\)
\(798\) 0 0
\(799\) 4032.98i 0.178569i
\(800\) 0 0
\(801\) 3254.07 1878.74i 0.143542 0.0828738i
\(802\) 0 0
\(803\) 18830.0 + 10871.5i 0.827515 + 0.477766i
\(804\) 0 0
\(805\) −10601.8 15547.9i −0.464177 0.680736i
\(806\) 0 0
\(807\) −319.407 184.409i −0.0139326 0.00804402i
\(808\) 0 0
\(809\) 17874.7 + 30959.8i 0.776810 + 1.34547i 0.933771 + 0.357870i \(0.116497\pi\)
−0.156961 + 0.987605i \(0.550170\pi\)
\(810\) 0 0
\(811\) 36313.3i 1.57230i −0.618037 0.786149i \(-0.712072\pi\)
0.618037 0.786149i \(-0.287928\pi\)
\(812\) 0 0
\(813\) 1238.19i 0.0534136i
\(814\) 0 0
\(815\) 18275.6 + 31654.3i 0.785481 + 1.36049i
\(816\) 0 0
\(817\) 11822.8 + 6825.90i 0.506276 + 0.292299i
\(818\) 0 0
\(819\) 4657.86 + 2242.76i 0.198728 + 0.0956880i
\(820\) 0 0
\(821\) −7083.90 4089.89i −0.301133 0.173859i 0.341819 0.939766i \(-0.388957\pi\)
−0.642952 + 0.765907i \(0.722290\pi\)
\(822\) 0 0
\(823\) 6930.59 4001.38i 0.293542 0.169477i −0.345996 0.938236i \(-0.612459\pi\)
0.639538 + 0.768759i \(0.279126\pi\)
\(824\) 0 0
\(825\) 244.797i 0.0103306i
\(826\) 0 0
\(827\) 4176.53 0.175613 0.0878065 0.996138i \(-0.472014\pi\)
0.0878065 + 0.996138i \(0.472014\pi\)
\(828\) 0 0
\(829\) 3732.41 + 6464.72i 0.156371 + 0.270843i 0.933558 0.358428i \(-0.116687\pi\)
−0.777186 + 0.629271i \(0.783354\pi\)
\(830\) 0 0
\(831\) 3414.74 5914.50i 0.142546 0.246897i
\(832\) 0 0
\(833\) −11593.6 + 9247.87i −0.482228 + 0.384658i
\(834\) 0 0
\(835\) 5011.51 8680.19i 0.207701 0.359749i
\(836\) 0 0
\(837\) 3389.41 1956.88i 0.139970 0.0808118i
\(838\) 0 0
\(839\) −26786.2 −1.10222 −0.551110 0.834432i \(-0.685796\pi\)
−0.551110 + 0.834432i \(0.685796\pi\)
\(840\) 0 0
\(841\) 2018.81 0.0827754
\(842\) 0 0
\(843\) −20622.3 + 11906.3i −0.842551 + 0.486447i
\(844\) 0 0
\(845\) −7016.74 + 12153.3i −0.285661 + 0.494779i
\(846\) 0 0
\(847\) 15627.9 + 7524.84i 0.633979 + 0.305262i
\(848\) 0 0
\(849\) −11622.9 + 20131.5i −0.469843 + 0.813792i
\(850\) 0 0
\(851\) −13180.1 22828.6i −0.530914 0.919569i
\(852\) 0 0
\(853\) 18794.9 0.754425 0.377212 0.926127i \(-0.376883\pi\)
0.377212 + 0.926127i \(0.376883\pi\)
\(854\) 0 0
\(855\) 3652.09i 0.146081i
\(856\) 0 0
\(857\) −21918.7 + 12654.8i −0.873662 + 0.504409i −0.868564 0.495578i \(-0.834956\pi\)
−0.00509890 + 0.999987i \(0.501623\pi\)
\(858\) 0 0
\(859\) −14459.6 8348.25i −0.574337 0.331593i 0.184543 0.982824i \(-0.440920\pi\)
−0.758880 + 0.651231i \(0.774253\pi\)
\(860\) 0 0
\(861\) 15632.4 10659.4i 0.618760 0.421917i
\(862\) 0 0
\(863\) −4012.90 2316.85i −0.158286 0.0913864i 0.418765 0.908095i \(-0.362463\pi\)
−0.577051 + 0.816708i \(0.695797\pi\)
\(864\) 0 0
\(865\) 6645.15 + 11509.7i 0.261205 + 0.452420i
\(866\) 0 0
\(867\) 9130.73i 0.357666i
\(868\) 0 0
\(869\) 6613.17i 0.258155i
\(870\) 0 0
\(871\) 1712.92 + 2966.86i 0.0666361 + 0.115417i
\(872\) 0 0
\(873\) 3720.40 + 2147.97i 0.144234 + 0.0832736i
\(874\) 0 0
\(875\) 1902.66 + 25368.9i 0.0735103 + 0.980144i
\(876\) 0 0
\(877\) −26477.8 15287.0i −1.01949 0.588602i −0.105533 0.994416i \(-0.533655\pi\)
−0.913956 + 0.405814i \(0.866988\pi\)
\(878\) 0 0
\(879\) 4690.33 2707.97i 0.179978 0.103911i
\(880\) 0 0
\(881\) 13856.1i 0.529881i −0.964265 0.264941i \(-0.914648\pi\)
0.964265 0.264941i \(-0.0853524\pi\)
\(882\) 0 0
\(883\) 7762.38 0.295838 0.147919 0.988999i \(-0.452742\pi\)
0.147919 + 0.988999i \(0.452742\pi\)
\(884\) 0 0
\(885\) −9749.65 16886.9i −0.370318 0.641409i
\(886\) 0 0
\(887\) −5247.14 + 9088.31i −0.198626 + 0.344031i −0.948083 0.318022i \(-0.896981\pi\)
0.749457 + 0.662053i \(0.230315\pi\)
\(888\) 0 0
\(889\) −11589.5 + 869.208i −0.437233 + 0.0327923i
\(890\) 0 0
\(891\) 804.362 1393.20i 0.0302437 0.0523836i
\(892\) 0 0
\(893\) 2884.86 1665.57i 0.108105 0.0624147i
\(894\) 0 0
\(895\) −4917.32 −0.183651
\(896\) 0 0
\(897\) −8320.61 −0.309718
\(898\) 0 0
\(899\) −18775.6 + 10840.1i −0.696555 + 0.402156i
\(900\) 0 0
\(901\) −15724.9 + 27236.3i −0.581433 + 1.00707i
\(902\) 0 0
\(903\) 11965.5 + 17547.9i 0.440959 + 0.646685i
\(904\) 0 0
\(905\) −3967.21 + 6871.41i −0.145718 + 0.252391i
\(906\) 0 0
\(907\) 184.106 + 318.881i 0.00673995 + 0.0116739i 0.869376 0.494152i \(-0.164521\pi\)
−0.862636 + 0.505826i \(0.831188\pi\)
\(908\) 0 0
\(909\) 5946.74 0.216987
\(910\) 0 0
\(911\) 14957.6i 0.543980i −0.962300 0.271990i \(-0.912318\pi\)
0.962300 0.271990i \(-0.0876818\pi\)
\(912\) 0 0
\(913\) 16077.3 9282.21i 0.582782 0.336469i
\(914\) 0 0
\(915\) 458.785 + 264.880i 0.0165759 + 0.00957011i
\(916\) 0 0
\(917\) −14289.8 + 29677.6i −0.514604 + 1.06875i
\(918\) 0 0
\(919\) −30202.0 17437.1i −1.08408 0.625895i −0.152087 0.988367i \(-0.548599\pi\)
−0.931995 + 0.362472i \(0.881933\pi\)
\(920\) 0 0
\(921\) 8548.86 + 14807.1i 0.305857 + 0.529760i
\(922\) 0 0
\(923\) 16094.4i 0.573947i
\(924\) 0 0
\(925\) 1211.09i 0.0430491i
\(926\) 0 0
\(927\) 4074.46 + 7057.18i 0.144361 + 0.250041i
\(928\) 0 0
\(929\) 29680.6 + 17136.1i 1.04821 + 0.605186i 0.922148 0.386837i \(-0.126432\pi\)
0.126064 + 0.992022i \(0.459766\pi\)
\(930\) 0 0
\(931\) −11403.2 4473.86i −0.401423 0.157492i
\(932\) 0 0
\(933\) −11921.4 6882.84i −0.418317 0.241515i
\(934\) 0 0
\(935\) 8450.03 4878.63i 0.295557 0.170640i
\(936\) 0 0
\(937\) 7971.69i 0.277933i −0.990297 0.138967i \(-0.955622\pi\)
0.990297 0.138967i \(-0.0443781\pi\)
\(938\) 0 0
\(939\) −18771.6 −0.652385
\(940\) 0 0
\(941\) −19868.3 34412.9i −0.688298 1.19217i −0.972388 0.233370i \(-0.925025\pi\)
0.284090 0.958798i \(-0.408309\pi\)
\(942\) 0 0
\(943\) −15226.5 + 26373.1i −0.525815 + 0.910738i
\(944\) 0 0
\(945\) 2464.95 5119.30i 0.0848517 0.176223i
\(946\) 0 0
\(947\) −12920.5 + 22378.9i −0.443357 + 0.767916i −0.997936 0.0642144i \(-0.979546\pi\)
0.554579 + 0.832131i \(0.312879\pi\)
\(948\) 0 0
\(949\) 29405.4 16977.2i 1.00584 0.580720i
\(950\) 0 0
\(951\) −19661.9 −0.670433
\(952\) 0 0
\(953\) −28798.7 −0.978891 −0.489445 0.872034i \(-0.662801\pi\)
−0.489445 + 0.872034i \(0.662801\pi\)
\(954\) 0 0
\(955\) −31837.7 + 18381.5i −1.07879 + 0.622838i
\(956\) 0 0
\(957\) −4455.77 + 7717.62i −0.150506 + 0.260685i
\(958\) 0 0
\(959\) −14902.7 + 10161.8i −0.501806 + 0.342169i
\(960\) 0 0
\(961\) 4389.71 7603.20i 0.147350 0.255218i
\(962\) 0 0
\(963\) −6125.32 10609.4i −0.204970 0.355018i
\(964\) 0 0
\(965\) 39337.7 1.31225
\(966\) 0 0
\(967\) 34186.3i 1.13687i −0.822727 0.568437i \(-0.807548\pi\)
0.822727 0.568437i \(-0.192452\pi\)
\(968\) 0 0
\(969\) 4011.69 2316.15i 0.132997 0.0767858i
\(970\) 0 0
\(971\) −1588.97 917.394i −0.0525155 0.0303198i 0.473512 0.880787i \(-0.342986\pi\)
−0.526028 + 0.850467i \(0.676319\pi\)
\(972\) 0 0
\(973\) 47212.7 3540.92i 1.55557 0.116667i
\(974\) 0 0
\(975\) −331.066 191.141i −0.0108745 0.00627837i
\(976\) 0 0
\(977\) −10982.2 19021.7i −0.359622 0.622884i 0.628276 0.777991i \(-0.283761\pi\)
−0.987898 + 0.155107i \(0.950428\pi\)
\(978\) 0 0
\(979\) 8291.82i 0.270692i
\(980\) 0 0
\(981\) 8746.41i 0.284660i
\(982\) 0 0
\(983\) −9107.15 15774.0i −0.295496 0.511815i 0.679604 0.733579i \(-0.262152\pi\)
−0.975100 + 0.221765i \(0.928818\pi\)
\(984\) 0 0
\(985\) −21647.7 12498.3i −0.700258 0.404294i
\(986\) 0 0
\(987\) 5168.00 387.597i 0.166666 0.0124999i
\(988\) 0 0
\(989\) −29604.6 17092.2i −0.951841 0.549546i
\(990\) 0 0
\(991\) −42443.0 + 24504.5i −1.36049 + 0.785479i −0.989689 0.143234i \(-0.954250\pi\)
−0.370801 + 0.928713i \(0.620917\pi\)
\(992\) 0 0
\(993\) 33748.8i 1.07854i
\(994\) 0 0
\(995\) −36198.4 −1.15333
\(996\) 0 0
\(997\) −10050.3 17407.7i −0.319255 0.552967i 0.661077 0.750318i \(-0.270099\pi\)
−0.980333 + 0.197351i \(0.936766\pi\)
\(998\) 0 0
\(999\) 3979.44 6892.59i 0.126030 0.218290i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.bb.a.271.42 96
4.3 odd 2 168.4.t.a.19.46 yes 96
7.3 odd 6 inner 672.4.bb.a.367.41 96
8.3 odd 2 inner 672.4.bb.a.271.41 96
8.5 even 2 168.4.t.a.19.14 96
28.3 even 6 168.4.t.a.115.14 yes 96
56.3 even 6 inner 672.4.bb.a.367.42 96
56.45 odd 6 168.4.t.a.115.46 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.t.a.19.14 96 8.5 even 2
168.4.t.a.19.46 yes 96 4.3 odd 2
168.4.t.a.115.14 yes 96 28.3 even 6
168.4.t.a.115.46 yes 96 56.45 odd 6
672.4.bb.a.271.41 96 8.3 odd 2 inner
672.4.bb.a.271.42 96 1.1 even 1 trivial
672.4.bb.a.367.41 96 7.3 odd 6 inner
672.4.bb.a.367.42 96 56.3 even 6 inner