Properties

Label 672.4.b.a.223.19
Level $672$
Weight $4$
Character 672.223
Analytic conductor $39.649$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(223,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.223"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 223.19
Character \(\chi\) \(=\) 672.223
Dual form 672.4.b.a.223.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +12.7173i q^{5} +(-2.54263 - 18.3449i) q^{7} +9.00000 q^{9} -2.42308i q^{11} +26.6669i q^{13} -38.1518i q^{15} -10.6363i q^{17} +30.0792 q^{19} +(7.62790 + 55.0347i) q^{21} -120.218i q^{23} -36.7290 q^{25} -27.0000 q^{27} +43.1872 q^{29} +6.30036 q^{31} +7.26925i q^{33} +(233.297 - 32.3354i) q^{35} -61.6192 q^{37} -80.0008i q^{39} -75.9491i q^{41} +212.731i q^{43} +114.455i q^{45} +330.294 q^{47} +(-330.070 + 93.2887i) q^{49} +31.9089i q^{51} -4.87616 q^{53} +30.8150 q^{55} -90.2376 q^{57} +481.332 q^{59} +236.177i q^{61} +(-22.8837 - 165.104i) q^{63} -339.130 q^{65} +661.939i q^{67} +360.653i q^{69} +547.254i q^{71} +968.026i q^{73} +110.187 q^{75} +(-44.4512 + 6.16102i) q^{77} -64.6485i q^{79} +81.0000 q^{81} +665.281 q^{83} +135.265 q^{85} -129.561 q^{87} +384.181i q^{89} +(489.202 - 67.8042i) q^{91} -18.9011 q^{93} +382.525i q^{95} +1226.09i q^{97} -21.8078i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 72 q^{3} - 20 q^{7} + 216 q^{9} + 56 q^{19} + 60 q^{21} - 432 q^{25} - 648 q^{27} + 464 q^{31} - 568 q^{35} + 504 q^{37} + 560 q^{47} - 128 q^{49} - 784 q^{53} + 424 q^{55} - 168 q^{57} - 800 q^{59}+ \cdots - 1392 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 12.7173i 1.13747i 0.822522 + 0.568734i \(0.192566\pi\)
−0.822522 + 0.568734i \(0.807434\pi\)
\(6\) 0 0
\(7\) −2.54263 18.3449i −0.137289 0.990531i
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 2.42308i 0.0664171i −0.999448 0.0332085i \(-0.989427\pi\)
0.999448 0.0332085i \(-0.0105725\pi\)
\(12\) 0 0
\(13\) 26.6669i 0.568929i 0.958687 + 0.284464i \(0.0918157\pi\)
−0.958687 + 0.284464i \(0.908184\pi\)
\(14\) 0 0
\(15\) 38.1518i 0.656717i
\(16\) 0 0
\(17\) 10.6363i 0.151746i −0.997117 0.0758731i \(-0.975826\pi\)
0.997117 0.0758731i \(-0.0241744\pi\)
\(18\) 0 0
\(19\) 30.0792 0.363192 0.181596 0.983373i \(-0.441874\pi\)
0.181596 + 0.983373i \(0.441874\pi\)
\(20\) 0 0
\(21\) 7.62790 + 55.0347i 0.0792640 + 0.571883i
\(22\) 0 0
\(23\) 120.218i 1.08987i −0.838477 0.544937i \(-0.816554\pi\)
0.838477 0.544937i \(-0.183446\pi\)
\(24\) 0 0
\(25\) −36.7290 −0.293832
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 43.1872 0.276540 0.138270 0.990395i \(-0.455846\pi\)
0.138270 + 0.990395i \(0.455846\pi\)
\(30\) 0 0
\(31\) 6.30036 0.0365025 0.0182513 0.999833i \(-0.494190\pi\)
0.0182513 + 0.999833i \(0.494190\pi\)
\(32\) 0 0
\(33\) 7.26925i 0.0383459i
\(34\) 0 0
\(35\) 233.297 32.3354i 1.12670 0.156162i
\(36\) 0 0
\(37\) −61.6192 −0.273788 −0.136894 0.990586i \(-0.543712\pi\)
−0.136894 + 0.990586i \(0.543712\pi\)
\(38\) 0 0
\(39\) 80.0008i 0.328471i
\(40\) 0 0
\(41\) 75.9491i 0.289299i −0.989483 0.144650i \(-0.953795\pi\)
0.989483 0.144650i \(-0.0462055\pi\)
\(42\) 0 0
\(43\) 212.731i 0.754446i 0.926122 + 0.377223i \(0.123121\pi\)
−0.926122 + 0.377223i \(0.876879\pi\)
\(44\) 0 0
\(45\) 114.455i 0.379156i
\(46\) 0 0
\(47\) 330.294 1.02507 0.512536 0.858666i \(-0.328706\pi\)
0.512536 + 0.858666i \(0.328706\pi\)
\(48\) 0 0
\(49\) −330.070 + 93.2887i −0.962303 + 0.271979i
\(50\) 0 0
\(51\) 31.9089i 0.0876107i
\(52\) 0 0
\(53\) −4.87616 −0.0126376 −0.00631879 0.999980i \(-0.502011\pi\)
−0.00631879 + 0.999980i \(0.502011\pi\)
\(54\) 0 0
\(55\) 30.8150 0.0755472
\(56\) 0 0
\(57\) −90.2376 −0.209689
\(58\) 0 0
\(59\) 481.332 1.06210 0.531052 0.847339i \(-0.321797\pi\)
0.531052 + 0.847339i \(0.321797\pi\)
\(60\) 0 0
\(61\) 236.177i 0.495728i 0.968795 + 0.247864i \(0.0797287\pi\)
−0.968795 + 0.247864i \(0.920271\pi\)
\(62\) 0 0
\(63\) −22.8837 165.104i −0.0457631 0.330177i
\(64\) 0 0
\(65\) −339.130 −0.647138
\(66\) 0 0
\(67\) 661.939i 1.20700i 0.797365 + 0.603498i \(0.206227\pi\)
−0.797365 + 0.603498i \(0.793773\pi\)
\(68\) 0 0
\(69\) 360.653i 0.629239i
\(70\) 0 0
\(71\) 547.254i 0.914748i 0.889274 + 0.457374i \(0.151210\pi\)
−0.889274 + 0.457374i \(0.848790\pi\)
\(72\) 0 0
\(73\) 968.026i 1.55204i 0.630709 + 0.776020i \(0.282764\pi\)
−0.630709 + 0.776020i \(0.717236\pi\)
\(74\) 0 0
\(75\) 110.187 0.169644
\(76\) 0 0
\(77\) −44.4512 + 6.16102i −0.0657881 + 0.00911835i
\(78\) 0 0
\(79\) 64.6485i 0.0920700i −0.998940 0.0460350i \(-0.985341\pi\)
0.998940 0.0460350i \(-0.0146586\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 665.281 0.879808 0.439904 0.898045i \(-0.355012\pi\)
0.439904 + 0.898045i \(0.355012\pi\)
\(84\) 0 0
\(85\) 135.265 0.172606
\(86\) 0 0
\(87\) −129.561 −0.159660
\(88\) 0 0
\(89\) 384.181i 0.457563i 0.973478 + 0.228781i \(0.0734741\pi\)
−0.973478 + 0.228781i \(0.926526\pi\)
\(90\) 0 0
\(91\) 489.202 67.8042i 0.563541 0.0781078i
\(92\) 0 0
\(93\) −18.9011 −0.0210747
\(94\) 0 0
\(95\) 382.525i 0.413119i
\(96\) 0 0
\(97\) 1226.09i 1.28341i 0.766952 + 0.641705i \(0.221773\pi\)
−0.766952 + 0.641705i \(0.778227\pi\)
\(98\) 0 0
\(99\) 21.8078i 0.0221390i
\(100\) 0 0
\(101\) 647.043i 0.637458i 0.947846 + 0.318729i \(0.103256\pi\)
−0.947846 + 0.318729i \(0.896744\pi\)
\(102\) 0 0
\(103\) −344.493 −0.329553 −0.164776 0.986331i \(-0.552690\pi\)
−0.164776 + 0.986331i \(0.552690\pi\)
\(104\) 0 0
\(105\) −699.891 + 97.0061i −0.650499 + 0.0901603i
\(106\) 0 0
\(107\) 1332.50i 1.20390i −0.798532 0.601952i \(-0.794390\pi\)
0.798532 0.601952i \(-0.205610\pi\)
\(108\) 0 0
\(109\) 2230.40 1.95994 0.979971 0.199141i \(-0.0638152\pi\)
0.979971 + 0.199141i \(0.0638152\pi\)
\(110\) 0 0
\(111\) 184.858 0.158071
\(112\) 0 0
\(113\) 247.508 0.206049 0.103025 0.994679i \(-0.467148\pi\)
0.103025 + 0.994679i \(0.467148\pi\)
\(114\) 0 0
\(115\) 1528.84 1.23970
\(116\) 0 0
\(117\) 240.002i 0.189643i
\(118\) 0 0
\(119\) −195.122 + 27.0443i −0.150309 + 0.0208331i
\(120\) 0 0
\(121\) 1325.13 0.995589
\(122\) 0 0
\(123\) 227.847i 0.167027i
\(124\) 0 0
\(125\) 1122.57i 0.803243i
\(126\) 0 0
\(127\) 423.075i 0.295605i 0.989017 + 0.147802i \(0.0472200\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(128\) 0 0
\(129\) 638.193i 0.435580i
\(130\) 0 0
\(131\) 2231.23 1.48812 0.744058 0.668115i \(-0.232898\pi\)
0.744058 + 0.668115i \(0.232898\pi\)
\(132\) 0 0
\(133\) −76.4804 551.800i −0.0498623 0.359753i
\(134\) 0 0
\(135\) 343.366i 0.218906i
\(136\) 0 0
\(137\) 1269.91 0.791939 0.395970 0.918264i \(-0.370409\pi\)
0.395970 + 0.918264i \(0.370409\pi\)
\(138\) 0 0
\(139\) 1993.14 1.21623 0.608114 0.793850i \(-0.291926\pi\)
0.608114 + 0.793850i \(0.291926\pi\)
\(140\) 0 0
\(141\) −990.883 −0.591826
\(142\) 0 0
\(143\) 64.6162 0.0377866
\(144\) 0 0
\(145\) 549.223i 0.314555i
\(146\) 0 0
\(147\) 990.210 279.866i 0.555586 0.157027i
\(148\) 0 0
\(149\) −2054.75 −1.12974 −0.564871 0.825179i \(-0.691074\pi\)
−0.564871 + 0.825179i \(0.691074\pi\)
\(150\) 0 0
\(151\) 1622.32i 0.874323i 0.899383 + 0.437161i \(0.144016\pi\)
−0.899383 + 0.437161i \(0.855984\pi\)
\(152\) 0 0
\(153\) 95.7268i 0.0505821i
\(154\) 0 0
\(155\) 80.1234i 0.0415204i
\(156\) 0 0
\(157\) 694.512i 0.353045i −0.984297 0.176523i \(-0.943515\pi\)
0.984297 0.176523i \(-0.0564849\pi\)
\(158\) 0 0
\(159\) 14.6285 0.00729631
\(160\) 0 0
\(161\) −2205.38 + 305.669i −1.07955 + 0.149628i
\(162\) 0 0
\(163\) 506.509i 0.243392i −0.992567 0.121696i \(-0.961167\pi\)
0.992567 0.121696i \(-0.0388332\pi\)
\(164\) 0 0
\(165\) −92.4451 −0.0436172
\(166\) 0 0
\(167\) −3689.21 −1.70946 −0.854730 0.519074i \(-0.826277\pi\)
−0.854730 + 0.519074i \(0.826277\pi\)
\(168\) 0 0
\(169\) 1485.88 0.676320
\(170\) 0 0
\(171\) 270.713 0.121064
\(172\) 0 0
\(173\) 2559.84i 1.12498i 0.826806 + 0.562488i \(0.190156\pi\)
−0.826806 + 0.562488i \(0.809844\pi\)
\(174\) 0 0
\(175\) 93.3883 + 673.789i 0.0403400 + 0.291049i
\(176\) 0 0
\(177\) −1444.00 −0.613206
\(178\) 0 0
\(179\) 1429.61i 0.596949i 0.954418 + 0.298475i \(0.0964778\pi\)
−0.954418 + 0.298475i \(0.903522\pi\)
\(180\) 0 0
\(181\) 981.980i 0.403260i 0.979462 + 0.201630i \(0.0646238\pi\)
−0.979462 + 0.201630i \(0.935376\pi\)
\(182\) 0 0
\(183\) 708.532i 0.286209i
\(184\) 0 0
\(185\) 783.628i 0.311424i
\(186\) 0 0
\(187\) −25.7727 −0.0100785
\(188\) 0 0
\(189\) 68.6511 + 495.312i 0.0264213 + 0.190628i
\(190\) 0 0
\(191\) 3321.25i 1.25820i −0.777323 0.629102i \(-0.783423\pi\)
0.777323 0.629102i \(-0.216577\pi\)
\(192\) 0 0
\(193\) −173.898 −0.0648573 −0.0324286 0.999474i \(-0.510324\pi\)
−0.0324286 + 0.999474i \(0.510324\pi\)
\(194\) 0 0
\(195\) 1017.39 0.373625
\(196\) 0 0
\(197\) −5383.96 −1.94716 −0.973581 0.228340i \(-0.926670\pi\)
−0.973581 + 0.228340i \(0.926670\pi\)
\(198\) 0 0
\(199\) −1695.29 −0.603899 −0.301949 0.953324i \(-0.597637\pi\)
−0.301949 + 0.953324i \(0.597637\pi\)
\(200\) 0 0
\(201\) 1985.82i 0.696859i
\(202\) 0 0
\(203\) −109.809 792.264i −0.0379660 0.273921i
\(204\) 0 0
\(205\) 965.866 0.329068
\(206\) 0 0
\(207\) 1081.96i 0.363291i
\(208\) 0 0
\(209\) 72.8844i 0.0241221i
\(210\) 0 0
\(211\) 4735.60i 1.54508i 0.634965 + 0.772541i \(0.281014\pi\)
−0.634965 + 0.772541i \(0.718986\pi\)
\(212\) 0 0
\(213\) 1641.76i 0.528130i
\(214\) 0 0
\(215\) −2705.36 −0.858158
\(216\) 0 0
\(217\) −16.0195 115.579i −0.00501141 0.0361569i
\(218\) 0 0
\(219\) 2904.08i 0.896070i
\(220\) 0 0
\(221\) 283.638 0.0863328
\(222\) 0 0
\(223\) −3440.90 −1.03327 −0.516636 0.856205i \(-0.672816\pi\)
−0.516636 + 0.856205i \(0.672816\pi\)
\(224\) 0 0
\(225\) −330.561 −0.0979439
\(226\) 0 0
\(227\) 949.355 0.277581 0.138791 0.990322i \(-0.455679\pi\)
0.138791 + 0.990322i \(0.455679\pi\)
\(228\) 0 0
\(229\) 2303.60i 0.664742i −0.943149 0.332371i \(-0.892151\pi\)
0.943149 0.332371i \(-0.107849\pi\)
\(230\) 0 0
\(231\) 133.354 18.4831i 0.0379828 0.00526448i
\(232\) 0 0
\(233\) 3268.21 0.918918 0.459459 0.888199i \(-0.348043\pi\)
0.459459 + 0.888199i \(0.348043\pi\)
\(234\) 0 0
\(235\) 4200.44i 1.16599i
\(236\) 0 0
\(237\) 193.946i 0.0531566i
\(238\) 0 0
\(239\) 3116.13i 0.843370i −0.906742 0.421685i \(-0.861439\pi\)
0.906742 0.421685i \(-0.138561\pi\)
\(240\) 0 0
\(241\) 2290.95i 0.612337i −0.951977 0.306169i \(-0.900953\pi\)
0.951977 0.306169i \(-0.0990471\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −1186.38 4197.59i −0.309367 1.09459i
\(246\) 0 0
\(247\) 802.119i 0.206630i
\(248\) 0 0
\(249\) −1995.84 −0.507958
\(250\) 0 0
\(251\) −2307.47 −0.580264 −0.290132 0.956987i \(-0.593699\pi\)
−0.290132 + 0.956987i \(0.593699\pi\)
\(252\) 0 0
\(253\) −291.297 −0.0723862
\(254\) 0 0
\(255\) −405.795 −0.0996543
\(256\) 0 0
\(257\) 2832.31i 0.687449i 0.939071 + 0.343725i \(0.111689\pi\)
−0.939071 + 0.343725i \(0.888311\pi\)
\(258\) 0 0
\(259\) 156.675 + 1130.40i 0.0375881 + 0.271195i
\(260\) 0 0
\(261\) 388.684 0.0921799
\(262\) 0 0
\(263\) 6588.14i 1.54465i −0.635230 0.772323i \(-0.719095\pi\)
0.635230 0.772323i \(-0.280905\pi\)
\(264\) 0 0
\(265\) 62.0114i 0.0143748i
\(266\) 0 0
\(267\) 1152.54i 0.264174i
\(268\) 0 0
\(269\) 3744.39i 0.848698i −0.905499 0.424349i \(-0.860503\pi\)
0.905499 0.424349i \(-0.139497\pi\)
\(270\) 0 0
\(271\) −7505.17 −1.68231 −0.841156 0.540792i \(-0.818125\pi\)
−0.841156 + 0.540792i \(0.818125\pi\)
\(272\) 0 0
\(273\) −1467.61 + 203.413i −0.325361 + 0.0450956i
\(274\) 0 0
\(275\) 88.9974i 0.0195154i
\(276\) 0 0
\(277\) 7500.64 1.62697 0.813483 0.581589i \(-0.197569\pi\)
0.813483 + 0.581589i \(0.197569\pi\)
\(278\) 0 0
\(279\) 56.7033 0.0121675
\(280\) 0 0
\(281\) 5803.98 1.23216 0.616079 0.787684i \(-0.288720\pi\)
0.616079 + 0.787684i \(0.288720\pi\)
\(282\) 0 0
\(283\) 5915.55 1.24255 0.621277 0.783591i \(-0.286614\pi\)
0.621277 + 0.783591i \(0.286614\pi\)
\(284\) 0 0
\(285\) 1147.58i 0.238514i
\(286\) 0 0
\(287\) −1393.28 + 193.111i −0.286560 + 0.0397177i
\(288\) 0 0
\(289\) 4799.87 0.976973
\(290\) 0 0
\(291\) 3678.28i 0.740977i
\(292\) 0 0
\(293\) 6960.27i 1.38779i −0.720075 0.693896i \(-0.755893\pi\)
0.720075 0.693896i \(-0.244107\pi\)
\(294\) 0 0
\(295\) 6121.23i 1.20811i
\(296\) 0 0
\(297\) 65.4233i 0.0127820i
\(298\) 0 0
\(299\) 3205.83 0.620061
\(300\) 0 0
\(301\) 3902.53 540.898i 0.747303 0.103577i
\(302\) 0 0
\(303\) 1941.13i 0.368036i
\(304\) 0 0
\(305\) −3003.53 −0.563875
\(306\) 0 0
\(307\) −8249.52 −1.53363 −0.766816 0.641868i \(-0.778160\pi\)
−0.766816 + 0.641868i \(0.778160\pi\)
\(308\) 0 0
\(309\) 1033.48 0.190267
\(310\) 0 0
\(311\) 2780.95 0.507052 0.253526 0.967329i \(-0.418410\pi\)
0.253526 + 0.967329i \(0.418410\pi\)
\(312\) 0 0
\(313\) 8209.60i 1.48254i −0.671209 0.741268i \(-0.734225\pi\)
0.671209 0.741268i \(-0.265775\pi\)
\(314\) 0 0
\(315\) 2099.67 291.018i 0.375566 0.0520540i
\(316\) 0 0
\(317\) 1813.06 0.321235 0.160617 0.987017i \(-0.448652\pi\)
0.160617 + 0.987017i \(0.448652\pi\)
\(318\) 0 0
\(319\) 104.646i 0.0183670i
\(320\) 0 0
\(321\) 3997.50i 0.695074i
\(322\) 0 0
\(323\) 319.932i 0.0551129i
\(324\) 0 0
\(325\) 979.448i 0.167169i
\(326\) 0 0
\(327\) −6691.20 −1.13157
\(328\) 0 0
\(329\) −839.818 6059.21i −0.140731 1.01537i
\(330\) 0 0
\(331\) 81.4819i 0.0135307i −0.999977 0.00676534i \(-0.997847\pi\)
0.999977 0.00676534i \(-0.00215349\pi\)
\(332\) 0 0
\(333\) −554.573 −0.0912625
\(334\) 0 0
\(335\) −8418.06 −1.37292
\(336\) 0 0
\(337\) 5750.09 0.929459 0.464729 0.885453i \(-0.346152\pi\)
0.464729 + 0.885453i \(0.346152\pi\)
\(338\) 0 0
\(339\) −742.524 −0.118963
\(340\) 0 0
\(341\) 15.2663i 0.00242439i
\(342\) 0 0
\(343\) 2550.62 + 5817.90i 0.401517 + 0.915851i
\(344\) 0 0
\(345\) −4586.52 −0.715739
\(346\) 0 0
\(347\) 2013.58i 0.311512i −0.987796 0.155756i \(-0.950219\pi\)
0.987796 0.155756i \(-0.0497814\pi\)
\(348\) 0 0
\(349\) 7540.08i 1.15648i 0.815867 + 0.578239i \(0.196260\pi\)
−0.815867 + 0.578239i \(0.803740\pi\)
\(350\) 0 0
\(351\) 720.007i 0.109490i
\(352\) 0 0
\(353\) 3936.08i 0.593474i −0.954959 0.296737i \(-0.904102\pi\)
0.954959 0.296737i \(-0.0958985\pi\)
\(354\) 0 0
\(355\) −6959.58 −1.04050
\(356\) 0 0
\(357\) 585.366 81.1328i 0.0867811 0.0120280i
\(358\) 0 0
\(359\) 7300.80i 1.07332i 0.843799 + 0.536659i \(0.180314\pi\)
−0.843799 + 0.536659i \(0.819686\pi\)
\(360\) 0 0
\(361\) −5954.24 −0.868092
\(362\) 0 0
\(363\) −3975.39 −0.574803
\(364\) 0 0
\(365\) −12310.6 −1.76539
\(366\) 0 0
\(367\) −9457.31 −1.34514 −0.672572 0.740032i \(-0.734810\pi\)
−0.672572 + 0.740032i \(0.734810\pi\)
\(368\) 0 0
\(369\) 683.542i 0.0964330i
\(370\) 0 0
\(371\) 12.3983 + 89.4526i 0.00173500 + 0.0125179i
\(372\) 0 0
\(373\) 12084.4 1.67750 0.838750 0.544516i \(-0.183287\pi\)
0.838750 + 0.544516i \(0.183287\pi\)
\(374\) 0 0
\(375\) 3367.70i 0.463753i
\(376\) 0 0
\(377\) 1151.67i 0.157331i
\(378\) 0 0
\(379\) 642.992i 0.0871458i 0.999050 + 0.0435729i \(0.0138741\pi\)
−0.999050 + 0.0435729i \(0.986126\pi\)
\(380\) 0 0
\(381\) 1269.22i 0.170667i
\(382\) 0 0
\(383\) 6360.56 0.848589 0.424294 0.905524i \(-0.360522\pi\)
0.424294 + 0.905524i \(0.360522\pi\)
\(384\) 0 0
\(385\) −78.3513 565.298i −0.0103718 0.0748319i
\(386\) 0 0
\(387\) 1914.58i 0.251482i
\(388\) 0 0
\(389\) −5469.46 −0.712886 −0.356443 0.934317i \(-0.616011\pi\)
−0.356443 + 0.934317i \(0.616011\pi\)
\(390\) 0 0
\(391\) −1278.67 −0.165384
\(392\) 0 0
\(393\) −6693.68 −0.859165
\(394\) 0 0
\(395\) 822.153 0.104727
\(396\) 0 0
\(397\) 10426.0i 1.31806i 0.752118 + 0.659028i \(0.229032\pi\)
−0.752118 + 0.659028i \(0.770968\pi\)
\(398\) 0 0
\(399\) 229.441 + 1655.40i 0.0287880 + 0.207703i
\(400\) 0 0
\(401\) 2207.60 0.274919 0.137459 0.990507i \(-0.456106\pi\)
0.137459 + 0.990507i \(0.456106\pi\)
\(402\) 0 0
\(403\) 168.011i 0.0207673i
\(404\) 0 0
\(405\) 1030.10i 0.126385i
\(406\) 0 0
\(407\) 149.309i 0.0181842i
\(408\) 0 0
\(409\) 14152.7i 1.71102i −0.517790 0.855508i \(-0.673245\pi\)
0.517790 0.855508i \(-0.326755\pi\)
\(410\) 0 0
\(411\) −3809.73 −0.457226
\(412\) 0 0
\(413\) −1223.85 8829.98i −0.145815 1.05205i
\(414\) 0 0
\(415\) 8460.56i 1.00075i
\(416\) 0 0
\(417\) −5979.41 −0.702190
\(418\) 0 0
\(419\) −7423.51 −0.865542 −0.432771 0.901504i \(-0.642464\pi\)
−0.432771 + 0.901504i \(0.642464\pi\)
\(420\) 0 0
\(421\) 2998.76 0.347151 0.173575 0.984821i \(-0.444468\pi\)
0.173575 + 0.984821i \(0.444468\pi\)
\(422\) 0 0
\(423\) 2972.65 0.341691
\(424\) 0 0
\(425\) 390.661i 0.0445879i
\(426\) 0 0
\(427\) 4332.65 600.513i 0.491034 0.0680582i
\(428\) 0 0
\(429\) −193.849 −0.0218161
\(430\) 0 0
\(431\) 4484.82i 0.501221i −0.968088 0.250610i \(-0.919369\pi\)
0.968088 0.250610i \(-0.0806313\pi\)
\(432\) 0 0
\(433\) 15808.8i 1.75456i 0.479979 + 0.877280i \(0.340644\pi\)
−0.479979 + 0.877280i \(0.659356\pi\)
\(434\) 0 0
\(435\) 1647.67i 0.181608i
\(436\) 0 0
\(437\) 3616.05i 0.395833i
\(438\) 0 0
\(439\) 10718.1 1.16525 0.582626 0.812740i \(-0.302025\pi\)
0.582626 + 0.812740i \(0.302025\pi\)
\(440\) 0 0
\(441\) −2970.63 + 839.598i −0.320768 + 0.0906596i
\(442\) 0 0
\(443\) 9253.69i 0.992452i −0.868193 0.496226i \(-0.834719\pi\)
0.868193 0.496226i \(-0.165281\pi\)
\(444\) 0 0
\(445\) −4885.73 −0.520462
\(446\) 0 0
\(447\) 6164.25 0.652257
\(448\) 0 0
\(449\) 3008.54 0.316218 0.158109 0.987422i \(-0.449460\pi\)
0.158109 + 0.987422i \(0.449460\pi\)
\(450\) 0 0
\(451\) −184.031 −0.0192144
\(452\) 0 0
\(453\) 4866.97i 0.504791i
\(454\) 0 0
\(455\) 862.285 + 6221.31i 0.0888451 + 0.641010i
\(456\) 0 0
\(457\) 1784.99 0.182710 0.0913548 0.995818i \(-0.470880\pi\)
0.0913548 + 0.995818i \(0.470880\pi\)
\(458\) 0 0
\(459\) 287.181i 0.0292036i
\(460\) 0 0
\(461\) 6144.65i 0.620791i 0.950607 + 0.310396i \(0.100462\pi\)
−0.950607 + 0.310396i \(0.899538\pi\)
\(462\) 0 0
\(463\) 6052.20i 0.607494i −0.952753 0.303747i \(-0.901762\pi\)
0.952753 0.303747i \(-0.0982378\pi\)
\(464\) 0 0
\(465\) 240.370i 0.0239718i
\(466\) 0 0
\(467\) 6026.63 0.597172 0.298586 0.954383i \(-0.403485\pi\)
0.298586 + 0.954383i \(0.403485\pi\)
\(468\) 0 0
\(469\) 12143.2 1683.07i 1.19557 0.165708i
\(470\) 0 0
\(471\) 2083.54i 0.203831i
\(472\) 0 0
\(473\) 515.466 0.0501081
\(474\) 0 0
\(475\) −1104.78 −0.106717
\(476\) 0 0
\(477\) −43.8854 −0.00421253
\(478\) 0 0
\(479\) 18418.6 1.75693 0.878465 0.477807i \(-0.158568\pi\)
0.878465 + 0.477807i \(0.158568\pi\)
\(480\) 0 0
\(481\) 1643.20i 0.155766i
\(482\) 0 0
\(483\) 6616.14 917.008i 0.623281 0.0863878i
\(484\) 0 0
\(485\) −15592.5 −1.45984
\(486\) 0 0
\(487\) 9759.61i 0.908111i −0.890973 0.454055i \(-0.849977\pi\)
0.890973 0.454055i \(-0.150023\pi\)
\(488\) 0 0
\(489\) 1519.53i 0.140522i
\(490\) 0 0
\(491\) 6108.89i 0.561487i −0.959783 0.280744i \(-0.909419\pi\)
0.959783 0.280744i \(-0.0905811\pi\)
\(492\) 0 0
\(493\) 459.352i 0.0419639i
\(494\) 0 0
\(495\) 277.335 0.0251824
\(496\) 0 0
\(497\) 10039.3 1391.47i 0.906086 0.125585i
\(498\) 0 0
\(499\) 3588.93i 0.321969i 0.986957 + 0.160985i \(0.0514669\pi\)
−0.986957 + 0.160985i \(0.948533\pi\)
\(500\) 0 0
\(501\) 11067.6 0.986957
\(502\) 0 0
\(503\) −6279.88 −0.556672 −0.278336 0.960484i \(-0.589783\pi\)
−0.278336 + 0.960484i \(0.589783\pi\)
\(504\) 0 0
\(505\) −8228.62 −0.725087
\(506\) 0 0
\(507\) −4457.63 −0.390474
\(508\) 0 0
\(509\) 19976.3i 1.73956i 0.493441 + 0.869779i \(0.335739\pi\)
−0.493441 + 0.869779i \(0.664261\pi\)
\(510\) 0 0
\(511\) 17758.3 2461.34i 1.53734 0.213078i
\(512\) 0 0
\(513\) −812.138 −0.0698963
\(514\) 0 0
\(515\) 4381.02i 0.374856i
\(516\) 0 0
\(517\) 800.331i 0.0680823i
\(518\) 0 0
\(519\) 7679.51i 0.649505i
\(520\) 0 0
\(521\) 888.540i 0.0747172i 0.999302 + 0.0373586i \(0.0118944\pi\)
−0.999302 + 0.0373586i \(0.988106\pi\)
\(522\) 0 0
\(523\) −13103.6 −1.09556 −0.547781 0.836622i \(-0.684527\pi\)
−0.547781 + 0.836622i \(0.684527\pi\)
\(524\) 0 0
\(525\) −280.165 2021.37i −0.0232903 0.168037i
\(526\) 0 0
\(527\) 67.0126i 0.00553912i
\(528\) 0 0
\(529\) −2285.28 −0.187826
\(530\) 0 0
\(531\) 4331.99 0.354034
\(532\) 0 0
\(533\) 2025.33 0.164591
\(534\) 0 0
\(535\) 16945.8 1.36940
\(536\) 0 0
\(537\) 4288.82i 0.344649i
\(538\) 0 0
\(539\) 226.046 + 799.788i 0.0180640 + 0.0639133i
\(540\) 0 0
\(541\) 7441.18 0.591352 0.295676 0.955288i \(-0.404455\pi\)
0.295676 + 0.955288i \(0.404455\pi\)
\(542\) 0 0
\(543\) 2945.94i 0.232822i
\(544\) 0 0
\(545\) 28364.6i 2.22937i
\(546\) 0 0
\(547\) 1330.37i 0.103990i −0.998647 0.0519949i \(-0.983442\pi\)
0.998647 0.0519949i \(-0.0165580\pi\)
\(548\) 0 0
\(549\) 2125.60i 0.165243i
\(550\) 0 0
\(551\) 1299.03 0.100437
\(552\) 0 0
\(553\) −1185.97 + 164.378i −0.0911981 + 0.0126402i
\(554\) 0 0
\(555\) 2350.89i 0.179801i
\(556\) 0 0
\(557\) −12680.7 −0.964630 −0.482315 0.875998i \(-0.660204\pi\)
−0.482315 + 0.875998i \(0.660204\pi\)
\(558\) 0 0
\(559\) −5672.88 −0.429226
\(560\) 0 0
\(561\) 77.3181 0.00581885
\(562\) 0 0
\(563\) −1318.32 −0.0986864 −0.0493432 0.998782i \(-0.515713\pi\)
−0.0493432 + 0.998782i \(0.515713\pi\)
\(564\) 0 0
\(565\) 3147.63i 0.234375i
\(566\) 0 0
\(567\) −205.953 1485.94i −0.0152544 0.110059i
\(568\) 0 0
\(569\) 10877.6 0.801430 0.400715 0.916203i \(-0.368762\pi\)
0.400715 + 0.916203i \(0.368762\pi\)
\(570\) 0 0
\(571\) 22316.3i 1.63557i 0.575525 + 0.817784i \(0.304798\pi\)
−0.575525 + 0.817784i \(0.695202\pi\)
\(572\) 0 0
\(573\) 9963.74i 0.726424i
\(574\) 0 0
\(575\) 4415.47i 0.320240i
\(576\) 0 0
\(577\) 8864.03i 0.639540i 0.947495 + 0.319770i \(0.103606\pi\)
−0.947495 + 0.319770i \(0.896394\pi\)
\(578\) 0 0
\(579\) 521.694 0.0374454
\(580\) 0 0
\(581\) −1691.57 12204.5i −0.120788 0.871477i
\(582\) 0 0
\(583\) 11.8153i 0.000839351i
\(584\) 0 0
\(585\) −3052.17 −0.215713
\(586\) 0 0
\(587\) −22108.0 −1.55450 −0.777251 0.629190i \(-0.783387\pi\)
−0.777251 + 0.629190i \(0.783387\pi\)
\(588\) 0 0
\(589\) 189.510 0.0132574
\(590\) 0 0
\(591\) 16151.9 1.12420
\(592\) 0 0
\(593\) 15594.6i 1.07992i 0.841690 + 0.539961i \(0.181561\pi\)
−0.841690 + 0.539961i \(0.818439\pi\)
\(594\) 0 0
\(595\) −343.929 2481.42i −0.0236970 0.170972i
\(596\) 0 0
\(597\) 5085.87 0.348661
\(598\) 0 0
\(599\) 9127.45i 0.622600i −0.950312 0.311300i \(-0.899236\pi\)
0.950312 0.311300i \(-0.100764\pi\)
\(600\) 0 0
\(601\) 16498.5i 1.11978i 0.828567 + 0.559889i \(0.189156\pi\)
−0.828567 + 0.559889i \(0.810844\pi\)
\(602\) 0 0
\(603\) 5957.45i 0.402332i
\(604\) 0 0
\(605\) 16852.0i 1.13245i
\(606\) 0 0
\(607\) 16019.7 1.07120 0.535601 0.844471i \(-0.320085\pi\)
0.535601 + 0.844471i \(0.320085\pi\)
\(608\) 0 0
\(609\) 329.427 + 2376.79i 0.0219197 + 0.158148i
\(610\) 0 0
\(611\) 8807.93i 0.583193i
\(612\) 0 0
\(613\) −16964.5 −1.11776 −0.558882 0.829247i \(-0.688769\pi\)
−0.558882 + 0.829247i \(0.688769\pi\)
\(614\) 0 0
\(615\) −2897.60 −0.189988
\(616\) 0 0
\(617\) 9609.72 0.627023 0.313511 0.949584i \(-0.398495\pi\)
0.313511 + 0.949584i \(0.398495\pi\)
\(618\) 0 0
\(619\) 20764.8 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(620\) 0 0
\(621\) 3245.88i 0.209746i
\(622\) 0 0
\(623\) 7047.75 976.831i 0.453230 0.0628185i
\(624\) 0 0
\(625\) −18867.1 −1.20749
\(626\) 0 0
\(627\) 218.653i 0.0139269i
\(628\) 0 0
\(629\) 655.402i 0.0415462i
\(630\) 0 0
\(631\) 2283.73i 0.144079i −0.997402 0.0720396i \(-0.977049\pi\)
0.997402 0.0720396i \(-0.0229508\pi\)
\(632\) 0 0
\(633\) 14206.8i 0.892053i
\(634\) 0 0
\(635\) −5380.35 −0.336241
\(636\) 0 0
\(637\) −2487.72 8801.95i −0.154736 0.547482i
\(638\) 0 0
\(639\) 4925.29i 0.304916i
\(640\) 0 0
\(641\) 25207.0 1.55322 0.776611 0.629980i \(-0.216937\pi\)
0.776611 + 0.629980i \(0.216937\pi\)
\(642\) 0 0
\(643\) −2293.63 −0.140672 −0.0703358 0.997523i \(-0.522407\pi\)
−0.0703358 + 0.997523i \(0.522407\pi\)
\(644\) 0 0
\(645\) 8116.08 0.495458
\(646\) 0 0
\(647\) 25545.0 1.55221 0.776103 0.630606i \(-0.217194\pi\)
0.776103 + 0.630606i \(0.217194\pi\)
\(648\) 0 0
\(649\) 1166.31i 0.0705418i
\(650\) 0 0
\(651\) 48.0585 + 346.738i 0.00289334 + 0.0208752i
\(652\) 0 0
\(653\) −25797.1 −1.54597 −0.772986 0.634423i \(-0.781238\pi\)
−0.772986 + 0.634423i \(0.781238\pi\)
\(654\) 0 0
\(655\) 28375.1i 1.69268i
\(656\) 0 0
\(657\) 8712.23i 0.517346i
\(658\) 0 0
\(659\) 4912.12i 0.290363i 0.989405 + 0.145181i \(0.0463766\pi\)
−0.989405 + 0.145181i \(0.953623\pi\)
\(660\) 0 0
\(661\) 21077.8i 1.24029i −0.784488 0.620144i \(-0.787074\pi\)
0.784488 0.620144i \(-0.212926\pi\)
\(662\) 0 0
\(663\) −850.913 −0.0498442
\(664\) 0 0
\(665\) 7017.38 972.622i 0.409207 0.0567168i
\(666\) 0 0
\(667\) 5191.86i 0.301394i
\(668\) 0 0
\(669\) 10322.7 0.596560
\(670\) 0 0
\(671\) 572.278 0.0329248
\(672\) 0 0
\(673\) −12861.0 −0.736634 −0.368317 0.929700i \(-0.620066\pi\)
−0.368317 + 0.929700i \(0.620066\pi\)
\(674\) 0 0
\(675\) 991.682 0.0565480
\(676\) 0 0
\(677\) 18883.1i 1.07199i 0.844222 + 0.535994i \(0.180063\pi\)
−0.844222 + 0.535994i \(0.819937\pi\)
\(678\) 0 0
\(679\) 22492.5 3117.50i 1.27126 0.176199i
\(680\) 0 0
\(681\) −2848.07 −0.160262
\(682\) 0 0
\(683\) 15053.4i 0.843343i 0.906749 + 0.421671i \(0.138556\pi\)
−0.906749 + 0.421671i \(0.861444\pi\)
\(684\) 0 0
\(685\) 16149.8i 0.900805i
\(686\) 0 0
\(687\) 6910.79i 0.383789i
\(688\) 0 0
\(689\) 130.032i 0.00718988i
\(690\) 0 0
\(691\) −18526.0 −1.01992 −0.509958 0.860199i \(-0.670339\pi\)
−0.509958 + 0.860199i \(0.670339\pi\)
\(692\) 0 0
\(693\) −400.061 + 55.4492i −0.0219294 + 0.00303945i
\(694\) 0 0
\(695\) 25347.3i 1.38342i
\(696\) 0 0
\(697\) −807.819 −0.0439000
\(698\) 0 0
\(699\) −9804.64 −0.530537
\(700\) 0 0
\(701\) 14508.6 0.781714 0.390857 0.920451i \(-0.372179\pi\)
0.390857 + 0.920451i \(0.372179\pi\)
\(702\) 0 0
\(703\) −1853.46 −0.0994373
\(704\) 0 0
\(705\) 12601.3i 0.673182i
\(706\) 0 0
\(707\) 11869.9 1645.19i 0.631421 0.0875161i
\(708\) 0 0
\(709\) −13290.8 −0.704015 −0.352008 0.935997i \(-0.614501\pi\)
−0.352008 + 0.935997i \(0.614501\pi\)
\(710\) 0 0
\(711\) 581.837i 0.0306900i
\(712\) 0 0
\(713\) 757.414i 0.0397832i
\(714\) 0 0
\(715\) 821.742i 0.0429810i
\(716\) 0 0
\(717\) 9348.38i 0.486920i
\(718\) 0 0
\(719\) 8693.96 0.450946 0.225473 0.974249i \(-0.427607\pi\)
0.225473 + 0.974249i \(0.427607\pi\)
\(720\) 0 0
\(721\) 875.921 + 6319.69i 0.0452441 + 0.326432i
\(722\) 0 0
\(723\) 6872.86i 0.353533i
\(724\) 0 0
\(725\) −1586.22 −0.0812562
\(726\) 0 0
\(727\) −7864.03 −0.401184 −0.200592 0.979675i \(-0.564287\pi\)
−0.200592 + 0.979675i \(0.564287\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 2262.68 0.114484
\(732\) 0 0
\(733\) 15026.2i 0.757170i 0.925566 + 0.378585i \(0.123589\pi\)
−0.925566 + 0.378585i \(0.876411\pi\)
\(734\) 0 0
\(735\) 3559.13 + 12592.8i 0.178613 + 0.631961i
\(736\) 0 0
\(737\) 1603.93 0.0801651
\(738\) 0 0
\(739\) 21552.5i 1.07283i −0.843954 0.536416i \(-0.819778\pi\)
0.843954 0.536416i \(-0.180222\pi\)
\(740\) 0 0
\(741\) 2406.36i 0.119298i
\(742\) 0 0
\(743\) 5867.60i 0.289719i −0.989452 0.144860i \(-0.953727\pi\)
0.989452 0.144860i \(-0.0462730\pi\)
\(744\) 0 0
\(745\) 26130.8i 1.28504i
\(746\) 0 0
\(747\) 5987.53 0.293269
\(748\) 0 0
\(749\) −24444.6 + 3388.06i −1.19250 + 0.165283i
\(750\) 0 0
\(751\) 16037.5i 0.779252i −0.920973 0.389626i \(-0.872604\pi\)
0.920973 0.389626i \(-0.127396\pi\)
\(752\) 0 0
\(753\) 6922.41 0.335016
\(754\) 0 0
\(755\) −20631.5 −0.994514
\(756\) 0 0
\(757\) 20457.7 0.982230 0.491115 0.871095i \(-0.336590\pi\)
0.491115 + 0.871095i \(0.336590\pi\)
\(758\) 0 0
\(759\) 873.892 0.0417922
\(760\) 0 0
\(761\) 35072.4i 1.67066i −0.549746 0.835332i \(-0.685276\pi\)
0.549746 0.835332i \(-0.314724\pi\)
\(762\) 0 0
\(763\) −5671.09 40916.5i −0.269079 1.94138i
\(764\) 0 0
\(765\) 1217.38 0.0575354
\(766\) 0 0
\(767\) 12835.6i 0.604261i
\(768\) 0 0
\(769\) 25720.7i 1.20613i 0.797692 + 0.603065i \(0.206054\pi\)
−0.797692 + 0.603065i \(0.793946\pi\)
\(770\) 0 0
\(771\) 8496.92i 0.396899i
\(772\) 0 0
\(773\) 38851.8i 1.80776i −0.427783 0.903881i \(-0.640705\pi\)
0.427783 0.903881i \(-0.359295\pi\)
\(774\) 0 0
\(775\) −231.406 −0.0107256
\(776\) 0 0
\(777\) −470.026 3391.19i −0.0217015 0.156575i
\(778\) 0 0
\(779\) 2284.49i 0.105071i
\(780\) 0 0
\(781\) 1326.04 0.0607549
\(782\) 0 0
\(783\) −1166.05 −0.0532201
\(784\) 0 0
\(785\) 8832.30 0.401578
\(786\) 0 0
\(787\) 15643.8 0.708567 0.354284 0.935138i \(-0.384725\pi\)
0.354284 + 0.935138i \(0.384725\pi\)
\(788\) 0 0
\(789\) 19764.4i 0.891802i
\(790\) 0 0
\(791\) −629.322 4540.51i −0.0282884 0.204098i
\(792\) 0 0
\(793\) −6298.13 −0.282034
\(794\) 0 0
\(795\) 186.034i 0.00829931i
\(796\) 0 0
\(797\) 2473.22i 0.109920i 0.998489 + 0.0549599i \(0.0175031\pi\)
−0.998489 + 0.0549599i \(0.982497\pi\)
\(798\) 0 0
\(799\) 3513.12i 0.155551i
\(800\) 0 0
\(801\) 3457.63i 0.152521i
\(802\) 0 0
\(803\) 2345.61 0.103082
\(804\) 0 0
\(805\) −3887.28 28046.4i −0.170197 1.22796i
\(806\) 0 0
\(807\) 11233.2i 0.489996i
\(808\) 0 0
\(809\) 38282.3 1.66370 0.831850 0.555001i \(-0.187282\pi\)
0.831850 + 0.555001i \(0.187282\pi\)
\(810\) 0 0
\(811\) −24461.8 −1.05915 −0.529574 0.848264i \(-0.677648\pi\)
−0.529574 + 0.848264i \(0.677648\pi\)
\(812\) 0 0
\(813\) 22515.5 0.971284
\(814\) 0 0
\(815\) 6441.41 0.276850
\(816\) 0 0
\(817\) 6398.78i 0.274009i
\(818\) 0 0
\(819\) 4402.82 610.238i 0.187847 0.0260359i
\(820\) 0 0
\(821\) 3528.10 0.149977 0.0749887 0.997184i \(-0.476108\pi\)
0.0749887 + 0.997184i \(0.476108\pi\)
\(822\) 0 0
\(823\) 19151.7i 0.811162i −0.914059 0.405581i \(-0.867069\pi\)
0.914059 0.405581i \(-0.132931\pi\)
\(824\) 0 0
\(825\) 266.992i 0.0112672i
\(826\) 0 0
\(827\) 4356.94i 0.183199i −0.995796 0.0915996i \(-0.970802\pi\)
0.995796 0.0915996i \(-0.0291980\pi\)
\(828\) 0 0
\(829\) 16788.9i 0.703382i 0.936116 + 0.351691i \(0.114393\pi\)
−0.936116 + 0.351691i \(0.885607\pi\)
\(830\) 0 0
\(831\) −22501.9 −0.939329
\(832\) 0 0
\(833\) 992.248 + 3510.73i 0.0412717 + 0.146026i
\(834\) 0 0
\(835\) 46916.7i 1.94445i
\(836\) 0 0
\(837\) −170.110 −0.00702491
\(838\) 0 0
\(839\) −7922.27 −0.325992 −0.162996 0.986627i \(-0.552116\pi\)
−0.162996 + 0.986627i \(0.552116\pi\)
\(840\) 0 0
\(841\) −22523.9 −0.923526
\(842\) 0 0
\(843\) −17412.0 −0.711387
\(844\) 0 0
\(845\) 18896.3i 0.769292i
\(846\) 0 0
\(847\) −3369.32 24309.3i −0.136684 0.986162i
\(848\) 0 0
\(849\) −17746.7 −0.717389
\(850\) 0 0
\(851\) 7407.72i 0.298394i
\(852\) 0 0
\(853\) 20448.3i 0.820792i −0.911907 0.410396i \(-0.865390\pi\)
0.911907 0.410396i \(-0.134610\pi\)
\(854\) 0 0
\(855\) 3442.73i 0.137706i
\(856\) 0 0
\(857\) 41194.3i 1.64197i −0.570948 0.820986i \(-0.693424\pi\)
0.570948 0.820986i \(-0.306576\pi\)
\(858\) 0 0
\(859\) −13867.8 −0.550830 −0.275415 0.961325i \(-0.588815\pi\)
−0.275415 + 0.961325i \(0.588815\pi\)
\(860\) 0 0
\(861\) 4179.84 579.333i 0.165445 0.0229310i
\(862\) 0 0
\(863\) 13175.0i 0.519678i −0.965652 0.259839i \(-0.916331\pi\)
0.965652 0.259839i \(-0.0836694\pi\)
\(864\) 0 0
\(865\) −32554.1 −1.27962
\(866\) 0 0
\(867\) −14399.6 −0.564056
\(868\) 0 0
\(869\) −156.649 −0.00611502
\(870\) 0 0
\(871\) −17651.9 −0.686695
\(872\) 0 0
\(873\) 11034.8i 0.427803i
\(874\) 0 0
\(875\) 20593.4 2854.28i 0.795637 0.110277i
\(876\) 0 0
\(877\) 3551.84 0.136759 0.0683793 0.997659i \(-0.478217\pi\)
0.0683793 + 0.997659i \(0.478217\pi\)
\(878\) 0 0
\(879\) 20880.8i 0.801242i
\(880\) 0 0
\(881\) 34701.2i 1.32703i 0.748164 + 0.663514i \(0.230936\pi\)
−0.748164 + 0.663514i \(0.769064\pi\)
\(882\) 0 0
\(883\) 12801.7i 0.487895i −0.969788 0.243947i \(-0.921558\pi\)
0.969788 0.243947i \(-0.0784425\pi\)
\(884\) 0 0
\(885\) 18363.7i 0.697501i
\(886\) 0 0
\(887\) −23073.8 −0.873443 −0.436721 0.899597i \(-0.643860\pi\)
−0.436721 + 0.899597i \(0.643860\pi\)
\(888\) 0 0
\(889\) 7761.26 1075.72i 0.292806 0.0405834i
\(890\) 0 0
\(891\) 196.270i 0.00737967i
\(892\) 0 0
\(893\) 9934.99 0.372298
\(894\) 0 0
\(895\) −18180.7 −0.679010
\(896\) 0 0
\(897\) −9617.50 −0.357992
\(898\) 0 0
\(899\) 272.095 0.0100944
\(900\) 0 0
\(901\) 51.8643i 0.00191770i
\(902\) 0 0
\(903\) −11707.6 + 1622.69i −0.431455 + 0.0598005i
\(904\) 0 0
\(905\) −12488.1 −0.458695
\(906\) 0 0
\(907\) 25106.5i 0.919126i 0.888145 + 0.459563i \(0.151994\pi\)
−0.888145 + 0.459563i \(0.848006\pi\)
\(908\) 0 0
\(909\) 5823.39i 0.212486i
\(910\) 0 0
\(911\) 16256.1i 0.591205i 0.955311 + 0.295602i \(0.0955204\pi\)
−0.955311 + 0.295602i \(0.904480\pi\)
\(912\) 0 0
\(913\) 1612.03i 0.0584343i
\(914\) 0 0
\(915\) 9010.60 0.325553
\(916\) 0 0
\(917\) −5673.20 40931.6i −0.204303 1.47403i
\(918\) 0 0
\(919\) 27941.1i 1.00293i −0.865178 0.501465i \(-0.832795\pi\)
0.865178 0.501465i \(-0.167205\pi\)
\(920\) 0 0
\(921\) 24748.5 0.885442
\(922\) 0 0
\(923\) −14593.6 −0.520426
\(924\) 0 0
\(925\) 2263.21 0.0804475
\(926\) 0 0
\(927\) −3100.44 −0.109851
\(928\) 0 0
\(929\) 35855.2i 1.26628i −0.774039 0.633138i \(-0.781766\pi\)
0.774039 0.633138i \(-0.218234\pi\)
\(930\) 0 0
\(931\) −9928.24 + 2806.05i −0.349500 + 0.0987804i
\(932\) 0 0
\(933\) −8342.85 −0.292747
\(934\) 0 0
\(935\) 327.758i 0.0114640i
\(936\) 0 0
\(937\) 7058.56i 0.246097i 0.992401 + 0.123049i \(0.0392671\pi\)
−0.992401 + 0.123049i \(0.960733\pi\)
\(938\) 0 0
\(939\) 24628.8i 0.855943i
\(940\) 0 0
\(941\) 18308.8i 0.634270i −0.948380 0.317135i \(-0.897279\pi\)
0.948380 0.317135i \(-0.102721\pi\)
\(942\) 0 0
\(943\) −9130.43 −0.315300
\(944\) 0 0
\(945\) −6299.02 + 873.055i −0.216833 + 0.0300534i
\(946\) 0 0
\(947\) 52972.7i 1.81772i 0.417099 + 0.908861i \(0.363047\pi\)
−0.417099 + 0.908861i \(0.636953\pi\)
\(948\) 0 0
\(949\) −25814.3 −0.883000
\(950\) 0 0
\(951\) −5439.17 −0.185465
\(952\) 0 0
\(953\) −456.374 −0.0155125 −0.00775625 0.999970i \(-0.502469\pi\)
−0.00775625 + 0.999970i \(0.502469\pi\)
\(954\) 0 0
\(955\) 42237.2 1.43117
\(956\) 0 0
\(957\) 313.938i 0.0106042i
\(958\) 0 0
\(959\) −3228.91 23296.3i −0.108725 0.784440i
\(960\) 0 0
\(961\) −29751.3 −0.998668
\(962\) 0 0
\(963\) 11992.5i 0.401301i
\(964\) 0 0
\(965\) 2211.51i 0.0737730i
\(966\) 0 0
\(967\) 29461.9i 0.979762i −0.871789 0.489881i \(-0.837040\pi\)
0.871789 0.489881i \(-0.162960\pi\)
\(968\) 0 0
\(969\) 959.795i 0.0318195i
\(970\) 0 0
\(971\) −14529.2 −0.480190 −0.240095 0.970749i \(-0.577179\pi\)
−0.240095 + 0.970749i \(0.577179\pi\)
\(972\) 0 0
\(973\) −5067.82 36563.9i −0.166975 1.20471i
\(974\) 0 0
\(975\) 2938.35i 0.0965152i
\(976\) 0 0
\(977\) 8595.02 0.281452 0.140726 0.990049i \(-0.455056\pi\)
0.140726 + 0.990049i \(0.455056\pi\)
\(978\) 0 0
\(979\) 930.902 0.0303900
\(980\) 0 0
\(981\) 20073.6 0.653314
\(982\) 0 0
\(983\) −16799.7 −0.545094 −0.272547 0.962142i \(-0.587866\pi\)
−0.272547 + 0.962142i \(0.587866\pi\)
\(984\) 0 0
\(985\) 68469.2i 2.21483i
\(986\) 0 0
\(987\) 2519.45 + 18177.6i 0.0812514 + 0.586222i
\(988\) 0 0
\(989\) 25574.0 0.822252
\(990\) 0 0
\(991\) 37597.1i 1.20516i 0.798059 + 0.602579i \(0.205860\pi\)
−0.798059 + 0.602579i \(0.794140\pi\)
\(992\) 0 0
\(993\) 244.446i 0.00781194i
\(994\) 0 0
\(995\) 21559.5i 0.686915i
\(996\) 0 0
\(997\) 23547.0i 0.747985i −0.927432 0.373992i \(-0.877989\pi\)
0.927432 0.373992i \(-0.122011\pi\)
\(998\) 0 0
\(999\) 1663.72 0.0526904
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.b.a.223.19 yes 24
4.3 odd 2 672.4.b.b.223.19 yes 24
7.6 odd 2 672.4.b.b.223.6 yes 24
8.3 odd 2 1344.4.b.i.895.6 24
8.5 even 2 1344.4.b.j.895.6 24
28.27 even 2 inner 672.4.b.a.223.6 24
56.13 odd 2 1344.4.b.i.895.19 24
56.27 even 2 1344.4.b.j.895.19 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.b.a.223.6 24 28.27 even 2 inner
672.4.b.a.223.19 yes 24 1.1 even 1 trivial
672.4.b.b.223.6 yes 24 7.6 odd 2
672.4.b.b.223.19 yes 24 4.3 odd 2
1344.4.b.i.895.6 24 8.3 odd 2
1344.4.b.i.895.19 24 56.13 odd 2
1344.4.b.j.895.6 24 8.5 even 2
1344.4.b.j.895.19 24 56.27 even 2