Properties

Label 672.4.bb.a.271.20
Level $672$
Weight $4$
Character 672.271
Analytic conductor $39.649$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(271,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.20
Character \(\chi\) \(=\) 672.271
Dual form 672.4.bb.a.367.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59808 + 1.50000i) q^{3} +(7.30307 - 12.6493i) q^{5} +(-0.782311 + 18.5037i) q^{7} +(4.50000 - 7.79423i) q^{9} +(29.8704 + 51.7370i) q^{11} +3.68912 q^{13} +43.8184i q^{15} +(-29.8369 + 17.2263i) q^{17} +(-1.17719 - 0.679649i) q^{19} +(-25.7231 - 49.2476i) q^{21} +(-152.250 - 87.9014i) q^{23} +(-44.1698 - 76.5043i) q^{25} +27.0000i q^{27} -2.05927i q^{29} +(-53.5006 - 92.6658i) q^{31} +(-155.211 - 89.6112i) q^{33} +(228.346 + 145.030i) q^{35} +(237.518 + 137.131i) q^{37} +(-9.58462 + 5.53369i) q^{39} +316.949i q^{41} +187.107 q^{43} +(-65.7277 - 113.844i) q^{45} +(-174.173 + 301.677i) q^{47} +(-341.776 - 28.9513i) q^{49} +(51.6790 - 89.5107i) q^{51} +(260.246 - 150.253i) q^{53} +872.583 q^{55} +4.07790 q^{57} +(-711.540 + 410.808i) q^{59} +(-67.3551 + 116.662i) q^{61} +(140.702 + 89.3643i) q^{63} +(26.9419 - 46.6648i) q^{65} +(-53.6072 - 92.8504i) q^{67} +527.409 q^{69} +451.011i q^{71} +(-394.990 + 228.048i) q^{73} +(229.513 + 132.509i) q^{75} +(-980.696 + 512.239i) q^{77} +(1038.98 + 599.857i) q^{79} +(-40.5000 - 70.1481i) q^{81} -543.746i q^{83} +503.221i q^{85} +(3.08891 + 5.35015i) q^{87} +(-1088.45 - 628.419i) q^{89} +(-2.88604 + 68.2625i) q^{91} +(277.997 + 160.502i) q^{93} +(-17.1942 + 9.92706i) q^{95} +1031.36i q^{97} +537.667 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 432 q^{9} - 40 q^{11} - 1200 q^{25} - 456 q^{35} + 1616 q^{43} - 360 q^{49} - 336 q^{57} - 4128 q^{59} + 1440 q^{67} - 648 q^{73} - 3888 q^{81} + 104 q^{91} - 720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.59808 + 1.50000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 7.30307 12.6493i 0.653207 1.13139i −0.329133 0.944283i \(-0.606757\pi\)
0.982340 0.187104i \(-0.0599101\pi\)
\(6\) 0 0
\(7\) −0.782311 + 18.5037i −0.0422408 + 0.999107i
\(8\) 0 0
\(9\) 4.50000 7.79423i 0.166667 0.288675i
\(10\) 0 0
\(11\) 29.8704 + 51.7370i 0.818751 + 1.41812i 0.906603 + 0.421985i \(0.138667\pi\)
−0.0878515 + 0.996134i \(0.528000\pi\)
\(12\) 0 0
\(13\) 3.68912 0.0787061 0.0393530 0.999225i \(-0.487470\pi\)
0.0393530 + 0.999225i \(0.487470\pi\)
\(14\) 0 0
\(15\) 43.8184i 0.754258i
\(16\) 0 0
\(17\) −29.8369 + 17.2263i −0.425677 + 0.245765i −0.697503 0.716582i \(-0.745706\pi\)
0.271826 + 0.962346i \(0.412372\pi\)
\(18\) 0 0
\(19\) −1.17719 0.679649i −0.0142140 0.00820643i 0.492876 0.870099i \(-0.335946\pi\)
−0.507090 + 0.861893i \(0.669279\pi\)
\(20\) 0 0
\(21\) −25.7231 49.2476i −0.267297 0.511748i
\(22\) 0 0
\(23\) −152.250 87.9014i −1.38027 0.796901i −0.388081 0.921625i \(-0.626862\pi\)
−0.992191 + 0.124725i \(0.960195\pi\)
\(24\) 0 0
\(25\) −44.1698 76.5043i −0.353358 0.612034i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 2.05927i 0.0131861i −0.999978 0.00659306i \(-0.997901\pi\)
0.999978 0.00659306i \(-0.00209865\pi\)
\(30\) 0 0
\(31\) −53.5006 92.6658i −0.309968 0.536880i 0.668387 0.743813i \(-0.266985\pi\)
−0.978355 + 0.206934i \(0.933652\pi\)
\(32\) 0 0
\(33\) −155.211 89.6112i −0.818751 0.472706i
\(34\) 0 0
\(35\) 228.346 + 145.030i 1.10279 + 0.700414i
\(36\) 0 0
\(37\) 237.518 + 137.131i 1.05534 + 0.609303i 0.924141 0.382052i \(-0.124782\pi\)
0.131204 + 0.991355i \(0.458116\pi\)
\(38\) 0 0
\(39\) −9.58462 + 5.53369i −0.0393530 + 0.0227205i
\(40\) 0 0
\(41\) 316.949i 1.20729i 0.797252 + 0.603647i \(0.206286\pi\)
−0.797252 + 0.603647i \(0.793714\pi\)
\(42\) 0 0
\(43\) 187.107 0.663572 0.331786 0.943355i \(-0.392349\pi\)
0.331786 + 0.943355i \(0.392349\pi\)
\(44\) 0 0
\(45\) −65.7277 113.844i −0.217736 0.377129i
\(46\) 0 0
\(47\) −174.173 + 301.677i −0.540549 + 0.936258i 0.458324 + 0.888785i \(0.348450\pi\)
−0.998873 + 0.0474729i \(0.984883\pi\)
\(48\) 0 0
\(49\) −341.776 28.9513i −0.996431 0.0844062i
\(50\) 0 0
\(51\) 51.6790 89.5107i 0.141892 0.245765i
\(52\) 0 0
\(53\) 260.246 150.253i 0.674482 0.389412i −0.123291 0.992371i \(-0.539345\pi\)
0.797773 + 0.602958i \(0.206011\pi\)
\(54\) 0 0
\(55\) 872.583 2.13926
\(56\) 0 0
\(57\) 4.07790 0.00947597
\(58\) 0 0
\(59\) −711.540 + 410.808i −1.57008 + 0.906485i −0.573921 + 0.818911i \(0.694578\pi\)
−0.996158 + 0.0875743i \(0.972088\pi\)
\(60\) 0 0
\(61\) −67.3551 + 116.662i −0.141376 + 0.244870i −0.928015 0.372543i \(-0.878486\pi\)
0.786639 + 0.617413i \(0.211819\pi\)
\(62\) 0 0
\(63\) 140.702 + 89.3643i 0.281377 + 0.178712i
\(64\) 0 0
\(65\) 26.9419 46.6648i 0.0514113 0.0890470i
\(66\) 0 0
\(67\) −53.6072 92.8504i −0.0977487 0.169306i 0.813004 0.582258i \(-0.197831\pi\)
−0.910752 + 0.412953i \(0.864497\pi\)
\(68\) 0 0
\(69\) 527.409 0.920182
\(70\) 0 0
\(71\) 451.011i 0.753875i 0.926239 + 0.376938i \(0.123023\pi\)
−0.926239 + 0.376938i \(0.876977\pi\)
\(72\) 0 0
\(73\) −394.990 + 228.048i −0.633289 + 0.365629i −0.782025 0.623248i \(-0.785813\pi\)
0.148736 + 0.988877i \(0.452480\pi\)
\(74\) 0 0
\(75\) 229.513 + 132.509i 0.353358 + 0.204011i
\(76\) 0 0
\(77\) −980.696 + 512.239i −1.45144 + 0.758118i
\(78\) 0 0
\(79\) 1038.98 + 599.857i 1.47968 + 0.854294i 0.999735 0.0230042i \(-0.00732311\pi\)
0.479945 + 0.877298i \(0.340656\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 543.746i 0.719082i −0.933129 0.359541i \(-0.882933\pi\)
0.933129 0.359541i \(-0.117067\pi\)
\(84\) 0 0
\(85\) 503.221i 0.642141i
\(86\) 0 0
\(87\) 3.08891 + 5.35015i 0.00380651 + 0.00659306i
\(88\) 0 0
\(89\) −1088.45 628.419i −1.29636 0.748453i −0.316586 0.948564i \(-0.602536\pi\)
−0.979773 + 0.200111i \(0.935870\pi\)
\(90\) 0 0
\(91\) −2.88604 + 68.2625i −0.00332461 + 0.0786358i
\(92\) 0 0
\(93\) 277.997 + 160.502i 0.309968 + 0.178960i
\(94\) 0 0
\(95\) −17.1942 + 9.92706i −0.0185693 + 0.0107210i
\(96\) 0 0
\(97\) 1031.36i 1.07958i 0.841800 + 0.539790i \(0.181496\pi\)
−0.841800 + 0.539790i \(0.818504\pi\)
\(98\) 0 0
\(99\) 537.667 0.545834
\(100\) 0 0
\(101\) 524.728 + 908.856i 0.516954 + 0.895391i 0.999806 + 0.0196891i \(0.00626764\pi\)
−0.482852 + 0.875702i \(0.660399\pi\)
\(102\) 0 0
\(103\) −247.505 + 428.691i −0.236771 + 0.410099i −0.959786 0.280733i \(-0.909422\pi\)
0.723015 + 0.690832i \(0.242756\pi\)
\(104\) 0 0
\(105\) −810.805 34.2796i −0.753585 0.0318605i
\(106\) 0 0
\(107\) −975.400 + 1689.44i −0.881266 + 1.52640i −0.0313312 + 0.999509i \(0.509975\pi\)
−0.849935 + 0.526888i \(0.823359\pi\)
\(108\) 0 0
\(109\) 113.918 65.7708i 0.100105 0.0577954i −0.449112 0.893476i \(-0.648260\pi\)
0.549217 + 0.835680i \(0.314926\pi\)
\(110\) 0 0
\(111\) −822.787 −0.703563
\(112\) 0 0
\(113\) 1197.97 0.997303 0.498652 0.866803i \(-0.333829\pi\)
0.498652 + 0.866803i \(0.333829\pi\)
\(114\) 0 0
\(115\) −2223.78 + 1283.90i −1.80321 + 1.04108i
\(116\) 0 0
\(117\) 16.6011 28.7539i 0.0131177 0.0227205i
\(118\) 0 0
\(119\) −295.410 565.570i −0.227565 0.435679i
\(120\) 0 0
\(121\) −1118.98 + 1938.13i −0.840707 + 1.45615i
\(122\) 0 0
\(123\) −475.423 823.457i −0.348516 0.603647i
\(124\) 0 0
\(125\) 535.468 0.383150
\(126\) 0 0
\(127\) 1079.60i 0.754322i −0.926148 0.377161i \(-0.876900\pi\)
0.926148 0.377161i \(-0.123100\pi\)
\(128\) 0 0
\(129\) −486.119 + 280.661i −0.331786 + 0.191557i
\(130\) 0 0
\(131\) −1600.22 923.885i −1.06726 0.616185i −0.139831 0.990175i \(-0.544656\pi\)
−0.927432 + 0.373991i \(0.877989\pi\)
\(132\) 0 0
\(133\) 13.4970 21.2507i 0.00879952 0.0138546i
\(134\) 0 0
\(135\) 341.531 + 197.183i 0.217736 + 0.125710i
\(136\) 0 0
\(137\) 1295.60 + 2244.04i 0.807959 + 1.39943i 0.914275 + 0.405094i \(0.132761\pi\)
−0.106316 + 0.994332i \(0.533905\pi\)
\(138\) 0 0
\(139\) 3020.36i 1.84305i 0.388319 + 0.921525i \(0.373056\pi\)
−0.388319 + 0.921525i \(0.626944\pi\)
\(140\) 0 0
\(141\) 1045.04i 0.624172i
\(142\) 0 0
\(143\) 110.196 + 190.864i 0.0644407 + 0.111615i
\(144\) 0 0
\(145\) −26.0484 15.0390i −0.0149186 0.00861327i
\(146\) 0 0
\(147\) 931.387 437.446i 0.522582 0.245442i
\(148\) 0 0
\(149\) 592.829 + 342.270i 0.325949 + 0.188187i 0.654041 0.756459i \(-0.273072\pi\)
−0.328092 + 0.944646i \(0.606406\pi\)
\(150\) 0 0
\(151\) −2681.30 + 1548.05i −1.44504 + 0.834294i −0.998180 0.0603091i \(-0.980791\pi\)
−0.446861 + 0.894604i \(0.647458\pi\)
\(152\) 0 0
\(153\) 310.074i 0.163843i
\(154\) 0 0
\(155\) −1562.88 −0.809892
\(156\) 0 0
\(157\) 487.393 + 844.190i 0.247759 + 0.429132i 0.962904 0.269845i \(-0.0869725\pi\)
−0.715145 + 0.698977i \(0.753639\pi\)
\(158\) 0 0
\(159\) −450.760 + 780.738i −0.224827 + 0.389412i
\(160\) 0 0
\(161\) 1745.61 2748.42i 0.854493 1.34538i
\(162\) 0 0
\(163\) 1169.12 2024.97i 0.561795 0.973057i −0.435545 0.900167i \(-0.643444\pi\)
0.997340 0.0728901i \(-0.0232222\pi\)
\(164\) 0 0
\(165\) −2267.04 + 1308.87i −1.06963 + 0.617550i
\(166\) 0 0
\(167\) 4248.42 1.96858 0.984290 0.176558i \(-0.0564964\pi\)
0.984290 + 0.176558i \(0.0564964\pi\)
\(168\) 0 0
\(169\) −2183.39 −0.993805
\(170\) 0 0
\(171\) −10.5947 + 6.11684i −0.00473799 + 0.00273548i
\(172\) 0 0
\(173\) 1110.85 1924.04i 0.488185 0.845562i −0.511722 0.859151i \(-0.670992\pi\)
0.999908 + 0.0135890i \(0.00432563\pi\)
\(174\) 0 0
\(175\) 1450.17 757.455i 0.626414 0.327190i
\(176\) 0 0
\(177\) 1232.42 2134.62i 0.523360 0.906485i
\(178\) 0 0
\(179\) −1419.31 2458.31i −0.592647 1.02650i −0.993874 0.110517i \(-0.964749\pi\)
0.401227 0.915979i \(-0.368584\pi\)
\(180\) 0 0
\(181\) 646.757 0.265597 0.132798 0.991143i \(-0.457604\pi\)
0.132798 + 0.991143i \(0.457604\pi\)
\(182\) 0 0
\(183\) 404.131i 0.163247i
\(184\) 0 0
\(185\) 3469.23 2002.96i 1.37872 0.796002i
\(186\) 0 0
\(187\) −1782.48 1029.12i −0.697048 0.402441i
\(188\) 0 0
\(189\) −499.601 21.1224i −0.192278 0.00812925i
\(190\) 0 0
\(191\) −2565.46 1481.17i −0.971887 0.561119i −0.0720758 0.997399i \(-0.522962\pi\)
−0.899811 + 0.436280i \(0.856296\pi\)
\(192\) 0 0
\(193\) 1557.81 + 2698.21i 0.581004 + 1.00633i 0.995361 + 0.0962141i \(0.0306734\pi\)
−0.414356 + 0.910115i \(0.635993\pi\)
\(194\) 0 0
\(195\) 161.652i 0.0593647i
\(196\) 0 0
\(197\) 215.710i 0.0780137i 0.999239 + 0.0390068i \(0.0124194\pi\)
−0.999239 + 0.0390068i \(0.987581\pi\)
\(198\) 0 0
\(199\) 1208.29 + 2092.81i 0.430418 + 0.745506i 0.996909 0.0785620i \(-0.0250329\pi\)
−0.566491 + 0.824068i \(0.691700\pi\)
\(200\) 0 0
\(201\) 278.551 + 160.822i 0.0977487 + 0.0564353i
\(202\) 0 0
\(203\) 38.1042 + 1.61099i 0.0131744 + 0.000556992i
\(204\) 0 0
\(205\) 4009.18 + 2314.70i 1.36592 + 0.788613i
\(206\) 0 0
\(207\) −1370.25 + 791.113i −0.460091 + 0.265634i
\(208\) 0 0
\(209\) 81.2056i 0.0268761i
\(210\) 0 0
\(211\) 4710.50 1.53689 0.768445 0.639915i \(-0.221031\pi\)
0.768445 + 0.639915i \(0.221031\pi\)
\(212\) 0 0
\(213\) −676.516 1171.76i −0.217625 0.376938i
\(214\) 0 0
\(215\) 1366.46 2366.77i 0.433450 0.750757i
\(216\) 0 0
\(217\) 1756.52 917.468i 0.549494 0.287013i
\(218\) 0 0
\(219\) 684.143 1184.97i 0.211096 0.365629i
\(220\) 0 0
\(221\) −110.072 + 63.5501i −0.0335034 + 0.0193432i
\(222\) 0 0
\(223\) 1574.47 0.472799 0.236399 0.971656i \(-0.424033\pi\)
0.236399 + 0.971656i \(0.424033\pi\)
\(224\) 0 0
\(225\) −795.056 −0.235572
\(226\) 0 0
\(227\) 4128.15 2383.39i 1.20703 0.696877i 0.244918 0.969544i \(-0.421239\pi\)
0.962108 + 0.272667i \(0.0879057\pi\)
\(228\) 0 0
\(229\) −222.868 + 386.019i −0.0643124 + 0.111392i −0.896389 0.443269i \(-0.853819\pi\)
0.832076 + 0.554661i \(0.187152\pi\)
\(230\) 0 0
\(231\) 1779.56 2801.88i 0.506869 0.798053i
\(232\) 0 0
\(233\) 323.623 560.532i 0.0909926 0.157604i −0.816936 0.576728i \(-0.804329\pi\)
0.907929 + 0.419124i \(0.137663\pi\)
\(234\) 0 0
\(235\) 2544.00 + 4406.34i 0.706181 + 1.22314i
\(236\) 0 0
\(237\) −3599.14 −0.986454
\(238\) 0 0
\(239\) 1481.31i 0.400912i −0.979703 0.200456i \(-0.935758\pi\)
0.979703 0.200456i \(-0.0642424\pi\)
\(240\) 0 0
\(241\) −2967.07 + 1713.04i −0.793052 + 0.457869i −0.841036 0.540979i \(-0.818054\pi\)
0.0479838 + 0.998848i \(0.484720\pi\)
\(242\) 0 0
\(243\) 210.444 + 121.500i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) −2862.23 + 4111.79i −0.746372 + 1.07222i
\(246\) 0 0
\(247\) −4.34279 2.50731i −0.00111872 0.000645896i
\(248\) 0 0
\(249\) 815.618 + 1412.69i 0.207581 + 0.359541i
\(250\) 0 0
\(251\) 984.409i 0.247551i −0.992310 0.123776i \(-0.960500\pi\)
0.992310 0.123776i \(-0.0395003\pi\)
\(252\) 0 0
\(253\) 10502.6i 2.60985i
\(254\) 0 0
\(255\) −754.832 1307.41i −0.185370 0.321071i
\(256\) 0 0
\(257\) −4647.53 2683.25i −1.12803 0.651271i −0.184595 0.982815i \(-0.559097\pi\)
−0.943440 + 0.331544i \(0.892431\pi\)
\(258\) 0 0
\(259\) −2723.25 + 4287.69i −0.653338 + 1.02867i
\(260\) 0 0
\(261\) −16.0505 9.26673i −0.00380651 0.00219769i
\(262\) 0 0
\(263\) −5562.21 + 3211.34i −1.30411 + 0.752927i −0.981106 0.193471i \(-0.938025\pi\)
−0.323002 + 0.946398i \(0.604692\pi\)
\(264\) 0 0
\(265\) 4389.24i 1.01747i
\(266\) 0 0
\(267\) 3770.52 0.864239
\(268\) 0 0
\(269\) −2724.40 4718.80i −0.617509 1.06956i −0.989939 0.141496i \(-0.954809\pi\)
0.372430 0.928060i \(-0.378525\pi\)
\(270\) 0 0
\(271\) 2644.96 4581.21i 0.592878 1.02689i −0.400965 0.916093i \(-0.631325\pi\)
0.993843 0.110801i \(-0.0353416\pi\)
\(272\) 0 0
\(273\) −94.8957 181.680i −0.0210379 0.0402776i
\(274\) 0 0
\(275\) 2638.74 4570.43i 0.578625 1.00221i
\(276\) 0 0
\(277\) 734.901 424.295i 0.159408 0.0920341i −0.418174 0.908367i \(-0.637330\pi\)
0.577582 + 0.816333i \(0.303996\pi\)
\(278\) 0 0
\(279\) −963.012 −0.206645
\(280\) 0 0
\(281\) 2590.85 0.550026 0.275013 0.961441i \(-0.411318\pi\)
0.275013 + 0.961441i \(0.411318\pi\)
\(282\) 0 0
\(283\) −1757.27 + 1014.56i −0.369113 + 0.213108i −0.673071 0.739578i \(-0.735025\pi\)
0.303958 + 0.952686i \(0.401692\pi\)
\(284\) 0 0
\(285\) 29.7812 51.5825i 0.00618977 0.0107210i
\(286\) 0 0
\(287\) −5864.73 247.952i −1.20622 0.0509971i
\(288\) 0 0
\(289\) −1863.01 + 3226.82i −0.379199 + 0.656792i
\(290\) 0 0
\(291\) −1547.05 2679.56i −0.311648 0.539790i
\(292\) 0 0
\(293\) −9290.50 −1.85241 −0.926206 0.377017i \(-0.876950\pi\)
−0.926206 + 0.377017i \(0.876950\pi\)
\(294\) 0 0
\(295\) 12000.6i 2.36849i
\(296\) 0 0
\(297\) −1396.90 + 806.501i −0.272917 + 0.157569i
\(298\) 0 0
\(299\) −561.668 324.279i −0.108636 0.0627209i
\(300\) 0 0
\(301\) −146.376 + 3462.18i −0.0280298 + 0.662979i
\(302\) 0 0
\(303\) −2726.57 1574.18i −0.516954 0.298464i
\(304\) 0 0
\(305\) 983.799 + 1703.99i 0.184696 + 0.319902i
\(306\) 0 0
\(307\) 2214.01i 0.411598i 0.978594 + 0.205799i \(0.0659793\pi\)
−0.978594 + 0.205799i \(0.934021\pi\)
\(308\) 0 0
\(309\) 1485.03i 0.273399i
\(310\) 0 0
\(311\) −4427.78 7669.15i −0.807320 1.39832i −0.914713 0.404103i \(-0.867584\pi\)
0.107393 0.994217i \(-0.465750\pi\)
\(312\) 0 0
\(313\) 164.785 + 95.1386i 0.0297578 + 0.0171807i 0.514805 0.857307i \(-0.327864\pi\)
−0.485047 + 0.874488i \(0.661198\pi\)
\(314\) 0 0
\(315\) 2157.95 1127.15i 0.385990 0.201611i
\(316\) 0 0
\(317\) −378.138 218.318i −0.0669980 0.0386813i 0.466127 0.884718i \(-0.345649\pi\)
−0.533125 + 0.846037i \(0.678982\pi\)
\(318\) 0 0
\(319\) 106.541 61.5113i 0.0186995 0.0107962i
\(320\) 0 0
\(321\) 5852.40i 1.01760i
\(322\) 0 0
\(323\) 46.8315 0.00806741
\(324\) 0 0
\(325\) −162.948 282.234i −0.0278114 0.0481708i
\(326\) 0 0
\(327\) −197.312 + 341.755i −0.0333682 + 0.0577954i
\(328\) 0 0
\(329\) −5445.90 3458.86i −0.912589 0.579615i
\(330\) 0 0
\(331\) 4927.37 8534.46i 0.818226 1.41721i −0.0887622 0.996053i \(-0.528291\pi\)
0.906988 0.421156i \(-0.138376\pi\)
\(332\) 0 0
\(333\) 2137.66 1234.18i 0.351781 0.203101i
\(334\) 0 0
\(335\) −1565.99 −0.255401
\(336\) 0 0
\(337\) 2518.25 0.407057 0.203528 0.979069i \(-0.434759\pi\)
0.203528 + 0.979069i \(0.434759\pi\)
\(338\) 0 0
\(339\) −3112.41 + 1796.95i −0.498652 + 0.287897i
\(340\) 0 0
\(341\) 3196.17 5535.93i 0.507573 0.879142i
\(342\) 0 0
\(343\) 803.082 6301.48i 0.126421 0.991977i
\(344\) 0 0
\(345\) 3851.70 6671.35i 0.601069 1.04108i
\(346\) 0 0
\(347\) 5797.56 + 10041.7i 0.896914 + 1.55350i 0.831417 + 0.555648i \(0.187530\pi\)
0.0654969 + 0.997853i \(0.479137\pi\)
\(348\) 0 0
\(349\) 1813.09 0.278088 0.139044 0.990286i \(-0.455597\pi\)
0.139044 + 0.990286i \(0.455597\pi\)
\(350\) 0 0
\(351\) 99.6063i 0.0151470i
\(352\) 0 0
\(353\) 2083.52 1202.92i 0.314149 0.181374i −0.334633 0.942349i \(-0.608612\pi\)
0.648782 + 0.760975i \(0.275279\pi\)
\(354\) 0 0
\(355\) 5704.97 + 3293.76i 0.852925 + 0.492436i
\(356\) 0 0
\(357\) 1615.85 + 1026.28i 0.239552 + 0.152147i
\(358\) 0 0
\(359\) 6925.06 + 3998.18i 1.01808 + 0.587789i 0.913547 0.406733i \(-0.133332\pi\)
0.104533 + 0.994521i \(0.466665\pi\)
\(360\) 0 0
\(361\) −3428.58 5938.47i −0.499865 0.865792i
\(362\) 0 0
\(363\) 6713.89i 0.970765i
\(364\) 0 0
\(365\) 6661.79i 0.955326i
\(366\) 0 0
\(367\) −617.136 1068.91i −0.0877773 0.152035i 0.818794 0.574087i \(-0.194643\pi\)
−0.906571 + 0.422053i \(0.861310\pi\)
\(368\) 0 0
\(369\) 2470.37 + 1426.27i 0.348516 + 0.201216i
\(370\) 0 0
\(371\) 2576.65 + 4933.07i 0.360574 + 0.690329i
\(372\) 0 0
\(373\) 11025.6 + 6365.63i 1.53052 + 0.883646i 0.999338 + 0.0363881i \(0.0115853\pi\)
0.531182 + 0.847258i \(0.321748\pi\)
\(374\) 0 0
\(375\) −1391.19 + 803.202i −0.191575 + 0.110606i
\(376\) 0 0
\(377\) 7.59692i 0.00103783i
\(378\) 0 0
\(379\) −11102.4 −1.50472 −0.752362 0.658750i \(-0.771086\pi\)
−0.752362 + 0.658750i \(0.771086\pi\)
\(380\) 0 0
\(381\) 1619.40 + 2804.88i 0.217754 + 0.377161i
\(382\) 0 0
\(383\) 1130.11 1957.40i 0.150772 0.261145i −0.780739 0.624857i \(-0.785157\pi\)
0.931512 + 0.363712i \(0.118491\pi\)
\(384\) 0 0
\(385\) −682.631 + 16146.0i −0.0903639 + 2.13735i
\(386\) 0 0
\(387\) 841.983 1458.36i 0.110595 0.191557i
\(388\) 0 0
\(389\) 6521.27 3765.06i 0.849978 0.490735i −0.0106655 0.999943i \(-0.503395\pi\)
0.860643 + 0.509208i \(0.170062\pi\)
\(390\) 0 0
\(391\) 6056.88 0.783401
\(392\) 0 0
\(393\) 5543.31 0.711509
\(394\) 0 0
\(395\) 15175.5 8761.61i 1.93308 1.11606i
\(396\) 0 0
\(397\) 2213.94 3834.66i 0.279885 0.484775i −0.691471 0.722404i \(-0.743037\pi\)
0.971356 + 0.237629i \(0.0763703\pi\)
\(398\) 0 0
\(399\) −3.19018 + 75.4563i −0.000400273 + 0.00946752i
\(400\) 0 0
\(401\) 3501.96 6065.57i 0.436108 0.755361i −0.561277 0.827628i \(-0.689690\pi\)
0.997385 + 0.0722664i \(0.0230232\pi\)
\(402\) 0 0
\(403\) −197.370 341.856i −0.0243963 0.0422557i
\(404\) 0 0
\(405\) −1183.10 −0.145157
\(406\) 0 0
\(407\) 16384.7i 1.99547i
\(408\) 0 0
\(409\) 7550.94 4359.54i 0.912885 0.527055i 0.0315269 0.999503i \(-0.489963\pi\)
0.881358 + 0.472448i \(0.156630\pi\)
\(410\) 0 0
\(411\) −6732.13 3886.79i −0.807959 0.466476i
\(412\) 0 0
\(413\) −7044.83 13487.5i −0.839355 1.60697i
\(414\) 0 0
\(415\) −6878.00 3971.01i −0.813561 0.469709i
\(416\) 0 0
\(417\) −4530.55 7847.14i −0.532043 0.921525i
\(418\) 0 0
\(419\) 7052.74i 0.822312i −0.911565 0.411156i \(-0.865125\pi\)
0.911565 0.411156i \(-0.134875\pi\)
\(420\) 0 0
\(421\) 6931.64i 0.802440i 0.915982 + 0.401220i \(0.131414\pi\)
−0.915982 + 0.401220i \(0.868586\pi\)
\(422\) 0 0
\(423\) 1567.56 + 2715.09i 0.180183 + 0.312086i
\(424\) 0 0
\(425\) 2635.78 + 1521.77i 0.300833 + 0.173686i
\(426\) 0 0
\(427\) −2106.00 1337.59i −0.238680 0.151593i
\(428\) 0 0
\(429\) −572.593 330.587i −0.0644407 0.0372048i
\(430\) 0 0
\(431\) −2301.26 + 1328.63i −0.257187 + 0.148487i −0.623051 0.782181i \(-0.714107\pi\)
0.365863 + 0.930669i \(0.380774\pi\)
\(432\) 0 0
\(433\) 2301.97i 0.255487i 0.991807 + 0.127743i \(0.0407734\pi\)
−0.991807 + 0.127743i \(0.959227\pi\)
\(434\) 0 0
\(435\) 90.2342 0.00994574
\(436\) 0 0
\(437\) 119.484 + 206.953i 0.0130794 + 0.0226542i
\(438\) 0 0
\(439\) 5316.12 9207.78i 0.577960 1.00106i −0.417753 0.908561i \(-0.637182\pi\)
0.995713 0.0924954i \(-0.0294843\pi\)
\(440\) 0 0
\(441\) −1763.65 + 2533.60i −0.190438 + 0.273577i
\(442\) 0 0
\(443\) 821.461 1422.81i 0.0881011 0.152596i −0.818607 0.574354i \(-0.805253\pi\)
0.906708 + 0.421758i \(0.138587\pi\)
\(444\) 0 0
\(445\) −15898.1 + 9178.79i −1.69358 + 0.977789i
\(446\) 0 0
\(447\) −2053.62 −0.217299
\(448\) 0 0
\(449\) −6402.50 −0.672945 −0.336473 0.941693i \(-0.609234\pi\)
−0.336473 + 0.941693i \(0.609234\pi\)
\(450\) 0 0
\(451\) −16398.0 + 9467.38i −1.71209 + 0.988474i
\(452\) 0 0
\(453\) 4644.15 8043.90i 0.481680 0.834294i
\(454\) 0 0
\(455\) 842.396 + 535.033i 0.0867959 + 0.0551269i
\(456\) 0 0
\(457\) −782.070 + 1354.59i −0.0800519 + 0.138654i −0.903272 0.429068i \(-0.858842\pi\)
0.823220 + 0.567722i \(0.192175\pi\)
\(458\) 0 0
\(459\) −465.111 805.597i −0.0472975 0.0819216i
\(460\) 0 0
\(461\) −12965.9 −1.30994 −0.654970 0.755655i \(-0.727319\pi\)
−0.654970 + 0.755655i \(0.727319\pi\)
\(462\) 0 0
\(463\) 1919.05i 0.192626i −0.995351 0.0963130i \(-0.969295\pi\)
0.995351 0.0963130i \(-0.0307050\pi\)
\(464\) 0 0
\(465\) 4060.47 2344.31i 0.404946 0.233796i
\(466\) 0 0
\(467\) −3383.20 1953.29i −0.335237 0.193549i 0.322927 0.946424i \(-0.395333\pi\)
−0.658164 + 0.752875i \(0.728667\pi\)
\(468\) 0 0
\(469\) 1760.02 919.296i 0.173284 0.0905099i
\(470\) 0 0
\(471\) −2532.57 1462.18i −0.247759 0.143044i
\(472\) 0 0
\(473\) 5588.97 + 9680.38i 0.543300 + 0.941024i
\(474\) 0 0
\(475\) 120.080i 0.0115992i
\(476\) 0 0
\(477\) 2704.56i 0.259608i
\(478\) 0 0
\(479\) −9988.48 17300.6i −0.952788 1.65028i −0.739352 0.673320i \(-0.764868\pi\)
−0.213436 0.976957i \(-0.568466\pi\)
\(480\) 0 0
\(481\) 876.234 + 505.894i 0.0830620 + 0.0479559i
\(482\) 0 0
\(483\) −412.597 + 9759.03i −0.0388692 + 0.919360i
\(484\) 0 0
\(485\) 13046.0 + 7532.13i 1.22142 + 0.705189i
\(486\) 0 0
\(487\) 6372.05 3678.91i 0.592906 0.342314i −0.173340 0.984862i \(-0.555456\pi\)
0.766246 + 0.642548i \(0.222123\pi\)
\(488\) 0 0
\(489\) 7014.72i 0.648705i
\(490\) 0 0
\(491\) −11334.2 −1.04176 −0.520882 0.853629i \(-0.674397\pi\)
−0.520882 + 0.853629i \(0.674397\pi\)
\(492\) 0 0
\(493\) 35.4738 + 61.4424i 0.00324069 + 0.00561303i
\(494\) 0 0
\(495\) 3926.62 6801.11i 0.356543 0.617550i
\(496\) 0 0
\(497\) −8345.38 352.830i −0.753202 0.0318443i
\(498\) 0 0
\(499\) −3535.75 + 6124.10i −0.317198 + 0.549404i −0.979902 0.199478i \(-0.936075\pi\)
0.662704 + 0.748881i \(0.269409\pi\)
\(500\) 0 0
\(501\) −11037.7 + 6372.64i −0.984290 + 0.568280i
\(502\) 0 0
\(503\) 9193.47 0.814944 0.407472 0.913218i \(-0.366410\pi\)
0.407472 + 0.913218i \(0.366410\pi\)
\(504\) 0 0
\(505\) 15328.5 1.35071
\(506\) 0 0
\(507\) 5672.61 3275.09i 0.496903 0.286887i
\(508\) 0 0
\(509\) −1268.09 + 2196.40i −0.110427 + 0.191265i −0.915942 0.401310i \(-0.868555\pi\)
0.805516 + 0.592574i \(0.201888\pi\)
\(510\) 0 0
\(511\) −3910.72 7487.19i −0.338552 0.648168i
\(512\) 0 0
\(513\) 18.3505 31.7841i 0.00157933 0.00273548i
\(514\) 0 0
\(515\) 3615.09 + 6261.52i 0.309320 + 0.535759i
\(516\) 0 0
\(517\) −20810.5 −1.77030
\(518\) 0 0
\(519\) 6665.08i 0.563708i
\(520\) 0 0
\(521\) −16234.3 + 9372.88i −1.36514 + 0.788164i −0.990303 0.138927i \(-0.955635\pi\)
−0.374837 + 0.927091i \(0.622301\pi\)
\(522\) 0 0
\(523\) −1445.82 834.745i −0.120882 0.0697913i 0.438340 0.898809i \(-0.355567\pi\)
−0.559222 + 0.829018i \(0.688900\pi\)
\(524\) 0 0
\(525\) −2631.47 + 4143.18i −0.218755 + 0.344425i
\(526\) 0 0
\(527\) 3192.59 + 1843.24i 0.263892 + 0.152358i
\(528\) 0 0
\(529\) 9369.82 + 16229.0i 0.770101 + 1.33385i
\(530\) 0 0
\(531\) 7394.54i 0.604324i
\(532\) 0 0
\(533\) 1169.26i 0.0950214i
\(534\) 0 0
\(535\) 14246.8 + 24676.2i 1.15130 + 1.99411i
\(536\) 0 0
\(537\) 7374.93 + 4257.92i 0.592647 + 0.342165i
\(538\) 0 0
\(539\) −8711.13 18547.3i −0.696131 1.48217i
\(540\) 0 0
\(541\) 11917.6 + 6880.64i 0.947096 + 0.546806i 0.892177 0.451685i \(-0.149177\pi\)
0.0549180 + 0.998491i \(0.482510\pi\)
\(542\) 0 0
\(543\) −1680.32 + 970.135i −0.132798 + 0.0766712i
\(544\) 0 0
\(545\) 1921.32i 0.151009i
\(546\) 0 0
\(547\) −10496.8 −0.820494 −0.410247 0.911974i \(-0.634558\pi\)
−0.410247 + 0.911974i \(0.634558\pi\)
\(548\) 0 0
\(549\) 606.196 + 1049.96i 0.0471253 + 0.0816235i
\(550\) 0 0
\(551\) −1.39958 + 2.42415i −0.000108211 + 0.000187427i
\(552\) 0 0
\(553\) −11912.4 + 18755.8i −0.916035 + 1.44227i
\(554\) 0 0
\(555\) −6008.87 + 10407.7i −0.459572 + 0.796002i
\(556\) 0 0
\(557\) 8319.18 4803.08i 0.632846 0.365374i −0.149008 0.988836i \(-0.547608\pi\)
0.781853 + 0.623462i \(0.214275\pi\)
\(558\) 0 0
\(559\) 690.262 0.0522271
\(560\) 0 0
\(561\) 6174.69 0.464698
\(562\) 0 0
\(563\) 3141.56 1813.78i 0.235171 0.135776i −0.377784 0.925894i \(-0.623314\pi\)
0.612955 + 0.790118i \(0.289981\pi\)
\(564\) 0 0
\(565\) 8748.84 15153.4i 0.651445 1.12834i
\(566\) 0 0
\(567\) 1329.68 694.523i 0.0984859 0.0514413i
\(568\) 0 0
\(569\) 2995.10 5187.66i 0.220670 0.382211i −0.734342 0.678780i \(-0.762509\pi\)
0.955012 + 0.296569i \(0.0958424\pi\)
\(570\) 0 0
\(571\) 3174.42 + 5498.26i 0.232654 + 0.402969i 0.958588 0.284795i \(-0.0919256\pi\)
−0.725934 + 0.687764i \(0.758592\pi\)
\(572\) 0 0
\(573\) 8887.02 0.647924
\(574\) 0 0
\(575\) 15530.3i 1.12637i
\(576\) 0 0
\(577\) −628.970 + 363.136i −0.0453802 + 0.0262003i −0.522518 0.852628i \(-0.675007\pi\)
0.477138 + 0.878828i \(0.341674\pi\)
\(578\) 0 0
\(579\) −8094.63 4673.44i −0.581004 0.335443i
\(580\) 0 0
\(581\) 10061.3 + 425.378i 0.718440 + 0.0303746i
\(582\) 0 0
\(583\) 15547.3 + 8976.24i 1.10447 + 0.637664i
\(584\) 0 0
\(585\) −242.477 419.983i −0.0171371 0.0296823i
\(586\) 0 0
\(587\) 16660.1i 1.17144i 0.810512 + 0.585722i \(0.199189\pi\)
−0.810512 + 0.585722i \(0.800811\pi\)
\(588\) 0 0
\(589\) 145.447i 0.0101749i
\(590\) 0 0
\(591\) −323.565 560.431i −0.0225206 0.0390068i
\(592\) 0 0
\(593\) −10634.9 6140.07i −0.736465 0.425198i 0.0843179 0.996439i \(-0.473129\pi\)
−0.820782 + 0.571241i \(0.806462\pi\)
\(594\) 0 0
\(595\) −9311.47 393.675i −0.641568 0.0271246i
\(596\) 0 0
\(597\) −6278.44 3624.86i −0.430418 0.248502i
\(598\) 0 0
\(599\) −8795.74 + 5078.22i −0.599974 + 0.346395i −0.769031 0.639211i \(-0.779261\pi\)
0.169058 + 0.985606i \(0.445928\pi\)
\(600\) 0 0
\(601\) 11938.9i 0.810316i −0.914247 0.405158i \(-0.867217\pi\)
0.914247 0.405158i \(-0.132783\pi\)
\(602\) 0 0
\(603\) −964.930 −0.0651658
\(604\) 0 0
\(605\) 16344.0 + 28308.6i 1.09831 + 1.90233i
\(606\) 0 0
\(607\) −5904.55 + 10227.0i −0.394824 + 0.683856i −0.993079 0.117450i \(-0.962528\pi\)
0.598254 + 0.801306i \(0.295861\pi\)
\(608\) 0 0
\(609\) −101.414 + 52.9709i −0.00674797 + 0.00352461i
\(610\) 0 0
\(611\) −642.547 + 1112.92i −0.0425445 + 0.0736892i
\(612\) 0 0
\(613\) −917.232 + 529.564i −0.0604350 + 0.0348922i −0.529913 0.848052i \(-0.677775\pi\)
0.469478 + 0.882944i \(0.344442\pi\)
\(614\) 0 0
\(615\) −13888.2 −0.910612
\(616\) 0 0
\(617\) −17095.6 −1.11546 −0.557732 0.830021i \(-0.688328\pi\)
−0.557732 + 0.830021i \(0.688328\pi\)
\(618\) 0 0
\(619\) 20388.9 11771.5i 1.32391 0.764358i 0.339557 0.940585i \(-0.389723\pi\)
0.984349 + 0.176228i \(0.0563895\pi\)
\(620\) 0 0
\(621\) 2373.34 4110.74i 0.153364 0.265634i
\(622\) 0 0
\(623\) 12479.6 19648.8i 0.802544 1.26359i
\(624\) 0 0
\(625\) 9431.78 16336.3i 0.603634 1.04553i
\(626\) 0 0
\(627\) 121.808 + 210.978i 0.00775847 + 0.0134381i
\(628\) 0 0
\(629\) −9449.08 −0.598982
\(630\) 0 0
\(631\) 4861.23i 0.306692i −0.988173 0.153346i \(-0.950995\pi\)
0.988173 0.153346i \(-0.0490049\pi\)
\(632\) 0 0
\(633\) −12238.2 + 7065.75i −0.768445 + 0.443662i
\(634\) 0 0
\(635\) −13656.2 7884.39i −0.853430 0.492728i
\(636\) 0 0
\(637\) −1260.85 106.805i −0.0784252 0.00664328i
\(638\) 0 0
\(639\) 3515.28 + 2029.55i 0.217625 + 0.125646i
\(640\) 0 0
\(641\) 2933.33 + 5080.68i 0.180748 + 0.313066i 0.942136 0.335232i \(-0.108815\pi\)
−0.761387 + 0.648297i \(0.775481\pi\)
\(642\) 0 0
\(643\) 7634.50i 0.468235i 0.972208 + 0.234118i \(0.0752200\pi\)
−0.972208 + 0.234118i \(0.924780\pi\)
\(644\) 0 0
\(645\) 8198.75i 0.500504i
\(646\) 0 0
\(647\) 6255.81 + 10835.4i 0.380126 + 0.658397i 0.991080 0.133269i \(-0.0425474\pi\)
−0.610954 + 0.791666i \(0.709214\pi\)
\(648\) 0 0
\(649\) −42508.0 24542.0i −2.57101 1.48437i
\(650\) 0 0
\(651\) −3187.36 + 5018.43i −0.191893 + 0.302132i
\(652\) 0 0
\(653\) 15946.7 + 9206.83i 0.955655 + 0.551748i 0.894833 0.446401i \(-0.147294\pi\)
0.0608221 + 0.998149i \(0.480628\pi\)
\(654\) 0 0
\(655\) −23373.0 + 13494.4i −1.39429 + 0.804992i
\(656\) 0 0
\(657\) 4104.86i 0.243753i
\(658\) 0 0
\(659\) 17590.5 1.03980 0.519900 0.854227i \(-0.325969\pi\)
0.519900 + 0.854227i \(0.325969\pi\)
\(660\) 0 0
\(661\) 11474.0 + 19873.5i 0.675167 + 1.16942i 0.976420 + 0.215880i \(0.0692619\pi\)
−0.301253 + 0.953544i \(0.597405\pi\)
\(662\) 0 0
\(663\) 190.650 330.216i 0.0111678 0.0193432i
\(664\) 0 0
\(665\) −170.236 325.922i −0.00992705 0.0190056i
\(666\) 0 0
\(667\) −181.013 + 313.524i −0.0105080 + 0.0182004i
\(668\) 0 0
\(669\) −4090.59 + 2361.70i −0.236399 + 0.136485i
\(670\) 0 0
\(671\) −8047.70 −0.463007
\(672\) 0 0
\(673\) −7222.11 −0.413658 −0.206829 0.978377i \(-0.566314\pi\)
−0.206829 + 0.978377i \(0.566314\pi\)
\(674\) 0 0
\(675\) 2065.62 1192.58i 0.117786 0.0680038i
\(676\) 0 0
\(677\) 3598.04 6231.99i 0.204260 0.353789i −0.745637 0.666353i \(-0.767855\pi\)
0.949897 + 0.312564i \(0.101188\pi\)
\(678\) 0 0
\(679\) −19084.1 806.847i −1.07862 0.0456023i
\(680\) 0 0
\(681\) −7150.17 + 12384.5i −0.402342 + 0.696877i
\(682\) 0 0
\(683\) 10062.8 + 17429.2i 0.563751 + 0.976445i 0.997165 + 0.0752497i \(0.0239754\pi\)
−0.433414 + 0.901195i \(0.642691\pi\)
\(684\) 0 0
\(685\) 37847.4 2.11106
\(686\) 0 0
\(687\) 1337.21i 0.0742616i
\(688\) 0 0
\(689\) 960.080 554.303i 0.0530858 0.0306491i
\(690\) 0 0
\(691\) 11399.1 + 6581.29i 0.627559 + 0.362322i 0.779806 0.626021i \(-0.215318\pi\)
−0.152247 + 0.988342i \(0.548651\pi\)
\(692\) 0 0
\(693\) −420.623 + 9948.85i −0.0230565 + 0.545347i
\(694\) 0 0
\(695\) 38205.5 + 22057.9i 2.08520 + 1.20389i
\(696\) 0 0
\(697\) −5459.87 9456.77i −0.296711 0.513918i
\(698\) 0 0
\(699\) 1941.74i 0.105069i
\(700\) 0 0
\(701\) 18196.2i 0.980402i −0.871609 0.490201i \(-0.836923\pi\)
0.871609 0.490201i \(-0.163077\pi\)
\(702\) 0 0
\(703\) −186.402 322.858i −0.0100004 0.0173212i
\(704\) 0 0
\(705\) −13219.0 7632.01i −0.706181 0.407714i
\(706\) 0 0
\(707\) −17227.7 + 8998.42i −0.916429 + 0.478671i
\(708\) 0 0
\(709\) −16885.4 9748.77i −0.894419 0.516393i −0.0190336 0.999819i \(-0.506059\pi\)
−0.875385 + 0.483426i \(0.839392\pi\)
\(710\) 0 0
\(711\) 9350.85 5398.72i 0.493227 0.284765i
\(712\) 0 0
\(713\) 18811.1i 0.988054i
\(714\) 0 0
\(715\) 3219.07 0.168372
\(716\) 0 0
\(717\) 2221.97 + 3848.56i 0.115733 + 0.200456i
\(718\) 0 0
\(719\) 7262.67 12579.3i 0.376707 0.652475i −0.613874 0.789404i \(-0.710390\pi\)
0.990581 + 0.136929i \(0.0437232\pi\)
\(720\) 0 0
\(721\) −7738.75 4915.13i −0.399731 0.253882i
\(722\) 0 0
\(723\) 5139.11 8901.20i 0.264351 0.457869i
\(724\) 0 0
\(725\) −157.543 + 90.9577i −0.00807036 + 0.00465942i
\(726\) 0 0
\(727\) 1.46093 7.45292e−5 3.72646e−5 1.00000i \(-0.499988\pi\)
3.72646e−5 1.00000i \(0.499988\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −5582.70 + 3223.17i −0.282467 + 0.163083i
\(732\) 0 0
\(733\) 2012.81 3486.29i 0.101426 0.175674i −0.810847 0.585259i \(-0.800993\pi\)
0.912272 + 0.409584i \(0.134326\pi\)
\(734\) 0 0
\(735\) 1268.60 14976.1i 0.0636641 0.751567i
\(736\) 0 0
\(737\) 3202.54 5546.96i 0.160064 0.277239i
\(738\) 0 0
\(739\) −4955.72 8583.56i −0.246684 0.427269i 0.715920 0.698182i \(-0.246008\pi\)
−0.962604 + 0.270914i \(0.912674\pi\)
\(740\) 0 0
\(741\) 15.0439 0.000745817
\(742\) 0 0
\(743\) 5753.42i 0.284081i −0.989861 0.142041i \(-0.954634\pi\)
0.989861 0.142041i \(-0.0453664\pi\)
\(744\) 0 0
\(745\) 8658.94 4999.24i 0.425824 0.245850i
\(746\) 0 0
\(747\) −4238.08 2446.86i −0.207581 0.119847i
\(748\) 0 0
\(749\) −30497.9 19370.2i −1.48781 0.944956i
\(750\) 0 0
\(751\) −18819.5 10865.4i −0.914426 0.527944i −0.0325731 0.999469i \(-0.510370\pi\)
−0.881852 + 0.471526i \(0.843704\pi\)
\(752\) 0 0
\(753\) 1476.61 + 2557.57i 0.0714619 + 0.123776i
\(754\) 0 0
\(755\) 45222.1i 2.17987i
\(756\) 0 0
\(757\) 6876.55i 0.330162i −0.986280 0.165081i \(-0.947212\pi\)
0.986280 0.165081i \(-0.0527885\pi\)
\(758\) 0 0
\(759\) 15753.9 + 27286.6i 0.753400 + 1.30493i
\(760\) 0 0
\(761\) 17277.0 + 9974.87i 0.822983 + 0.475150i 0.851444 0.524445i \(-0.175727\pi\)
−0.0284609 + 0.999595i \(0.509061\pi\)
\(762\) 0 0
\(763\) 1127.89 + 2159.37i 0.0535153 + 0.102457i
\(764\) 0 0
\(765\) 3922.22 + 2264.50i 0.185370 + 0.107024i
\(766\) 0 0
\(767\) −2624.96 + 1515.52i −0.123575 + 0.0713459i
\(768\) 0 0
\(769\) 22540.2i 1.05698i 0.848938 + 0.528492i \(0.177242\pi\)
−0.848938 + 0.528492i \(0.822758\pi\)
\(770\) 0 0
\(771\) 16099.5 0.752023
\(772\) 0 0
\(773\) −4451.60 7710.40i −0.207132 0.358763i 0.743678 0.668538i \(-0.233080\pi\)
−0.950810 + 0.309775i \(0.899746\pi\)
\(774\) 0 0
\(775\) −4726.22 + 8186.06i −0.219059 + 0.379422i
\(776\) 0 0
\(777\) 643.675 15224.6i 0.0297191 0.702935i
\(778\) 0 0
\(779\) 215.414 373.108i 0.00990758 0.0171604i
\(780\) 0 0
\(781\) −23334.0 + 13471.9i −1.06908 + 0.617236i
\(782\) 0 0
\(783\) 55.6004 0.00253767
\(784\) 0 0
\(785\) 14237.9 0.647352
\(786\) 0 0
\(787\) 16667.3 9622.88i 0.754925 0.435856i −0.0725459 0.997365i \(-0.523112\pi\)
0.827471 + 0.561509i \(0.189779\pi\)
\(788\) 0 0
\(789\) 9634.03 16686.6i 0.434703 0.752927i
\(790\) 0 0
\(791\) −937.182 + 22166.9i −0.0421269 + 0.996413i
\(792\) 0 0
\(793\) −248.481 + 430.382i −0.0111272 + 0.0192728i
\(794\) 0 0
\(795\) 6583.86 + 11403.6i 0.293718 + 0.508734i
\(796\) 0 0
\(797\) −8439.84 −0.375100 −0.187550 0.982255i \(-0.560055\pi\)
−0.187550 + 0.982255i \(0.560055\pi\)
\(798\) 0 0
\(799\) 12001.5i 0.531392i
\(800\) 0 0
\(801\) −9796.09 + 5655.77i −0.432120 + 0.249484i
\(802\) 0 0
\(803\) −23597.0 13623.7i −1.03701 0.598719i
\(804\) 0 0
\(805\) −22017.3 42152.7i −0.963984 1.84557i
\(806\) 0 0
\(807\) 14156.4 + 8173.21i 0.617509 + 0.356519i
\(808\) 0 0
\(809\) 303.899 + 526.369i 0.0132071 + 0.0228754i 0.872553 0.488519i \(-0.162463\pi\)
−0.859346 + 0.511394i \(0.829129\pi\)
\(810\) 0 0
\(811\) 11135.6i 0.482151i −0.970506 0.241076i \(-0.922500\pi\)
0.970506 0.241076i \(-0.0775002\pi\)
\(812\) 0 0
\(813\) 15869.8i 0.684596i
\(814\) 0 0
\(815\) −17076.3 29577.1i −0.733936 1.27121i
\(816\) 0 0
\(817\) −220.260 127.167i −0.00943198 0.00544556i
\(818\) 0 0
\(819\) 519.067 + 329.676i 0.0221461 + 0.0140657i
\(820\) 0 0
\(821\) −15564.9 8986.41i −0.661656 0.382007i 0.131252 0.991349i \(-0.458100\pi\)
−0.792908 + 0.609342i \(0.791434\pi\)
\(822\) 0 0
\(823\) 13440.2 7759.71i 0.569255 0.328659i −0.187597 0.982246i \(-0.560070\pi\)
0.756852 + 0.653587i \(0.226737\pi\)
\(824\) 0 0
\(825\) 15832.4i 0.668138i
\(826\) 0 0
\(827\) 21438.2 0.901426 0.450713 0.892669i \(-0.351170\pi\)
0.450713 + 0.892669i \(0.351170\pi\)
\(828\) 0 0
\(829\) −7490.88 12974.6i −0.313835 0.543578i 0.665354 0.746528i \(-0.268280\pi\)
−0.979189 + 0.202950i \(0.934947\pi\)
\(830\) 0 0
\(831\) −1272.89 + 2204.70i −0.0531359 + 0.0920341i
\(832\) 0 0
\(833\) 10696.3 5023.73i 0.444902 0.208958i
\(834\) 0 0
\(835\) 31026.6 53739.6i 1.28589 2.22723i
\(836\) 0 0
\(837\) 2501.98 1444.52i 0.103323 0.0596533i
\(838\) 0 0
\(839\) −12563.7 −0.516980 −0.258490 0.966014i \(-0.583225\pi\)
−0.258490 + 0.966014i \(0.583225\pi\)
\(840\) 0 0
\(841\) 24384.8 0.999826
\(842\) 0 0
\(843\) −6731.23 + 3886.28i −0.275013 + 0.158779i
\(844\) 0 0
\(845\) −15945.5 + 27618.3i −0.649160 + 1.12438i
\(846\) 0 0
\(847\) −34987.3 22221.5i −1.41934 0.901466i
\(848\) 0 0
\(849\) 3043.69 5271.82i 0.123038 0.213108i
\(850\) 0 0
\(851\) −24108.1 41756.4i −0.971109 1.68201i
\(852\) 0 0
\(853\) −19238.5 −0.772231 −0.386116 0.922450i \(-0.626183\pi\)
−0.386116 + 0.922450i \(0.626183\pi\)
\(854\) 0 0
\(855\) 178.687i 0.00714733i
\(856\) 0 0
\(857\) 6425.02 3709.48i 0.256096 0.147857i −0.366456 0.930435i \(-0.619429\pi\)
0.622552 + 0.782578i \(0.286096\pi\)
\(858\) 0 0
\(859\) −6056.93 3496.97i −0.240582 0.138900i 0.374862 0.927080i \(-0.377690\pi\)
−0.615444 + 0.788181i \(0.711023\pi\)
\(860\) 0 0
\(861\) 15609.0 8152.90i 0.617830 0.322706i
\(862\) 0 0
\(863\) 2819.97 + 1628.11i 0.111232 + 0.0642196i 0.554584 0.832128i \(-0.312878\pi\)
−0.443352 + 0.896348i \(0.646211\pi\)
\(864\) 0 0
\(865\) −16225.2 28102.8i −0.637772 1.10465i
\(866\) 0 0
\(867\) 11178.0i 0.437862i
\(868\) 0 0
\(869\) 71671.9i 2.79782i
\(870\) 0 0
\(871\) −197.764 342.537i −0.00769342 0.0133254i
\(872\) 0 0
\(873\) 8038.69 + 4641.14i 0.311648 + 0.179930i
\(874\) 0 0
\(875\) −418.902 + 9908.16i −0.0161846 + 0.382808i
\(876\) 0 0
\(877\) 18211.8 + 10514.6i 0.701218 + 0.404848i 0.807801 0.589455i \(-0.200658\pi\)
−0.106583 + 0.994304i \(0.533991\pi\)
\(878\) 0 0
\(879\) 24137.4 13935.8i 0.926206 0.534745i
\(880\) 0 0
\(881\) 12959.5i 0.495593i 0.968812 + 0.247796i \(0.0797064\pi\)
−0.968812 + 0.247796i \(0.920294\pi\)
\(882\) 0 0
\(883\) 31770.3 1.21082 0.605411 0.795913i \(-0.293009\pi\)
0.605411 + 0.795913i \(0.293009\pi\)
\(884\) 0 0
\(885\) −18001.0 31178.6i −0.683724 1.18424i
\(886\) 0 0
\(887\) 10095.1 17485.3i 0.382143 0.661891i −0.609225 0.792997i \(-0.708520\pi\)
0.991368 + 0.131106i \(0.0418528\pi\)
\(888\) 0 0
\(889\) 19976.6 + 844.581i 0.753648 + 0.0318632i
\(890\) 0 0
\(891\) 2419.50 4190.70i 0.0909724 0.157569i
\(892\) 0 0
\(893\) 410.069 236.754i 0.0153667 0.00887196i
\(894\) 0 0
\(895\) −41461.2 −1.54849
\(896\) 0 0
\(897\) 1945.68 0.0724239
\(898\) 0 0
\(899\) −190.824 + 110.172i −0.00707936 + 0.00408727i
\(900\) 0 0
\(901\) −5176.63 + 8966.18i −0.191408 + 0.331528i
\(902\) 0 0
\(903\) −4812.98 9214.58i −0.177371 0.339581i
\(904\) 0 0
\(905\) 4723.31 8181.02i 0.173490 0.300493i
\(906\) 0 0
\(907\) 11196.6 + 19393.1i 0.409897 + 0.709962i 0.994878 0.101085i \(-0.0322313\pi\)
−0.584981 + 0.811047i \(0.698898\pi\)
\(908\) 0 0
\(909\) 9445.10 0.344636
\(910\) 0 0
\(911\) 37754.2i 1.37306i −0.727104 0.686528i \(-0.759134\pi\)
0.727104 0.686528i \(-0.240866\pi\)
\(912\) 0 0
\(913\) 28131.8 16241.9i 1.01974 0.588750i
\(914\) 0 0
\(915\) −5111.97 2951.40i −0.184696 0.106634i
\(916\) 0 0
\(917\) 18347.2 28887.2i 0.660717 1.04028i
\(918\) 0 0
\(919\) 37420.7 + 21604.8i 1.34319 + 0.775493i 0.987275 0.159024i \(-0.0508348\pi\)
0.355918 + 0.934517i \(0.384168\pi\)
\(920\) 0 0
\(921\) −3321.02 5752.18i −0.118818 0.205799i
\(922\) 0 0
\(923\) 1663.83i 0.0593345i
\(924\) 0 0
\(925\) 24228.2i 0.861209i
\(926\) 0 0
\(927\) 2227.54 + 3858.22i 0.0789235 + 0.136700i
\(928\) 0 0
\(929\) 10561.3 + 6097.59i 0.372988 + 0.215345i 0.674763 0.738034i \(-0.264246\pi\)
−0.301775 + 0.953379i \(0.597579\pi\)
\(930\) 0 0
\(931\) 382.658 + 266.369i 0.0134706 + 0.00937690i
\(932\) 0 0
\(933\) 23007.4 + 13283.4i 0.807320 + 0.466107i
\(934\) 0 0
\(935\) −26035.2 + 15031.4i −0.910632 + 0.525754i
\(936\) 0 0
\(937\) 30925.8i 1.07823i −0.842232 0.539116i \(-0.818758\pi\)
0.842232 0.539116i \(-0.181242\pi\)
\(938\) 0 0
\(939\) −570.831 −0.0198385
\(940\) 0 0
\(941\) 10353.7 + 17933.2i 0.358684 + 0.621259i 0.987741 0.156100i \(-0.0498922\pi\)
−0.629057 + 0.777359i \(0.716559\pi\)
\(942\) 0 0
\(943\) 27860.2 48255.4i 0.962094 1.66640i
\(944\) 0 0
\(945\) −3915.80 + 6165.34i −0.134795 + 0.212231i
\(946\) 0 0
\(947\) −11086.5 + 19202.4i −0.380425 + 0.658916i −0.991123 0.132948i \(-0.957556\pi\)
0.610698 + 0.791864i \(0.290889\pi\)
\(948\) 0 0
\(949\) −1457.17 + 841.295i −0.0498437 + 0.0287772i
\(950\) 0 0
\(951\) 1309.91 0.0446653
\(952\) 0 0
\(953\) 44804.6 1.52294 0.761471 0.648199i \(-0.224477\pi\)
0.761471 + 0.648199i \(0.224477\pi\)
\(954\) 0 0
\(955\) −37471.5 + 21634.2i −1.26969 + 0.733053i
\(956\) 0 0
\(957\) −184.534 + 319.622i −0.00623316 + 0.0107962i
\(958\) 0 0
\(959\) −42536.7 + 22217.9i −1.43231 + 0.748125i
\(960\) 0 0
\(961\) 9170.86 15884.4i 0.307840 0.533195i
\(962\) 0 0
\(963\) 8778.60 + 15205.0i 0.293755 + 0.508799i
\(964\) 0 0
\(965\) 45507.3 1.51806
\(966\) 0 0
\(967\) 9889.71i 0.328885i −0.986387 0.164442i \(-0.947418\pi\)
0.986387 0.164442i \(-0.0525825\pi\)
\(968\) 0 0
\(969\) −121.672 + 70.2473i −0.00403371 + 0.00232886i
\(970\) 0 0
\(971\) −17583.8 10152.0i −0.581144 0.335524i 0.180444 0.983585i \(-0.442247\pi\)
−0.761588 + 0.648062i \(0.775580\pi\)
\(972\) 0 0
\(973\) −55888.0 2362.86i −1.84140 0.0778519i
\(974\) 0 0
\(975\) 846.701 + 488.843i 0.0278114 + 0.0160569i
\(976\) 0 0
\(977\) 6912.50 + 11972.8i 0.226357 + 0.392061i 0.956726 0.290992i \(-0.0939852\pi\)
−0.730369 + 0.683053i \(0.760652\pi\)
\(978\) 0 0
\(979\) 75084.6i 2.45119i
\(980\) 0 0
\(981\) 1183.87i 0.0385303i
\(982\) 0 0
\(983\) 3749.52 + 6494.36i 0.121659 + 0.210720i 0.920422 0.390926i \(-0.127845\pi\)
−0.798763 + 0.601646i \(0.794512\pi\)
\(984\) 0 0
\(985\) 2728.58 + 1575.35i 0.0882637 + 0.0509591i
\(986\) 0 0
\(987\) 19337.1 + 817.546i 0.623615 + 0.0263655i
\(988\) 0 0
\(989\) −28487.0 16447.0i −0.915910 0.528801i
\(990\) 0 0
\(991\) −9141.90 + 5278.08i −0.293039 + 0.169186i −0.639312 0.768948i \(-0.720781\pi\)
0.346272 + 0.938134i \(0.387447\pi\)
\(992\) 0 0
\(993\) 29564.2i 0.944806i
\(994\) 0 0
\(995\) 35296.8 1.12461
\(996\) 0 0
\(997\) −29838.4 51681.7i −0.947836 1.64170i −0.749971 0.661471i \(-0.769932\pi\)
−0.197866 0.980229i \(-0.563401\pi\)
\(998\) 0 0
\(999\) −3702.54 + 6412.99i −0.117260 + 0.203101i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.bb.a.271.20 96
4.3 odd 2 168.4.t.a.19.29 yes 96
7.3 odd 6 inner 672.4.bb.a.367.19 96
8.3 odd 2 inner 672.4.bb.a.271.19 96
8.5 even 2 168.4.t.a.19.3 96
28.3 even 6 168.4.t.a.115.3 yes 96
56.3 even 6 inner 672.4.bb.a.367.20 96
56.45 odd 6 168.4.t.a.115.29 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.t.a.19.3 96 8.5 even 2
168.4.t.a.19.29 yes 96 4.3 odd 2
168.4.t.a.115.3 yes 96 28.3 even 6
168.4.t.a.115.29 yes 96 56.45 odd 6
672.4.bb.a.271.19 96 8.3 odd 2 inner
672.4.bb.a.271.20 96 1.1 even 1 trivial
672.4.bb.a.367.19 96 7.3 odd 6 inner
672.4.bb.a.367.20 96 56.3 even 6 inner