Properties

Label 672.4.a.p.1.2
Level $672$
Weight $4$
Character 672.1
Self dual yes
Analytic conductor $39.649$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(1,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.37341.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 57x - 148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.13924\) of defining polynomial
Character \(\chi\) \(=\) 672.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +8.27848 q^{5} -7.00000 q^{7} +9.00000 q^{9} -72.0744 q^{11} +89.4668 q^{13} -24.8354 q^{15} -38.0744 q^{17} +46.9098 q^{19} +21.0000 q^{21} +65.1883 q^{23} -56.4668 q^{25} -27.0000 q^{27} -118.274 q^{29} +175.616 q^{31} +216.223 q^{33} -57.9494 q^{35} +157.467 q^{37} -268.400 q^{39} +293.666 q^{41} -230.934 q^{43} +74.5063 q^{45} +139.240 q^{47} +49.0000 q^{49} +114.223 q^{51} -128.400 q^{53} -596.666 q^{55} -140.729 q^{57} +58.5822 q^{59} +514.116 q^{61} -63.0000 q^{63} +740.649 q^{65} -129.876 q^{67} -195.565 q^{69} +221.495 q^{71} -700.658 q^{73} +169.400 q^{75} +504.521 q^{77} +791.582 q^{79} +81.0000 q^{81} +854.668 q^{83} -315.198 q^{85} +354.821 q^{87} +921.574 q^{89} -626.267 q^{91} -526.847 q^{93} +388.342 q^{95} +1561.47 q^{97} -648.669 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 6 q^{5} - 21 q^{7} + 27 q^{9} - 48 q^{11} + 6 q^{13} - 18 q^{15} + 54 q^{17} - 84 q^{19} + 63 q^{21} - 48 q^{23} + 93 q^{25} - 81 q^{27} + 18 q^{29} - 72 q^{31} + 144 q^{33} - 42 q^{35}+ \cdots - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 8.27848 0.740450 0.370225 0.928942i \(-0.379281\pi\)
0.370225 + 0.928942i \(0.379281\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −72.0744 −1.97557 −0.987784 0.155830i \(-0.950195\pi\)
−0.987784 + 0.155830i \(0.950195\pi\)
\(12\) 0 0
\(13\) 89.4668 1.90874 0.954370 0.298627i \(-0.0965285\pi\)
0.954370 + 0.298627i \(0.0965285\pi\)
\(14\) 0 0
\(15\) −24.8354 −0.427499
\(16\) 0 0
\(17\) −38.0744 −0.543200 −0.271600 0.962410i \(-0.587553\pi\)
−0.271600 + 0.962410i \(0.587553\pi\)
\(18\) 0 0
\(19\) 46.9098 0.566413 0.283207 0.959059i \(-0.408602\pi\)
0.283207 + 0.959059i \(0.408602\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 65.1883 0.590987 0.295493 0.955345i \(-0.404516\pi\)
0.295493 + 0.955345i \(0.404516\pi\)
\(24\) 0 0
\(25\) −56.4668 −0.451734
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −118.274 −0.757341 −0.378671 0.925532i \(-0.623619\pi\)
−0.378671 + 0.925532i \(0.623619\pi\)
\(30\) 0 0
\(31\) 175.616 1.01747 0.508734 0.860924i \(-0.330114\pi\)
0.508734 + 0.860924i \(0.330114\pi\)
\(32\) 0 0
\(33\) 216.223 1.14059
\(34\) 0 0
\(35\) −57.9494 −0.279864
\(36\) 0 0
\(37\) 157.467 0.699659 0.349829 0.936813i \(-0.386240\pi\)
0.349829 + 0.936813i \(0.386240\pi\)
\(38\) 0 0
\(39\) −268.400 −1.10201
\(40\) 0 0
\(41\) 293.666 1.11861 0.559304 0.828962i \(-0.311068\pi\)
0.559304 + 0.828962i \(0.311068\pi\)
\(42\) 0 0
\(43\) −230.934 −0.819001 −0.409500 0.912310i \(-0.634297\pi\)
−0.409500 + 0.912310i \(0.634297\pi\)
\(44\) 0 0
\(45\) 74.5063 0.246817
\(46\) 0 0
\(47\) 139.240 0.432134 0.216067 0.976379i \(-0.430677\pi\)
0.216067 + 0.976379i \(0.430677\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 114.223 0.313616
\(52\) 0 0
\(53\) −128.400 −0.332776 −0.166388 0.986060i \(-0.553210\pi\)
−0.166388 + 0.986060i \(0.553210\pi\)
\(54\) 0 0
\(55\) −596.666 −1.46281
\(56\) 0 0
\(57\) −140.729 −0.327019
\(58\) 0 0
\(59\) 58.5822 0.129267 0.0646335 0.997909i \(-0.479412\pi\)
0.0646335 + 0.997909i \(0.479412\pi\)
\(60\) 0 0
\(61\) 514.116 1.07911 0.539555 0.841950i \(-0.318592\pi\)
0.539555 + 0.841950i \(0.318592\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 740.649 1.41333
\(66\) 0 0
\(67\) −129.876 −0.236820 −0.118410 0.992965i \(-0.537780\pi\)
−0.118410 + 0.992965i \(0.537780\pi\)
\(68\) 0 0
\(69\) −195.565 −0.341206
\(70\) 0 0
\(71\) 221.495 0.370234 0.185117 0.982716i \(-0.440734\pi\)
0.185117 + 0.982716i \(0.440734\pi\)
\(72\) 0 0
\(73\) −700.658 −1.12337 −0.561684 0.827352i \(-0.689846\pi\)
−0.561684 + 0.827352i \(0.689846\pi\)
\(74\) 0 0
\(75\) 169.400 0.260809
\(76\) 0 0
\(77\) 504.521 0.746694
\(78\) 0 0
\(79\) 791.582 1.12734 0.563671 0.826000i \(-0.309389\pi\)
0.563671 + 0.826000i \(0.309389\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 854.668 1.13026 0.565132 0.825000i \(-0.308825\pi\)
0.565132 + 0.825000i \(0.308825\pi\)
\(84\) 0 0
\(85\) −315.198 −0.402212
\(86\) 0 0
\(87\) 354.821 0.437251
\(88\) 0 0
\(89\) 921.574 1.09760 0.548802 0.835953i \(-0.315084\pi\)
0.548802 + 0.835953i \(0.315084\pi\)
\(90\) 0 0
\(91\) −626.267 −0.721436
\(92\) 0 0
\(93\) −526.847 −0.587435
\(94\) 0 0
\(95\) 388.342 0.419401
\(96\) 0 0
\(97\) 1561.47 1.63447 0.817236 0.576303i \(-0.195505\pi\)
0.817236 + 0.576303i \(0.195505\pi\)
\(98\) 0 0
\(99\) −648.669 −0.658523
\(100\) 0 0
\(101\) 1599.03 1.57534 0.787671 0.616096i \(-0.211287\pi\)
0.787671 + 0.616096i \(0.211287\pi\)
\(102\) 0 0
\(103\) 1213.55 1.16092 0.580459 0.814290i \(-0.302873\pi\)
0.580459 + 0.814290i \(0.302873\pi\)
\(104\) 0 0
\(105\) 173.848 0.161579
\(106\) 0 0
\(107\) −1370.27 −1.23803 −0.619014 0.785380i \(-0.712468\pi\)
−0.619014 + 0.785380i \(0.712468\pi\)
\(108\) 0 0
\(109\) 371.867 0.326774 0.163387 0.986562i \(-0.447758\pi\)
0.163387 + 0.986562i \(0.447758\pi\)
\(110\) 0 0
\(111\) −472.400 −0.403948
\(112\) 0 0
\(113\) 731.585 0.609042 0.304521 0.952506i \(-0.401504\pi\)
0.304521 + 0.952506i \(0.401504\pi\)
\(114\) 0 0
\(115\) 539.660 0.437596
\(116\) 0 0
\(117\) 805.201 0.636247
\(118\) 0 0
\(119\) 266.521 0.205310
\(120\) 0 0
\(121\) 3863.72 2.90287
\(122\) 0 0
\(123\) −880.999 −0.645829
\(124\) 0 0
\(125\) −1502.27 −1.07494
\(126\) 0 0
\(127\) 2386.05 1.66715 0.833575 0.552406i \(-0.186290\pi\)
0.833575 + 0.552406i \(0.186290\pi\)
\(128\) 0 0
\(129\) 692.801 0.472850
\(130\) 0 0
\(131\) 65.1831 0.0434739 0.0217369 0.999764i \(-0.493080\pi\)
0.0217369 + 0.999764i \(0.493080\pi\)
\(132\) 0 0
\(133\) −328.369 −0.214084
\(134\) 0 0
\(135\) −223.519 −0.142500
\(136\) 0 0
\(137\) 1515.27 0.944950 0.472475 0.881344i \(-0.343361\pi\)
0.472475 + 0.881344i \(0.343361\pi\)
\(138\) 0 0
\(139\) 2173.33 1.32618 0.663092 0.748538i \(-0.269244\pi\)
0.663092 + 0.748538i \(0.269244\pi\)
\(140\) 0 0
\(141\) −417.721 −0.249493
\(142\) 0 0
\(143\) −6448.26 −3.77085
\(144\) 0 0
\(145\) −979.127 −0.560773
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) −3098.15 −1.70343 −0.851714 0.524007i \(-0.824436\pi\)
−0.851714 + 0.524007i \(0.824436\pi\)
\(150\) 0 0
\(151\) 793.085 0.427420 0.213710 0.976897i \(-0.431445\pi\)
0.213710 + 0.976897i \(0.431445\pi\)
\(152\) 0 0
\(153\) −342.669 −0.181067
\(154\) 0 0
\(155\) 1453.83 0.753383
\(156\) 0 0
\(157\) −1586.47 −0.806459 −0.403230 0.915099i \(-0.632112\pi\)
−0.403230 + 0.915099i \(0.632112\pi\)
\(158\) 0 0
\(159\) 385.201 0.192128
\(160\) 0 0
\(161\) −456.318 −0.223372
\(162\) 0 0
\(163\) −945.643 −0.454408 −0.227204 0.973847i \(-0.572958\pi\)
−0.227204 + 0.973847i \(0.572958\pi\)
\(164\) 0 0
\(165\) 1790.00 0.844553
\(166\) 0 0
\(167\) 878.013 0.406843 0.203421 0.979091i \(-0.434794\pi\)
0.203421 + 0.979091i \(0.434794\pi\)
\(168\) 0 0
\(169\) 5807.30 2.64329
\(170\) 0 0
\(171\) 422.188 0.188804
\(172\) 0 0
\(173\) −1704.42 −0.749046 −0.374523 0.927218i \(-0.622194\pi\)
−0.374523 + 0.927218i \(0.622194\pi\)
\(174\) 0 0
\(175\) 395.267 0.170739
\(176\) 0 0
\(177\) −175.747 −0.0746323
\(178\) 0 0
\(179\) 2742.78 1.14528 0.572639 0.819807i \(-0.305920\pi\)
0.572639 + 0.819807i \(0.305920\pi\)
\(180\) 0 0
\(181\) −3462.15 −1.42177 −0.710883 0.703310i \(-0.751704\pi\)
−0.710883 + 0.703310i \(0.751704\pi\)
\(182\) 0 0
\(183\) −1542.35 −0.623025
\(184\) 0 0
\(185\) 1303.59 0.518062
\(186\) 0 0
\(187\) 2744.19 1.07313
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −4674.18 −1.77074 −0.885372 0.464884i \(-0.846096\pi\)
−0.885372 + 0.464884i \(0.846096\pi\)
\(192\) 0 0
\(193\) −3094.15 −1.15400 −0.576999 0.816745i \(-0.695777\pi\)
−0.576999 + 0.816745i \(0.695777\pi\)
\(194\) 0 0
\(195\) −2221.95 −0.815984
\(196\) 0 0
\(197\) 4366.68 1.57925 0.789626 0.613588i \(-0.210274\pi\)
0.789626 + 0.613588i \(0.210274\pi\)
\(198\) 0 0
\(199\) 1313.07 0.467744 0.233872 0.972267i \(-0.424860\pi\)
0.233872 + 0.972267i \(0.424860\pi\)
\(200\) 0 0
\(201\) 389.629 0.136728
\(202\) 0 0
\(203\) 827.917 0.286248
\(204\) 0 0
\(205\) 2431.11 0.828273
\(206\) 0 0
\(207\) 586.695 0.196996
\(208\) 0 0
\(209\) −3381.00 −1.11899
\(210\) 0 0
\(211\) −1938.29 −0.632403 −0.316202 0.948692i \(-0.602408\pi\)
−0.316202 + 0.948692i \(0.602408\pi\)
\(212\) 0 0
\(213\) −664.486 −0.213755
\(214\) 0 0
\(215\) −1911.78 −0.606429
\(216\) 0 0
\(217\) −1229.31 −0.384566
\(218\) 0 0
\(219\) 2101.98 0.648577
\(220\) 0 0
\(221\) −3406.39 −1.03683
\(222\) 0 0
\(223\) −2810.59 −0.843995 −0.421997 0.906597i \(-0.638671\pi\)
−0.421997 + 0.906597i \(0.638671\pi\)
\(224\) 0 0
\(225\) −508.201 −0.150578
\(226\) 0 0
\(227\) −5677.70 −1.66010 −0.830049 0.557690i \(-0.811688\pi\)
−0.830049 + 0.557690i \(0.811688\pi\)
\(228\) 0 0
\(229\) −2754.87 −0.794965 −0.397482 0.917610i \(-0.630116\pi\)
−0.397482 + 0.917610i \(0.630116\pi\)
\(230\) 0 0
\(231\) −1513.56 −0.431104
\(232\) 0 0
\(233\) −1908.29 −0.536550 −0.268275 0.963342i \(-0.586454\pi\)
−0.268275 + 0.963342i \(0.586454\pi\)
\(234\) 0 0
\(235\) 1152.70 0.319974
\(236\) 0 0
\(237\) −2374.75 −0.650871
\(238\) 0 0
\(239\) 1120.91 0.303371 0.151685 0.988429i \(-0.451530\pi\)
0.151685 + 0.988429i \(0.451530\pi\)
\(240\) 0 0
\(241\) −593.838 −0.158724 −0.0793620 0.996846i \(-0.525288\pi\)
−0.0793620 + 0.996846i \(0.525288\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 405.645 0.105779
\(246\) 0 0
\(247\) 4196.87 1.08114
\(248\) 0 0
\(249\) −2564.00 −0.652559
\(250\) 0 0
\(251\) −7256.88 −1.82490 −0.912450 0.409188i \(-0.865812\pi\)
−0.912450 + 0.409188i \(0.865812\pi\)
\(252\) 0 0
\(253\) −4698.41 −1.16753
\(254\) 0 0
\(255\) 945.594 0.232217
\(256\) 0 0
\(257\) 3120.96 0.757511 0.378755 0.925497i \(-0.376352\pi\)
0.378755 + 0.925497i \(0.376352\pi\)
\(258\) 0 0
\(259\) −1102.27 −0.264446
\(260\) 0 0
\(261\) −1064.46 −0.252447
\(262\) 0 0
\(263\) 3114.51 0.730224 0.365112 0.930964i \(-0.381031\pi\)
0.365112 + 0.930964i \(0.381031\pi\)
\(264\) 0 0
\(265\) −1062.96 −0.246404
\(266\) 0 0
\(267\) −2764.72 −0.633701
\(268\) 0 0
\(269\) −803.254 −0.182064 −0.0910321 0.995848i \(-0.529017\pi\)
−0.0910321 + 0.995848i \(0.529017\pi\)
\(270\) 0 0
\(271\) 5221.42 1.17040 0.585201 0.810889i \(-0.301016\pi\)
0.585201 + 0.810889i \(0.301016\pi\)
\(272\) 0 0
\(273\) 1878.80 0.416521
\(274\) 0 0
\(275\) 4069.81 0.892432
\(276\) 0 0
\(277\) −3276.37 −0.710678 −0.355339 0.934737i \(-0.615635\pi\)
−0.355339 + 0.934737i \(0.615635\pi\)
\(278\) 0 0
\(279\) 1580.54 0.339156
\(280\) 0 0
\(281\) 3207.50 0.680937 0.340469 0.940256i \(-0.389414\pi\)
0.340469 + 0.940256i \(0.389414\pi\)
\(282\) 0 0
\(283\) 9161.80 1.92443 0.962213 0.272299i \(-0.0877839\pi\)
0.962213 + 0.272299i \(0.0877839\pi\)
\(284\) 0 0
\(285\) −1165.03 −0.242141
\(286\) 0 0
\(287\) −2055.66 −0.422794
\(288\) 0 0
\(289\) −3463.34 −0.704934
\(290\) 0 0
\(291\) −4684.42 −0.943663
\(292\) 0 0
\(293\) −3277.09 −0.653412 −0.326706 0.945126i \(-0.605939\pi\)
−0.326706 + 0.945126i \(0.605939\pi\)
\(294\) 0 0
\(295\) 484.972 0.0957157
\(296\) 0 0
\(297\) 1946.01 0.380198
\(298\) 0 0
\(299\) 5832.19 1.12804
\(300\) 0 0
\(301\) 1616.53 0.309553
\(302\) 0 0
\(303\) −4797.10 −0.909525
\(304\) 0 0
\(305\) 4256.10 0.799027
\(306\) 0 0
\(307\) 2748.81 0.511020 0.255510 0.966806i \(-0.417757\pi\)
0.255510 + 0.966806i \(0.417757\pi\)
\(308\) 0 0
\(309\) −3640.65 −0.670256
\(310\) 0 0
\(311\) 1800.80 0.328341 0.164170 0.986432i \(-0.447505\pi\)
0.164170 + 0.986432i \(0.447505\pi\)
\(312\) 0 0
\(313\) 4904.55 0.885692 0.442846 0.896598i \(-0.353969\pi\)
0.442846 + 0.896598i \(0.353969\pi\)
\(314\) 0 0
\(315\) −521.544 −0.0932879
\(316\) 0 0
\(317\) 5017.04 0.888912 0.444456 0.895801i \(-0.353397\pi\)
0.444456 + 0.895801i \(0.353397\pi\)
\(318\) 0 0
\(319\) 8524.51 1.49618
\(320\) 0 0
\(321\) 4110.81 0.714776
\(322\) 0 0
\(323\) −1786.06 −0.307675
\(324\) 0 0
\(325\) −5051.90 −0.862243
\(326\) 0 0
\(327\) −1115.60 −0.188663
\(328\) 0 0
\(329\) −974.683 −0.163331
\(330\) 0 0
\(331\) 10026.8 1.66502 0.832508 0.554013i \(-0.186904\pi\)
0.832508 + 0.554013i \(0.186904\pi\)
\(332\) 0 0
\(333\) 1417.20 0.233220
\(334\) 0 0
\(335\) −1075.18 −0.175353
\(336\) 0 0
\(337\) −10196.6 −1.64820 −0.824100 0.566444i \(-0.808319\pi\)
−0.824100 + 0.566444i \(0.808319\pi\)
\(338\) 0 0
\(339\) −2194.76 −0.351631
\(340\) 0 0
\(341\) −12657.4 −2.01008
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −1618.98 −0.252646
\(346\) 0 0
\(347\) −732.813 −0.113370 −0.0566851 0.998392i \(-0.518053\pi\)
−0.0566851 + 0.998392i \(0.518053\pi\)
\(348\) 0 0
\(349\) 4097.74 0.628502 0.314251 0.949340i \(-0.398247\pi\)
0.314251 + 0.949340i \(0.398247\pi\)
\(350\) 0 0
\(351\) −2415.60 −0.367337
\(352\) 0 0
\(353\) −7741.61 −1.16727 −0.583633 0.812018i \(-0.698369\pi\)
−0.583633 + 0.812018i \(0.698369\pi\)
\(354\) 0 0
\(355\) 1833.64 0.274140
\(356\) 0 0
\(357\) −799.562 −0.118536
\(358\) 0 0
\(359\) −2204.34 −0.324068 −0.162034 0.986785i \(-0.551805\pi\)
−0.162034 + 0.986785i \(0.551805\pi\)
\(360\) 0 0
\(361\) −4658.47 −0.679176
\(362\) 0 0
\(363\) −11591.2 −1.67597
\(364\) 0 0
\(365\) −5800.39 −0.831798
\(366\) 0 0
\(367\) −3272.01 −0.465388 −0.232694 0.972550i \(-0.574754\pi\)
−0.232694 + 0.972550i \(0.574754\pi\)
\(368\) 0 0
\(369\) 2643.00 0.372870
\(370\) 0 0
\(371\) 898.802 0.125778
\(372\) 0 0
\(373\) −2004.07 −0.278195 −0.139097 0.990279i \(-0.544420\pi\)
−0.139097 + 0.990279i \(0.544420\pi\)
\(374\) 0 0
\(375\) 4506.81 0.620615
\(376\) 0 0
\(377\) −10581.6 −1.44557
\(378\) 0 0
\(379\) −14014.4 −1.89940 −0.949699 0.313164i \(-0.898611\pi\)
−0.949699 + 0.313164i \(0.898611\pi\)
\(380\) 0 0
\(381\) −7158.16 −0.962529
\(382\) 0 0
\(383\) −10252.1 −1.36778 −0.683889 0.729587i \(-0.739713\pi\)
−0.683889 + 0.729587i \(0.739713\pi\)
\(384\) 0 0
\(385\) 4176.66 0.552890
\(386\) 0 0
\(387\) −2078.40 −0.273000
\(388\) 0 0
\(389\) −10263.6 −1.33776 −0.668878 0.743372i \(-0.733225\pi\)
−0.668878 + 0.743372i \(0.733225\pi\)
\(390\) 0 0
\(391\) −2482.00 −0.321024
\(392\) 0 0
\(393\) −195.549 −0.0250997
\(394\) 0 0
\(395\) 6553.10 0.834740
\(396\) 0 0
\(397\) 10292.5 1.30117 0.650585 0.759433i \(-0.274524\pi\)
0.650585 + 0.759433i \(0.274524\pi\)
\(398\) 0 0
\(399\) 985.106 0.123602
\(400\) 0 0
\(401\) 561.891 0.0699738 0.0349869 0.999388i \(-0.488861\pi\)
0.0349869 + 0.999388i \(0.488861\pi\)
\(402\) 0 0
\(403\) 15711.8 1.94208
\(404\) 0 0
\(405\) 670.557 0.0822722
\(406\) 0 0
\(407\) −11349.3 −1.38222
\(408\) 0 0
\(409\) 2653.32 0.320778 0.160389 0.987054i \(-0.448725\pi\)
0.160389 + 0.987054i \(0.448725\pi\)
\(410\) 0 0
\(411\) −4545.81 −0.545567
\(412\) 0 0
\(413\) −410.075 −0.0488583
\(414\) 0 0
\(415\) 7075.35 0.836904
\(416\) 0 0
\(417\) −6520.00 −0.765673
\(418\) 0 0
\(419\) −4597.68 −0.536065 −0.268033 0.963410i \(-0.586374\pi\)
−0.268033 + 0.963410i \(0.586374\pi\)
\(420\) 0 0
\(421\) −2681.37 −0.310408 −0.155204 0.987882i \(-0.549604\pi\)
−0.155204 + 0.987882i \(0.549604\pi\)
\(422\) 0 0
\(423\) 1253.16 0.144045
\(424\) 0 0
\(425\) 2149.94 0.245382
\(426\) 0 0
\(427\) −3598.81 −0.407866
\(428\) 0 0
\(429\) 19344.8 2.17710
\(430\) 0 0
\(431\) 13557.6 1.51519 0.757594 0.652726i \(-0.226375\pi\)
0.757594 + 0.652726i \(0.226375\pi\)
\(432\) 0 0
\(433\) 2024.50 0.224691 0.112346 0.993669i \(-0.464164\pi\)
0.112346 + 0.993669i \(0.464164\pi\)
\(434\) 0 0
\(435\) 2937.38 0.323762
\(436\) 0 0
\(437\) 3057.97 0.334743
\(438\) 0 0
\(439\) 1179.52 0.128235 0.0641177 0.997942i \(-0.479577\pi\)
0.0641177 + 0.997942i \(0.479577\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 15506.8 1.66309 0.831547 0.555454i \(-0.187456\pi\)
0.831547 + 0.555454i \(0.187456\pi\)
\(444\) 0 0
\(445\) 7629.23 0.812720
\(446\) 0 0
\(447\) 9294.46 0.983474
\(448\) 0 0
\(449\) −7666.24 −0.805774 −0.402887 0.915250i \(-0.631993\pi\)
−0.402887 + 0.915250i \(0.631993\pi\)
\(450\) 0 0
\(451\) −21165.8 −2.20989
\(452\) 0 0
\(453\) −2379.26 −0.246771
\(454\) 0 0
\(455\) −5184.54 −0.534187
\(456\) 0 0
\(457\) −11940.9 −1.22226 −0.611128 0.791532i \(-0.709284\pi\)
−0.611128 + 0.791532i \(0.709284\pi\)
\(458\) 0 0
\(459\) 1028.01 0.104539
\(460\) 0 0
\(461\) 13964.4 1.41082 0.705411 0.708799i \(-0.250763\pi\)
0.705411 + 0.708799i \(0.250763\pi\)
\(462\) 0 0
\(463\) 14419.6 1.44738 0.723691 0.690124i \(-0.242444\pi\)
0.723691 + 0.690124i \(0.242444\pi\)
\(464\) 0 0
\(465\) −4361.49 −0.434966
\(466\) 0 0
\(467\) 8781.18 0.870117 0.435058 0.900402i \(-0.356728\pi\)
0.435058 + 0.900402i \(0.356728\pi\)
\(468\) 0 0
\(469\) 909.135 0.0895095
\(470\) 0 0
\(471\) 4759.41 0.465609
\(472\) 0 0
\(473\) 16644.4 1.61799
\(474\) 0 0
\(475\) −2648.85 −0.255868
\(476\) 0 0
\(477\) −1155.60 −0.110925
\(478\) 0 0
\(479\) −10270.5 −0.979686 −0.489843 0.871811i \(-0.662946\pi\)
−0.489843 + 0.871811i \(0.662946\pi\)
\(480\) 0 0
\(481\) 14088.0 1.33547
\(482\) 0 0
\(483\) 1368.95 0.128964
\(484\) 0 0
\(485\) 12926.6 1.21024
\(486\) 0 0
\(487\) 12516.1 1.16459 0.582297 0.812976i \(-0.302154\pi\)
0.582297 + 0.812976i \(0.302154\pi\)
\(488\) 0 0
\(489\) 2836.93 0.262352
\(490\) 0 0
\(491\) −12534.1 −1.15205 −0.576024 0.817433i \(-0.695397\pi\)
−0.576024 + 0.817433i \(0.695397\pi\)
\(492\) 0 0
\(493\) 4503.20 0.411387
\(494\) 0 0
\(495\) −5370.00 −0.487603
\(496\) 0 0
\(497\) −1550.47 −0.139935
\(498\) 0 0
\(499\) −14357.3 −1.28801 −0.644007 0.765019i \(-0.722729\pi\)
−0.644007 + 0.765019i \(0.722729\pi\)
\(500\) 0 0
\(501\) −2634.04 −0.234891
\(502\) 0 0
\(503\) −16412.8 −1.45489 −0.727446 0.686165i \(-0.759293\pi\)
−0.727446 + 0.686165i \(0.759293\pi\)
\(504\) 0 0
\(505\) 13237.6 1.16646
\(506\) 0 0
\(507\) −17421.9 −1.52610
\(508\) 0 0
\(509\) −3581.31 −0.311864 −0.155932 0.987768i \(-0.549838\pi\)
−0.155932 + 0.987768i \(0.549838\pi\)
\(510\) 0 0
\(511\) 4904.61 0.424593
\(512\) 0 0
\(513\) −1266.57 −0.109006
\(514\) 0 0
\(515\) 10046.3 0.859601
\(516\) 0 0
\(517\) −10035.7 −0.853710
\(518\) 0 0
\(519\) 5113.27 0.432462
\(520\) 0 0
\(521\) 6838.64 0.575060 0.287530 0.957772i \(-0.407166\pi\)
0.287530 + 0.957772i \(0.407166\pi\)
\(522\) 0 0
\(523\) −330.872 −0.0276635 −0.0138318 0.999904i \(-0.504403\pi\)
−0.0138318 + 0.999904i \(0.504403\pi\)
\(524\) 0 0
\(525\) −1185.80 −0.0985765
\(526\) 0 0
\(527\) −6686.45 −0.552688
\(528\) 0 0
\(529\) −7917.49 −0.650734
\(530\) 0 0
\(531\) 527.240 0.0430890
\(532\) 0 0
\(533\) 26273.4 2.13513
\(534\) 0 0
\(535\) −11343.8 −0.916698
\(536\) 0 0
\(537\) −8228.33 −0.661227
\(538\) 0 0
\(539\) −3531.64 −0.282224
\(540\) 0 0
\(541\) −10233.6 −0.813265 −0.406633 0.913592i \(-0.633297\pi\)
−0.406633 + 0.913592i \(0.633297\pi\)
\(542\) 0 0
\(543\) 10386.5 0.820857
\(544\) 0 0
\(545\) 3078.49 0.241960
\(546\) 0 0
\(547\) 5374.48 0.420103 0.210052 0.977690i \(-0.432637\pi\)
0.210052 + 0.977690i \(0.432637\pi\)
\(548\) 0 0
\(549\) 4627.04 0.359704
\(550\) 0 0
\(551\) −5548.20 −0.428968
\(552\) 0 0
\(553\) −5541.08 −0.426095
\(554\) 0 0
\(555\) −3910.76 −0.299103
\(556\) 0 0
\(557\) 23749.7 1.80665 0.903327 0.428952i \(-0.141117\pi\)
0.903327 + 0.428952i \(0.141117\pi\)
\(558\) 0 0
\(559\) −20660.9 −1.56326
\(560\) 0 0
\(561\) −8232.56 −0.619571
\(562\) 0 0
\(563\) −4551.40 −0.340708 −0.170354 0.985383i \(-0.554491\pi\)
−0.170354 + 0.985383i \(0.554491\pi\)
\(564\) 0 0
\(565\) 6056.41 0.450965
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) −13864.8 −1.02152 −0.510758 0.859725i \(-0.670635\pi\)
−0.510758 + 0.859725i \(0.670635\pi\)
\(570\) 0 0
\(571\) 26668.4 1.95453 0.977267 0.212011i \(-0.0680014\pi\)
0.977267 + 0.212011i \(0.0680014\pi\)
\(572\) 0 0
\(573\) 14022.5 1.02234
\(574\) 0 0
\(575\) −3680.97 −0.266969
\(576\) 0 0
\(577\) 723.611 0.0522085 0.0261043 0.999659i \(-0.491690\pi\)
0.0261043 + 0.999659i \(0.491690\pi\)
\(578\) 0 0
\(579\) 9282.45 0.666262
\(580\) 0 0
\(581\) −5982.67 −0.427200
\(582\) 0 0
\(583\) 9254.38 0.657422
\(584\) 0 0
\(585\) 6665.84 0.471109
\(586\) 0 0
\(587\) 5753.39 0.404545 0.202273 0.979329i \(-0.435167\pi\)
0.202273 + 0.979329i \(0.435167\pi\)
\(588\) 0 0
\(589\) 8238.09 0.576307
\(590\) 0 0
\(591\) −13100.0 −0.911782
\(592\) 0 0
\(593\) −9298.15 −0.643894 −0.321947 0.946758i \(-0.604337\pi\)
−0.321947 + 0.946758i \(0.604337\pi\)
\(594\) 0 0
\(595\) 2206.39 0.152022
\(596\) 0 0
\(597\) −3939.21 −0.270052
\(598\) 0 0
\(599\) −7480.54 −0.510261 −0.255131 0.966907i \(-0.582118\pi\)
−0.255131 + 0.966907i \(0.582118\pi\)
\(600\) 0 0
\(601\) 8449.27 0.573466 0.286733 0.958011i \(-0.407431\pi\)
0.286733 + 0.958011i \(0.407431\pi\)
\(602\) 0 0
\(603\) −1168.89 −0.0789400
\(604\) 0 0
\(605\) 31985.7 2.14943
\(606\) 0 0
\(607\) 12385.4 0.828182 0.414091 0.910236i \(-0.364100\pi\)
0.414091 + 0.910236i \(0.364100\pi\)
\(608\) 0 0
\(609\) −2483.75 −0.165265
\(610\) 0 0
\(611\) 12457.4 0.824832
\(612\) 0 0
\(613\) 28991.8 1.91023 0.955113 0.296240i \(-0.0957329\pi\)
0.955113 + 0.296240i \(0.0957329\pi\)
\(614\) 0 0
\(615\) −7293.33 −0.478204
\(616\) 0 0
\(617\) 28726.3 1.87435 0.937177 0.348853i \(-0.113429\pi\)
0.937177 + 0.348853i \(0.113429\pi\)
\(618\) 0 0
\(619\) −7766.73 −0.504316 −0.252158 0.967686i \(-0.581140\pi\)
−0.252158 + 0.967686i \(0.581140\pi\)
\(620\) 0 0
\(621\) −1760.08 −0.113735
\(622\) 0 0
\(623\) −6451.02 −0.414855
\(624\) 0 0
\(625\) −5378.15 −0.344202
\(626\) 0 0
\(627\) 10143.0 0.646048
\(628\) 0 0
\(629\) −5995.45 −0.380055
\(630\) 0 0
\(631\) 17284.6 1.09047 0.545236 0.838283i \(-0.316440\pi\)
0.545236 + 0.838283i \(0.316440\pi\)
\(632\) 0 0
\(633\) 5814.86 0.365118
\(634\) 0 0
\(635\) 19752.9 1.23444
\(636\) 0 0
\(637\) 4383.87 0.272677
\(638\) 0 0
\(639\) 1993.46 0.123411
\(640\) 0 0
\(641\) −31764.4 −1.95729 −0.978643 0.205568i \(-0.934096\pi\)
−0.978643 + 0.205568i \(0.934096\pi\)
\(642\) 0 0
\(643\) 20740.6 1.27205 0.636026 0.771668i \(-0.280577\pi\)
0.636026 + 0.771668i \(0.280577\pi\)
\(644\) 0 0
\(645\) 5735.34 0.350122
\(646\) 0 0
\(647\) 23613.3 1.43483 0.717415 0.696646i \(-0.245325\pi\)
0.717415 + 0.696646i \(0.245325\pi\)
\(648\) 0 0
\(649\) −4222.28 −0.255376
\(650\) 0 0
\(651\) 3687.93 0.222030
\(652\) 0 0
\(653\) −1400.83 −0.0839489 −0.0419745 0.999119i \(-0.513365\pi\)
−0.0419745 + 0.999119i \(0.513365\pi\)
\(654\) 0 0
\(655\) 539.617 0.0321902
\(656\) 0 0
\(657\) −6305.93 −0.374456
\(658\) 0 0
\(659\) −19793.0 −1.16999 −0.584997 0.811036i \(-0.698904\pi\)
−0.584997 + 0.811036i \(0.698904\pi\)
\(660\) 0 0
\(661\) 29180.8 1.71710 0.858549 0.512731i \(-0.171366\pi\)
0.858549 + 0.512731i \(0.171366\pi\)
\(662\) 0 0
\(663\) 10219.2 0.598612
\(664\) 0 0
\(665\) −2718.39 −0.158518
\(666\) 0 0
\(667\) −7710.07 −0.447579
\(668\) 0 0
\(669\) 8431.76 0.487281
\(670\) 0 0
\(671\) −37054.6 −2.13186
\(672\) 0 0
\(673\) −9691.22 −0.555081 −0.277540 0.960714i \(-0.589519\pi\)
−0.277540 + 0.960714i \(0.589519\pi\)
\(674\) 0 0
\(675\) 1524.60 0.0869363
\(676\) 0 0
\(677\) −24254.8 −1.37694 −0.688469 0.725266i \(-0.741717\pi\)
−0.688469 + 0.725266i \(0.741717\pi\)
\(678\) 0 0
\(679\) −10930.3 −0.617772
\(680\) 0 0
\(681\) 17033.1 0.958459
\(682\) 0 0
\(683\) 27067.1 1.51639 0.758193 0.652030i \(-0.226082\pi\)
0.758193 + 0.652030i \(0.226082\pi\)
\(684\) 0 0
\(685\) 12544.1 0.699688
\(686\) 0 0
\(687\) 8264.61 0.458973
\(688\) 0 0
\(689\) −11487.6 −0.635183
\(690\) 0 0
\(691\) −6908.11 −0.380314 −0.190157 0.981754i \(-0.560900\pi\)
−0.190157 + 0.981754i \(0.560900\pi\)
\(692\) 0 0
\(693\) 4540.69 0.248898
\(694\) 0 0
\(695\) 17991.9 0.981973
\(696\) 0 0
\(697\) −11181.2 −0.607628
\(698\) 0 0
\(699\) 5724.86 0.309777
\(700\) 0 0
\(701\) −14121.5 −0.760856 −0.380428 0.924811i \(-0.624223\pi\)
−0.380428 + 0.924811i \(0.624223\pi\)
\(702\) 0 0
\(703\) 7386.74 0.396296
\(704\) 0 0
\(705\) −3458.10 −0.184737
\(706\) 0 0
\(707\) −11193.2 −0.595424
\(708\) 0 0
\(709\) −27122.6 −1.43669 −0.718343 0.695690i \(-0.755099\pi\)
−0.718343 + 0.695690i \(0.755099\pi\)
\(710\) 0 0
\(711\) 7124.24 0.375781
\(712\) 0 0
\(713\) 11448.1 0.601310
\(714\) 0 0
\(715\) −53381.8 −2.79212
\(716\) 0 0
\(717\) −3362.73 −0.175151
\(718\) 0 0
\(719\) 29577.0 1.53413 0.767064 0.641571i \(-0.221717\pi\)
0.767064 + 0.641571i \(0.221717\pi\)
\(720\) 0 0
\(721\) −8494.84 −0.438786
\(722\) 0 0
\(723\) 1781.51 0.0916393
\(724\) 0 0
\(725\) 6678.54 0.342117
\(726\) 0 0
\(727\) −34389.1 −1.75436 −0.877181 0.480160i \(-0.840579\pi\)
−0.877181 + 0.480160i \(0.840579\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 8792.65 0.444881
\(732\) 0 0
\(733\) 21859.4 1.10150 0.550748 0.834672i \(-0.314343\pi\)
0.550748 + 0.834672i \(0.314343\pi\)
\(734\) 0 0
\(735\) −1216.94 −0.0610713
\(736\) 0 0
\(737\) 9360.77 0.467854
\(738\) 0 0
\(739\) −16828.4 −0.837677 −0.418838 0.908061i \(-0.637563\pi\)
−0.418838 + 0.908061i \(0.637563\pi\)
\(740\) 0 0
\(741\) −12590.6 −0.624194
\(742\) 0 0
\(743\) −15612.2 −0.770871 −0.385436 0.922735i \(-0.625949\pi\)
−0.385436 + 0.922735i \(0.625949\pi\)
\(744\) 0 0
\(745\) −25648.0 −1.26130
\(746\) 0 0
\(747\) 7692.01 0.376755
\(748\) 0 0
\(749\) 9591.90 0.467931
\(750\) 0 0
\(751\) −5405.70 −0.262659 −0.131330 0.991339i \(-0.541925\pi\)
−0.131330 + 0.991339i \(0.541925\pi\)
\(752\) 0 0
\(753\) 21770.6 1.05361
\(754\) 0 0
\(755\) 6565.54 0.316483
\(756\) 0 0
\(757\) 7432.52 0.356855 0.178428 0.983953i \(-0.442899\pi\)
0.178428 + 0.983953i \(0.442899\pi\)
\(758\) 0 0
\(759\) 14095.2 0.674077
\(760\) 0 0
\(761\) −10851.9 −0.516927 −0.258463 0.966021i \(-0.583216\pi\)
−0.258463 + 0.966021i \(0.583216\pi\)
\(762\) 0 0
\(763\) −2603.07 −0.123509
\(764\) 0 0
\(765\) −2836.78 −0.134071
\(766\) 0 0
\(767\) 5241.16 0.246737
\(768\) 0 0
\(769\) 24016.7 1.12622 0.563112 0.826381i \(-0.309604\pi\)
0.563112 + 0.826381i \(0.309604\pi\)
\(770\) 0 0
\(771\) −9362.89 −0.437349
\(772\) 0 0
\(773\) −26716.0 −1.24309 −0.621544 0.783379i \(-0.713494\pi\)
−0.621544 + 0.783379i \(0.713494\pi\)
\(774\) 0 0
\(775\) −9916.45 −0.459625
\(776\) 0 0
\(777\) 3306.80 0.152678
\(778\) 0 0
\(779\) 13775.8 0.633595
\(780\) 0 0
\(781\) −15964.1 −0.731423
\(782\) 0 0
\(783\) 3193.39 0.145750
\(784\) 0 0
\(785\) −13133.6 −0.597142
\(786\) 0 0
\(787\) −35503.3 −1.60808 −0.804038 0.594578i \(-0.797319\pi\)
−0.804038 + 0.594578i \(0.797319\pi\)
\(788\) 0 0
\(789\) −9343.53 −0.421595
\(790\) 0 0
\(791\) −5121.10 −0.230196
\(792\) 0 0
\(793\) 45996.3 2.05974
\(794\) 0 0
\(795\) 3188.88 0.142261
\(796\) 0 0
\(797\) 9626.24 0.427828 0.213914 0.976852i \(-0.431379\pi\)
0.213914 + 0.976852i \(0.431379\pi\)
\(798\) 0 0
\(799\) −5301.49 −0.234735
\(800\) 0 0
\(801\) 8294.17 0.365868
\(802\) 0 0
\(803\) 50499.5 2.21929
\(804\) 0 0
\(805\) −3777.62 −0.165396
\(806\) 0 0
\(807\) 2409.76 0.105115
\(808\) 0 0
\(809\) 14915.6 0.648215 0.324107 0.946020i \(-0.394936\pi\)
0.324107 + 0.946020i \(0.394936\pi\)
\(810\) 0 0
\(811\) −39232.2 −1.69868 −0.849340 0.527845i \(-0.823000\pi\)
−0.849340 + 0.527845i \(0.823000\pi\)
\(812\) 0 0
\(813\) −15664.3 −0.675731
\(814\) 0 0
\(815\) −7828.48 −0.336466
\(816\) 0 0
\(817\) −10833.1 −0.463893
\(818\) 0 0
\(819\) −5636.41 −0.240479
\(820\) 0 0
\(821\) 1312.17 0.0557797 0.0278898 0.999611i \(-0.491121\pi\)
0.0278898 + 0.999611i \(0.491121\pi\)
\(822\) 0 0
\(823\) 32578.1 1.37983 0.689916 0.723890i \(-0.257648\pi\)
0.689916 + 0.723890i \(0.257648\pi\)
\(824\) 0 0
\(825\) −12209.4 −0.515246
\(826\) 0 0
\(827\) 15486.0 0.651149 0.325574 0.945516i \(-0.394442\pi\)
0.325574 + 0.945516i \(0.394442\pi\)
\(828\) 0 0
\(829\) −4875.60 −0.204266 −0.102133 0.994771i \(-0.532567\pi\)
−0.102133 + 0.994771i \(0.532567\pi\)
\(830\) 0 0
\(831\) 9829.11 0.410310
\(832\) 0 0
\(833\) −1865.64 −0.0776000
\(834\) 0 0
\(835\) 7268.61 0.301246
\(836\) 0 0
\(837\) −4741.62 −0.195812
\(838\) 0 0
\(839\) −11091.5 −0.456403 −0.228201 0.973614i \(-0.573284\pi\)
−0.228201 + 0.973614i \(0.573284\pi\)
\(840\) 0 0
\(841\) −10400.3 −0.426434
\(842\) 0 0
\(843\) −9622.50 −0.393139
\(844\) 0 0
\(845\) 48075.7 1.95722
\(846\) 0 0
\(847\) −27046.0 −1.09718
\(848\) 0 0
\(849\) −27485.4 −1.11107
\(850\) 0 0
\(851\) 10265.0 0.413489
\(852\) 0 0
\(853\) 1127.04 0.0452393 0.0226197 0.999744i \(-0.492799\pi\)
0.0226197 + 0.999744i \(0.492799\pi\)
\(854\) 0 0
\(855\) 3495.08 0.139800
\(856\) 0 0
\(857\) 31542.5 1.25726 0.628630 0.777705i \(-0.283616\pi\)
0.628630 + 0.777705i \(0.283616\pi\)
\(858\) 0 0
\(859\) 21430.0 0.851201 0.425600 0.904911i \(-0.360063\pi\)
0.425600 + 0.904911i \(0.360063\pi\)
\(860\) 0 0
\(861\) 6166.99 0.244100
\(862\) 0 0
\(863\) −29408.3 −1.15999 −0.579994 0.814621i \(-0.696945\pi\)
−0.579994 + 0.814621i \(0.696945\pi\)
\(864\) 0 0
\(865\) −14110.0 −0.554631
\(866\) 0 0
\(867\) 10390.0 0.406994
\(868\) 0 0
\(869\) −57052.8 −2.22714
\(870\) 0 0
\(871\) −11619.6 −0.452028
\(872\) 0 0
\(873\) 14053.3 0.544824
\(874\) 0 0
\(875\) 10515.9 0.406288
\(876\) 0 0
\(877\) −3247.51 −0.125041 −0.0625203 0.998044i \(-0.519914\pi\)
−0.0625203 + 0.998044i \(0.519914\pi\)
\(878\) 0 0
\(879\) 9831.27 0.377248
\(880\) 0 0
\(881\) 17925.3 0.685492 0.342746 0.939428i \(-0.388643\pi\)
0.342746 + 0.939428i \(0.388643\pi\)
\(882\) 0 0
\(883\) −649.227 −0.0247432 −0.0123716 0.999923i \(-0.503938\pi\)
−0.0123716 + 0.999923i \(0.503938\pi\)
\(884\) 0 0
\(885\) −1454.91 −0.0552615
\(886\) 0 0
\(887\) 281.201 0.0106446 0.00532232 0.999986i \(-0.498306\pi\)
0.00532232 + 0.999986i \(0.498306\pi\)
\(888\) 0 0
\(889\) −16702.4 −0.630123
\(890\) 0 0
\(891\) −5838.03 −0.219508
\(892\) 0 0
\(893\) 6531.75 0.244767
\(894\) 0 0
\(895\) 22706.0 0.848021
\(896\) 0 0
\(897\) −17496.6 −0.651275
\(898\) 0 0
\(899\) −20770.7 −0.770570
\(900\) 0 0
\(901\) 4888.76 0.180764
\(902\) 0 0
\(903\) −4849.60 −0.178721
\(904\) 0 0
\(905\) −28661.3 −1.05275
\(906\) 0 0
\(907\) −22119.6 −0.809780 −0.404890 0.914365i \(-0.632690\pi\)
−0.404890 + 0.914365i \(0.632690\pi\)
\(908\) 0 0
\(909\) 14391.3 0.525114
\(910\) 0 0
\(911\) 23370.6 0.849948 0.424974 0.905206i \(-0.360283\pi\)
0.424974 + 0.905206i \(0.360283\pi\)
\(912\) 0 0
\(913\) −61599.7 −2.23291
\(914\) 0 0
\(915\) −12768.3 −0.461319
\(916\) 0 0
\(917\) −456.282 −0.0164316
\(918\) 0 0
\(919\) −44334.6 −1.59136 −0.795682 0.605715i \(-0.792887\pi\)
−0.795682 + 0.605715i \(0.792887\pi\)
\(920\) 0 0
\(921\) −8246.44 −0.295037
\(922\) 0 0
\(923\) 19816.5 0.706681
\(924\) 0 0
\(925\) −8891.64 −0.316060
\(926\) 0 0
\(927\) 10921.9 0.386973
\(928\) 0 0
\(929\) −31674.4 −1.11862 −0.559312 0.828957i \(-0.688935\pi\)
−0.559312 + 0.828957i \(0.688935\pi\)
\(930\) 0 0
\(931\) 2298.58 0.0809162
\(932\) 0 0
\(933\) −5402.39 −0.189567
\(934\) 0 0
\(935\) 22717.7 0.794597
\(936\) 0 0
\(937\) 5825.76 0.203116 0.101558 0.994830i \(-0.467617\pi\)
0.101558 + 0.994830i \(0.467617\pi\)
\(938\) 0 0
\(939\) −14713.7 −0.511355
\(940\) 0 0
\(941\) 698.816 0.0242091 0.0121045 0.999927i \(-0.496147\pi\)
0.0121045 + 0.999927i \(0.496147\pi\)
\(942\) 0 0
\(943\) 19143.6 0.661083
\(944\) 0 0
\(945\) 1564.63 0.0538598
\(946\) 0 0
\(947\) 10938.8 0.375357 0.187679 0.982230i \(-0.439904\pi\)
0.187679 + 0.982230i \(0.439904\pi\)
\(948\) 0 0
\(949\) −62685.7 −2.14422
\(950\) 0 0
\(951\) −15051.1 −0.513214
\(952\) 0 0
\(953\) −34467.3 −1.17157 −0.585784 0.810467i \(-0.699213\pi\)
−0.585784 + 0.810467i \(0.699213\pi\)
\(954\) 0 0
\(955\) −38695.1 −1.31115
\(956\) 0 0
\(957\) −25573.5 −0.863819
\(958\) 0 0
\(959\) −10606.9 −0.357158
\(960\) 0 0
\(961\) 1049.82 0.0352396
\(962\) 0 0
\(963\) −12332.4 −0.412676
\(964\) 0 0
\(965\) −25614.9 −0.854478
\(966\) 0 0
\(967\) −24386.7 −0.810985 −0.405493 0.914098i \(-0.632900\pi\)
−0.405493 + 0.914098i \(0.632900\pi\)
\(968\) 0 0
\(969\) 5358.19 0.177637
\(970\) 0 0
\(971\) −33108.9 −1.09425 −0.547124 0.837052i \(-0.684277\pi\)
−0.547124 + 0.837052i \(0.684277\pi\)
\(972\) 0 0
\(973\) −15213.3 −0.501251
\(974\) 0 0
\(975\) 15155.7 0.497816
\(976\) 0 0
\(977\) −8633.92 −0.282726 −0.141363 0.989958i \(-0.545149\pi\)
−0.141363 + 0.989958i \(0.545149\pi\)
\(978\) 0 0
\(979\) −66421.9 −2.16839
\(980\) 0 0
\(981\) 3346.80 0.108925
\(982\) 0 0
\(983\) −22005.7 −0.714011 −0.357006 0.934102i \(-0.616202\pi\)
−0.357006 + 0.934102i \(0.616202\pi\)
\(984\) 0 0
\(985\) 36149.4 1.16936
\(986\) 0 0
\(987\) 2924.05 0.0942994
\(988\) 0 0
\(989\) −15054.2 −0.484019
\(990\) 0 0
\(991\) 15185.7 0.486772 0.243386 0.969930i \(-0.421742\pi\)
0.243386 + 0.969930i \(0.421742\pi\)
\(992\) 0 0
\(993\) −30080.3 −0.961298
\(994\) 0 0
\(995\) 10870.2 0.346341
\(996\) 0 0
\(997\) −41110.7 −1.30591 −0.652953 0.757398i \(-0.726470\pi\)
−0.652953 + 0.757398i \(0.726470\pi\)
\(998\) 0 0
\(999\) −4251.60 −0.134649
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.a.p.1.2 3
3.2 odd 2 2016.4.a.u.1.2 3
4.3 odd 2 672.4.a.r.1.2 yes 3
8.3 odd 2 1344.4.a.bs.1.2 3
8.5 even 2 1344.4.a.bu.1.2 3
12.11 even 2 2016.4.a.v.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.a.p.1.2 3 1.1 even 1 trivial
672.4.a.r.1.2 yes 3 4.3 odd 2
1344.4.a.bs.1.2 3 8.3 odd 2
1344.4.a.bu.1.2 3 8.5 even 2
2016.4.a.u.1.2 3 3.2 odd 2
2016.4.a.v.1.2 3 12.11 even 2