Properties

Label 672.4.a.m.1.2
Level $672$
Weight $4$
Character 672.1
Self dual yes
Analytic conductor $39.649$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(1,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{137}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.35235\) of defining polynomial
Character \(\chi\) \(=\) 672.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +16.7047 q^{5} +7.00000 q^{7} +9.00000 q^{9} +22.7047 q^{11} -11.4094 q^{13} +50.1141 q^{15} +3.29530 q^{17} +62.8188 q^{19} +21.0000 q^{21} +76.1141 q^{23} +154.047 q^{25} +27.0000 q^{27} -216.094 q^{29} +149.638 q^{31} +68.1141 q^{33} +116.933 q^{35} +187.866 q^{37} -34.2282 q^{39} -23.2953 q^{41} -214.094 q^{43} +150.342 q^{45} -187.960 q^{47} +49.0000 q^{49} +9.88590 q^{51} -122.685 q^{53} +379.275 q^{55} +188.456 q^{57} +225.409 q^{59} -546.188 q^{61} +63.0000 q^{63} -190.591 q^{65} -353.141 q^{67} +228.342 q^{69} +465.523 q^{71} +430.416 q^{73} +462.141 q^{75} +158.933 q^{77} +532.497 q^{79} +81.0000 q^{81} +185.181 q^{83} +55.0470 q^{85} -648.282 q^{87} -1597.31 q^{89} -79.8658 q^{91} +448.913 q^{93} +1049.37 q^{95} -1605.69 q^{97} +204.342 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 10 q^{5} + 14 q^{7} + 18 q^{9} + 22 q^{11} + 24 q^{13} + 30 q^{15} + 30 q^{17} + 32 q^{19} + 42 q^{21} + 82 q^{23} + 74 q^{25} + 54 q^{27} + 36 q^{29} + 112 q^{31} + 66 q^{33} + 70 q^{35}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 16.7047 1.49411 0.747057 0.664760i \(-0.231466\pi\)
0.747057 + 0.664760i \(0.231466\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 22.7047 0.622339 0.311169 0.950354i \(-0.399279\pi\)
0.311169 + 0.950354i \(0.399279\pi\)
\(12\) 0 0
\(13\) −11.4094 −0.243415 −0.121708 0.992566i \(-0.538837\pi\)
−0.121708 + 0.992566i \(0.538837\pi\)
\(14\) 0 0
\(15\) 50.1141 0.862627
\(16\) 0 0
\(17\) 3.29530 0.0470134 0.0235067 0.999724i \(-0.492517\pi\)
0.0235067 + 0.999724i \(0.492517\pi\)
\(18\) 0 0
\(19\) 62.8188 0.758506 0.379253 0.925293i \(-0.376181\pi\)
0.379253 + 0.925293i \(0.376181\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 76.1141 0.690039 0.345019 0.938596i \(-0.387872\pi\)
0.345019 + 0.938596i \(0.387872\pi\)
\(24\) 0 0
\(25\) 154.047 1.23238
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −216.094 −1.38371 −0.691856 0.722036i \(-0.743207\pi\)
−0.691856 + 0.722036i \(0.743207\pi\)
\(30\) 0 0
\(31\) 149.638 0.866958 0.433479 0.901164i \(-0.357286\pi\)
0.433479 + 0.901164i \(0.357286\pi\)
\(32\) 0 0
\(33\) 68.1141 0.359307
\(34\) 0 0
\(35\) 116.933 0.564722
\(36\) 0 0
\(37\) 187.866 0.834728 0.417364 0.908739i \(-0.362954\pi\)
0.417364 + 0.908739i \(0.362954\pi\)
\(38\) 0 0
\(39\) −34.2282 −0.140536
\(40\) 0 0
\(41\) −23.2953 −0.0887345 −0.0443673 0.999015i \(-0.514127\pi\)
−0.0443673 + 0.999015i \(0.514127\pi\)
\(42\) 0 0
\(43\) −214.094 −0.759280 −0.379640 0.925134i \(-0.623952\pi\)
−0.379640 + 0.925134i \(0.623952\pi\)
\(44\) 0 0
\(45\) 150.342 0.498038
\(46\) 0 0
\(47\) −187.960 −0.583335 −0.291668 0.956520i \(-0.594210\pi\)
−0.291668 + 0.956520i \(0.594210\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 9.88590 0.0271432
\(52\) 0 0
\(53\) −122.685 −0.317963 −0.158981 0.987282i \(-0.550821\pi\)
−0.158981 + 0.987282i \(0.550821\pi\)
\(54\) 0 0
\(55\) 379.275 0.929845
\(56\) 0 0
\(57\) 188.456 0.437924
\(58\) 0 0
\(59\) 225.409 0.497387 0.248693 0.968582i \(-0.419999\pi\)
0.248693 + 0.968582i \(0.419999\pi\)
\(60\) 0 0
\(61\) −546.188 −1.14643 −0.573215 0.819405i \(-0.694304\pi\)
−0.573215 + 0.819405i \(0.694304\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) −190.591 −0.363690
\(66\) 0 0
\(67\) −353.141 −0.643926 −0.321963 0.946752i \(-0.604343\pi\)
−0.321963 + 0.946752i \(0.604343\pi\)
\(68\) 0 0
\(69\) 228.342 0.398394
\(70\) 0 0
\(71\) 465.523 0.778133 0.389067 0.921210i \(-0.372798\pi\)
0.389067 + 0.921210i \(0.372798\pi\)
\(72\) 0 0
\(73\) 430.416 0.690088 0.345044 0.938587i \(-0.387864\pi\)
0.345044 + 0.938587i \(0.387864\pi\)
\(74\) 0 0
\(75\) 462.141 0.711513
\(76\) 0 0
\(77\) 158.933 0.235222
\(78\) 0 0
\(79\) 532.497 0.758361 0.379181 0.925323i \(-0.376206\pi\)
0.379181 + 0.925323i \(0.376206\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 185.181 0.244895 0.122447 0.992475i \(-0.460926\pi\)
0.122447 + 0.992475i \(0.460926\pi\)
\(84\) 0 0
\(85\) 55.0470 0.0702434
\(86\) 0 0
\(87\) −648.282 −0.798886
\(88\) 0 0
\(89\) −1597.31 −1.90241 −0.951205 0.308561i \(-0.900153\pi\)
−0.951205 + 0.308561i \(0.900153\pi\)
\(90\) 0 0
\(91\) −79.8658 −0.0920023
\(92\) 0 0
\(93\) 448.913 0.500539
\(94\) 0 0
\(95\) 1049.37 1.13329
\(96\) 0 0
\(97\) −1605.69 −1.68076 −0.840378 0.542001i \(-0.817667\pi\)
−0.840378 + 0.542001i \(0.817667\pi\)
\(98\) 0 0
\(99\) 204.342 0.207446
\(100\) 0 0
\(101\) 1359.94 1.33979 0.669896 0.742455i \(-0.266339\pi\)
0.669896 + 0.742455i \(0.266339\pi\)
\(102\) 0 0
\(103\) 1821.56 1.74256 0.871278 0.490789i \(-0.163291\pi\)
0.871278 + 0.490789i \(0.163291\pi\)
\(104\) 0 0
\(105\) 350.799 0.326042
\(106\) 0 0
\(107\) 1440.53 1.30151 0.650754 0.759289i \(-0.274453\pi\)
0.650754 + 0.759289i \(0.274453\pi\)
\(108\) 0 0
\(109\) 884.014 0.776818 0.388409 0.921487i \(-0.373025\pi\)
0.388409 + 0.921487i \(0.373025\pi\)
\(110\) 0 0
\(111\) 563.597 0.481931
\(112\) 0 0
\(113\) −1493.46 −1.24330 −0.621651 0.783294i \(-0.713538\pi\)
−0.621651 + 0.783294i \(0.713538\pi\)
\(114\) 0 0
\(115\) 1271.46 1.03100
\(116\) 0 0
\(117\) −102.685 −0.0811384
\(118\) 0 0
\(119\) 23.0671 0.0177694
\(120\) 0 0
\(121\) −815.497 −0.612695
\(122\) 0 0
\(123\) −69.8859 −0.0512309
\(124\) 0 0
\(125\) 485.221 0.347196
\(126\) 0 0
\(127\) 1421.41 0.993147 0.496574 0.867995i \(-0.334591\pi\)
0.496574 + 0.867995i \(0.334591\pi\)
\(128\) 0 0
\(129\) −642.282 −0.438370
\(130\) 0 0
\(131\) 755.087 0.503605 0.251803 0.967779i \(-0.418977\pi\)
0.251803 + 0.967779i \(0.418977\pi\)
\(132\) 0 0
\(133\) 439.732 0.286688
\(134\) 0 0
\(135\) 451.027 0.287542
\(136\) 0 0
\(137\) 1618.98 1.00963 0.504813 0.863229i \(-0.331561\pi\)
0.504813 + 0.863229i \(0.331561\pi\)
\(138\) 0 0
\(139\) −1458.93 −0.890248 −0.445124 0.895469i \(-0.646840\pi\)
−0.445124 + 0.895469i \(0.646840\pi\)
\(140\) 0 0
\(141\) −563.879 −0.336789
\(142\) 0 0
\(143\) −259.047 −0.151487
\(144\) 0 0
\(145\) −3609.79 −2.06742
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) 3270.07 1.79795 0.898974 0.438001i \(-0.144313\pi\)
0.898974 + 0.438001i \(0.144313\pi\)
\(150\) 0 0
\(151\) 1198.01 0.645649 0.322824 0.946459i \(-0.395368\pi\)
0.322824 + 0.946459i \(0.395368\pi\)
\(152\) 0 0
\(153\) 29.6577 0.0156711
\(154\) 0 0
\(155\) 2499.65 1.29533
\(156\) 0 0
\(157\) −1255.75 −0.638340 −0.319170 0.947697i \(-0.603404\pi\)
−0.319170 + 0.947697i \(0.603404\pi\)
\(158\) 0 0
\(159\) −368.054 −0.183576
\(160\) 0 0
\(161\) 532.799 0.260810
\(162\) 0 0
\(163\) 1208.23 0.580587 0.290294 0.956938i \(-0.406247\pi\)
0.290294 + 0.956938i \(0.406247\pi\)
\(164\) 0 0
\(165\) 1137.83 0.536846
\(166\) 0 0
\(167\) −2785.14 −1.29054 −0.645271 0.763953i \(-0.723256\pi\)
−0.645271 + 0.763953i \(0.723256\pi\)
\(168\) 0 0
\(169\) −2066.83 −0.940749
\(170\) 0 0
\(171\) 565.369 0.252835
\(172\) 0 0
\(173\) 875.832 0.384903 0.192452 0.981306i \(-0.438356\pi\)
0.192452 + 0.981306i \(0.438356\pi\)
\(174\) 0 0
\(175\) 1078.33 0.465794
\(176\) 0 0
\(177\) 676.228 0.287166
\(178\) 0 0
\(179\) −1148.72 −0.479661 −0.239830 0.970815i \(-0.577092\pi\)
−0.239830 + 0.970815i \(0.577092\pi\)
\(180\) 0 0
\(181\) 1738.15 0.713787 0.356894 0.934145i \(-0.383836\pi\)
0.356894 + 0.934145i \(0.383836\pi\)
\(182\) 0 0
\(183\) −1638.56 −0.661891
\(184\) 0 0
\(185\) 3138.24 1.24718
\(186\) 0 0
\(187\) 74.8188 0.0292582
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −3779.34 −1.43174 −0.715872 0.698231i \(-0.753971\pi\)
−0.715872 + 0.698231i \(0.753971\pi\)
\(192\) 0 0
\(193\) −3966.15 −1.47922 −0.739610 0.673035i \(-0.764990\pi\)
−0.739610 + 0.673035i \(0.764990\pi\)
\(194\) 0 0
\(195\) −571.772 −0.209977
\(196\) 0 0
\(197\) 2593.05 0.937802 0.468901 0.883251i \(-0.344650\pi\)
0.468901 + 0.883251i \(0.344650\pi\)
\(198\) 0 0
\(199\) −4407.76 −1.57014 −0.785070 0.619407i \(-0.787373\pi\)
−0.785070 + 0.619407i \(0.787373\pi\)
\(200\) 0 0
\(201\) −1059.42 −0.371771
\(202\) 0 0
\(203\) −1512.66 −0.522994
\(204\) 0 0
\(205\) −389.141 −0.132579
\(206\) 0 0
\(207\) 685.027 0.230013
\(208\) 0 0
\(209\) 1426.28 0.472048
\(210\) 0 0
\(211\) −3745.13 −1.22192 −0.610960 0.791661i \(-0.709217\pi\)
−0.610960 + 0.791661i \(0.709217\pi\)
\(212\) 0 0
\(213\) 1396.57 0.449256
\(214\) 0 0
\(215\) −3576.38 −1.13445
\(216\) 0 0
\(217\) 1047.46 0.327679
\(218\) 0 0
\(219\) 1291.25 0.398422
\(220\) 0 0
\(221\) −37.5974 −0.0114438
\(222\) 0 0
\(223\) −1199.17 −0.360100 −0.180050 0.983657i \(-0.557626\pi\)
−0.180050 + 0.983657i \(0.557626\pi\)
\(224\) 0 0
\(225\) 1386.42 0.410792
\(226\) 0 0
\(227\) 4378.08 1.28010 0.640052 0.768332i \(-0.278913\pi\)
0.640052 + 0.768332i \(0.278913\pi\)
\(228\) 0 0
\(229\) −5518.82 −1.59255 −0.796275 0.604935i \(-0.793199\pi\)
−0.796275 + 0.604935i \(0.793199\pi\)
\(230\) 0 0
\(231\) 476.799 0.135805
\(232\) 0 0
\(233\) 2511.79 0.706234 0.353117 0.935579i \(-0.385122\pi\)
0.353117 + 0.935579i \(0.385122\pi\)
\(234\) 0 0
\(235\) −3139.81 −0.871569
\(236\) 0 0
\(237\) 1597.49 0.437840
\(238\) 0 0
\(239\) 7146.56 1.93419 0.967097 0.254408i \(-0.0818805\pi\)
0.967097 + 0.254408i \(0.0818805\pi\)
\(240\) 0 0
\(241\) −332.563 −0.0888892 −0.0444446 0.999012i \(-0.514152\pi\)
−0.0444446 + 0.999012i \(0.514152\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 818.530 0.213445
\(246\) 0 0
\(247\) −716.725 −0.184632
\(248\) 0 0
\(249\) 555.544 0.141390
\(250\) 0 0
\(251\) −4833.25 −1.21543 −0.607713 0.794157i \(-0.707913\pi\)
−0.607713 + 0.794157i \(0.707913\pi\)
\(252\) 0 0
\(253\) 1728.15 0.429438
\(254\) 0 0
\(255\) 165.141 0.0405550
\(256\) 0 0
\(257\) −1372.18 −0.333052 −0.166526 0.986037i \(-0.553255\pi\)
−0.166526 + 0.986037i \(0.553255\pi\)
\(258\) 0 0
\(259\) 1315.06 0.315498
\(260\) 0 0
\(261\) −1944.85 −0.461237
\(262\) 0 0
\(263\) −1170.60 −0.274457 −0.137228 0.990539i \(-0.543819\pi\)
−0.137228 + 0.990539i \(0.543819\pi\)
\(264\) 0 0
\(265\) −2049.41 −0.475073
\(266\) 0 0
\(267\) −4791.93 −1.09836
\(268\) 0 0
\(269\) 4260.36 0.965645 0.482822 0.875718i \(-0.339612\pi\)
0.482822 + 0.875718i \(0.339612\pi\)
\(270\) 0 0
\(271\) −2574.85 −0.577161 −0.288581 0.957456i \(-0.593183\pi\)
−0.288581 + 0.957456i \(0.593183\pi\)
\(272\) 0 0
\(273\) −239.597 −0.0531176
\(274\) 0 0
\(275\) 3497.59 0.766955
\(276\) 0 0
\(277\) −6453.13 −1.39975 −0.699875 0.714265i \(-0.746761\pi\)
−0.699875 + 0.714265i \(0.746761\pi\)
\(278\) 0 0
\(279\) 1346.74 0.288986
\(280\) 0 0
\(281\) 349.664 0.0742321 0.0371160 0.999311i \(-0.488183\pi\)
0.0371160 + 0.999311i \(0.488183\pi\)
\(282\) 0 0
\(283\) −699.865 −0.147006 −0.0735029 0.997295i \(-0.523418\pi\)
−0.0735029 + 0.997295i \(0.523418\pi\)
\(284\) 0 0
\(285\) 3148.11 0.654308
\(286\) 0 0
\(287\) −163.067 −0.0335385
\(288\) 0 0
\(289\) −4902.14 −0.997790
\(290\) 0 0
\(291\) −4817.07 −0.970385
\(292\) 0 0
\(293\) 162.087 0.0323182 0.0161591 0.999869i \(-0.494856\pi\)
0.0161591 + 0.999869i \(0.494856\pi\)
\(294\) 0 0
\(295\) 3765.40 0.743152
\(296\) 0 0
\(297\) 613.027 0.119769
\(298\) 0 0
\(299\) −868.416 −0.167966
\(300\) 0 0
\(301\) −1498.66 −0.286981
\(302\) 0 0
\(303\) 4079.82 0.773530
\(304\) 0 0
\(305\) −9123.91 −1.71290
\(306\) 0 0
\(307\) 2185.16 0.406233 0.203116 0.979155i \(-0.434893\pi\)
0.203116 + 0.979155i \(0.434893\pi\)
\(308\) 0 0
\(309\) 5464.67 1.00607
\(310\) 0 0
\(311\) −4763.42 −0.868517 −0.434259 0.900788i \(-0.642990\pi\)
−0.434259 + 0.900788i \(0.642990\pi\)
\(312\) 0 0
\(313\) −1080.84 −0.195185 −0.0975926 0.995226i \(-0.531114\pi\)
−0.0975926 + 0.995226i \(0.531114\pi\)
\(314\) 0 0
\(315\) 1052.40 0.188241
\(316\) 0 0
\(317\) −5832.91 −1.03347 −0.516734 0.856146i \(-0.672852\pi\)
−0.516734 + 0.856146i \(0.672852\pi\)
\(318\) 0 0
\(319\) −4906.35 −0.861137
\(320\) 0 0
\(321\) 4321.59 0.751426
\(322\) 0 0
\(323\) 207.007 0.0356600
\(324\) 0 0
\(325\) −1757.58 −0.299979
\(326\) 0 0
\(327\) 2652.04 0.448496
\(328\) 0 0
\(329\) −1315.72 −0.220480
\(330\) 0 0
\(331\) −3483.11 −0.578397 −0.289198 0.957269i \(-0.593389\pi\)
−0.289198 + 0.957269i \(0.593389\pi\)
\(332\) 0 0
\(333\) 1690.79 0.278243
\(334\) 0 0
\(335\) −5899.11 −0.962099
\(336\) 0 0
\(337\) −6625.03 −1.07089 −0.535443 0.844571i \(-0.679855\pi\)
−0.535443 + 0.844571i \(0.679855\pi\)
\(338\) 0 0
\(339\) −4480.39 −0.717821
\(340\) 0 0
\(341\) 3397.48 0.539542
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 3814.39 0.595246
\(346\) 0 0
\(347\) −5567.83 −0.861374 −0.430687 0.902501i \(-0.641729\pi\)
−0.430687 + 0.902501i \(0.641729\pi\)
\(348\) 0 0
\(349\) 4552.55 0.698259 0.349130 0.937074i \(-0.386477\pi\)
0.349130 + 0.937074i \(0.386477\pi\)
\(350\) 0 0
\(351\) −308.054 −0.0468453
\(352\) 0 0
\(353\) −4627.15 −0.697672 −0.348836 0.937184i \(-0.613423\pi\)
−0.348836 + 0.937184i \(0.613423\pi\)
\(354\) 0 0
\(355\) 7776.43 1.16262
\(356\) 0 0
\(357\) 69.2013 0.0102592
\(358\) 0 0
\(359\) −8347.95 −1.22726 −0.613632 0.789592i \(-0.710292\pi\)
−0.613632 + 0.789592i \(0.710292\pi\)
\(360\) 0 0
\(361\) −2912.80 −0.424668
\(362\) 0 0
\(363\) −2446.49 −0.353739
\(364\) 0 0
\(365\) 7189.97 1.03107
\(366\) 0 0
\(367\) −11015.9 −1.56683 −0.783417 0.621497i \(-0.786525\pi\)
−0.783417 + 0.621497i \(0.786525\pi\)
\(368\) 0 0
\(369\) −209.658 −0.0295782
\(370\) 0 0
\(371\) −858.792 −0.120179
\(372\) 0 0
\(373\) −3459.93 −0.480291 −0.240145 0.970737i \(-0.577195\pi\)
−0.240145 + 0.970737i \(0.577195\pi\)
\(374\) 0 0
\(375\) 1455.66 0.200454
\(376\) 0 0
\(377\) 2465.50 0.336817
\(378\) 0 0
\(379\) −13137.3 −1.78053 −0.890264 0.455445i \(-0.849480\pi\)
−0.890264 + 0.455445i \(0.849480\pi\)
\(380\) 0 0
\(381\) 4264.23 0.573394
\(382\) 0 0
\(383\) −11542.6 −1.53995 −0.769973 0.638076i \(-0.779731\pi\)
−0.769973 + 0.638076i \(0.779731\pi\)
\(384\) 0 0
\(385\) 2654.93 0.351448
\(386\) 0 0
\(387\) −1926.85 −0.253093
\(388\) 0 0
\(389\) −13580.9 −1.77012 −0.885061 0.465475i \(-0.845884\pi\)
−0.885061 + 0.465475i \(0.845884\pi\)
\(390\) 0 0
\(391\) 250.819 0.0324411
\(392\) 0 0
\(393\) 2265.26 0.290757
\(394\) 0 0
\(395\) 8895.20 1.13308
\(396\) 0 0
\(397\) 15560.6 1.96717 0.983584 0.180450i \(-0.0577555\pi\)
0.983584 + 0.180450i \(0.0577555\pi\)
\(398\) 0 0
\(399\) 1319.19 0.165520
\(400\) 0 0
\(401\) 320.322 0.0398906 0.0199453 0.999801i \(-0.493651\pi\)
0.0199453 + 0.999801i \(0.493651\pi\)
\(402\) 0 0
\(403\) −1707.28 −0.211031
\(404\) 0 0
\(405\) 1353.08 0.166013
\(406\) 0 0
\(407\) 4265.44 0.519484
\(408\) 0 0
\(409\) −2303.79 −0.278521 −0.139260 0.990256i \(-0.544472\pi\)
−0.139260 + 0.990256i \(0.544472\pi\)
\(410\) 0 0
\(411\) 4856.94 0.582908
\(412\) 0 0
\(413\) 1577.87 0.187994
\(414\) 0 0
\(415\) 3093.40 0.365901
\(416\) 0 0
\(417\) −4376.78 −0.513985
\(418\) 0 0
\(419\) −9770.19 −1.13915 −0.569576 0.821938i \(-0.692893\pi\)
−0.569576 + 0.821938i \(0.692893\pi\)
\(420\) 0 0
\(421\) −918.792 −0.106364 −0.0531819 0.998585i \(-0.516936\pi\)
−0.0531819 + 0.998585i \(0.516936\pi\)
\(422\) 0 0
\(423\) −1691.64 −0.194445
\(424\) 0 0
\(425\) 507.631 0.0579382
\(426\) 0 0
\(427\) −3823.32 −0.433310
\(428\) 0 0
\(429\) −777.141 −0.0874609
\(430\) 0 0
\(431\) 12570.7 1.40489 0.702446 0.711737i \(-0.252091\pi\)
0.702446 + 0.711737i \(0.252091\pi\)
\(432\) 0 0
\(433\) 8107.80 0.899852 0.449926 0.893066i \(-0.351450\pi\)
0.449926 + 0.893066i \(0.351450\pi\)
\(434\) 0 0
\(435\) −10829.4 −1.19363
\(436\) 0 0
\(437\) 4781.40 0.523399
\(438\) 0 0
\(439\) 12395.2 1.34758 0.673792 0.738921i \(-0.264664\pi\)
0.673792 + 0.738921i \(0.264664\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 934.503 0.100225 0.0501124 0.998744i \(-0.484042\pi\)
0.0501124 + 0.998744i \(0.484042\pi\)
\(444\) 0 0
\(445\) −26682.6 −2.84242
\(446\) 0 0
\(447\) 9810.20 1.03805
\(448\) 0 0
\(449\) 13725.7 1.44266 0.721331 0.692591i \(-0.243531\pi\)
0.721331 + 0.692591i \(0.243531\pi\)
\(450\) 0 0
\(451\) −528.913 −0.0552229
\(452\) 0 0
\(453\) 3594.04 0.372765
\(454\) 0 0
\(455\) −1334.13 −0.137462
\(456\) 0 0
\(457\) −15676.9 −1.60467 −0.802337 0.596872i \(-0.796410\pi\)
−0.802337 + 0.596872i \(0.796410\pi\)
\(458\) 0 0
\(459\) 88.9731 0.00904773
\(460\) 0 0
\(461\) 19210.4 1.94082 0.970410 0.241463i \(-0.0776273\pi\)
0.970410 + 0.241463i \(0.0776273\pi\)
\(462\) 0 0
\(463\) −2935.18 −0.294621 −0.147310 0.989090i \(-0.547062\pi\)
−0.147310 + 0.989090i \(0.547062\pi\)
\(464\) 0 0
\(465\) 7498.95 0.747862
\(466\) 0 0
\(467\) −10685.1 −1.05878 −0.529389 0.848379i \(-0.677579\pi\)
−0.529389 + 0.848379i \(0.677579\pi\)
\(468\) 0 0
\(469\) −2471.99 −0.243381
\(470\) 0 0
\(471\) −3767.24 −0.368546
\(472\) 0 0
\(473\) −4860.94 −0.472529
\(474\) 0 0
\(475\) 9677.05 0.934765
\(476\) 0 0
\(477\) −1104.16 −0.105988
\(478\) 0 0
\(479\) 6984.90 0.666280 0.333140 0.942877i \(-0.391892\pi\)
0.333140 + 0.942877i \(0.391892\pi\)
\(480\) 0 0
\(481\) −2143.44 −0.203186
\(482\) 0 0
\(483\) 1598.40 0.150579
\(484\) 0 0
\(485\) −26822.6 −2.51124
\(486\) 0 0
\(487\) 1157.50 0.107703 0.0538516 0.998549i \(-0.482850\pi\)
0.0538516 + 0.998549i \(0.482850\pi\)
\(488\) 0 0
\(489\) 3624.68 0.335202
\(490\) 0 0
\(491\) 19036.2 1.74968 0.874839 0.484414i \(-0.160967\pi\)
0.874839 + 0.484414i \(0.160967\pi\)
\(492\) 0 0
\(493\) −712.095 −0.0650530
\(494\) 0 0
\(495\) 3413.48 0.309948
\(496\) 0 0
\(497\) 3258.66 0.294107
\(498\) 0 0
\(499\) 13623.3 1.22217 0.611085 0.791565i \(-0.290733\pi\)
0.611085 + 0.791565i \(0.290733\pi\)
\(500\) 0 0
\(501\) −8355.42 −0.745095
\(502\) 0 0
\(503\) −3211.73 −0.284700 −0.142350 0.989816i \(-0.545466\pi\)
−0.142350 + 0.989816i \(0.545466\pi\)
\(504\) 0 0
\(505\) 22717.4 2.00180
\(506\) 0 0
\(507\) −6200.48 −0.543142
\(508\) 0 0
\(509\) 5483.82 0.477536 0.238768 0.971077i \(-0.423256\pi\)
0.238768 + 0.971077i \(0.423256\pi\)
\(510\) 0 0
\(511\) 3012.91 0.260829
\(512\) 0 0
\(513\) 1696.11 0.145975
\(514\) 0 0
\(515\) 30428.6 2.60358
\(516\) 0 0
\(517\) −4267.57 −0.363032
\(518\) 0 0
\(519\) 2627.50 0.222224
\(520\) 0 0
\(521\) 16008.9 1.34618 0.673091 0.739560i \(-0.264966\pi\)
0.673091 + 0.739560i \(0.264966\pi\)
\(522\) 0 0
\(523\) 12791.7 1.06948 0.534742 0.845016i \(-0.320409\pi\)
0.534742 + 0.845016i \(0.320409\pi\)
\(524\) 0 0
\(525\) 3234.99 0.268926
\(526\) 0 0
\(527\) 493.101 0.0407586
\(528\) 0 0
\(529\) −6373.64 −0.523847
\(530\) 0 0
\(531\) 2028.68 0.165796
\(532\) 0 0
\(533\) 265.785 0.0215993
\(534\) 0 0
\(535\) 24063.6 1.94460
\(536\) 0 0
\(537\) −3446.15 −0.276932
\(538\) 0 0
\(539\) 1112.53 0.0889055
\(540\) 0 0
\(541\) 7091.14 0.563534 0.281767 0.959483i \(-0.409079\pi\)
0.281767 + 0.959483i \(0.409079\pi\)
\(542\) 0 0
\(543\) 5214.44 0.412105
\(544\) 0 0
\(545\) 14767.2 1.16065
\(546\) 0 0
\(547\) −4704.93 −0.367766 −0.183883 0.982948i \(-0.558867\pi\)
−0.183883 + 0.982948i \(0.558867\pi\)
\(548\) 0 0
\(549\) −4915.69 −0.382143
\(550\) 0 0
\(551\) −13574.8 −1.04955
\(552\) 0 0
\(553\) 3727.48 0.286634
\(554\) 0 0
\(555\) 9414.73 0.720059
\(556\) 0 0
\(557\) 3295.22 0.250670 0.125335 0.992114i \(-0.459999\pi\)
0.125335 + 0.992114i \(0.459999\pi\)
\(558\) 0 0
\(559\) 2442.68 0.184820
\(560\) 0 0
\(561\) 224.456 0.0168923
\(562\) 0 0
\(563\) 6620.17 0.495572 0.247786 0.968815i \(-0.420297\pi\)
0.247786 + 0.968815i \(0.420297\pi\)
\(564\) 0 0
\(565\) −24947.9 −1.85764
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) 16960.6 1.24961 0.624804 0.780781i \(-0.285179\pi\)
0.624804 + 0.780781i \(0.285179\pi\)
\(570\) 0 0
\(571\) −15713.6 −1.15165 −0.575826 0.817572i \(-0.695320\pi\)
−0.575826 + 0.817572i \(0.695320\pi\)
\(572\) 0 0
\(573\) −11338.0 −0.826618
\(574\) 0 0
\(575\) 11725.1 0.850387
\(576\) 0 0
\(577\) 26793.7 1.93317 0.966583 0.256354i \(-0.0825214\pi\)
0.966583 + 0.256354i \(0.0825214\pi\)
\(578\) 0 0
\(579\) −11898.4 −0.854028
\(580\) 0 0
\(581\) 1296.27 0.0925616
\(582\) 0 0
\(583\) −2785.52 −0.197880
\(584\) 0 0
\(585\) −1715.32 −0.121230
\(586\) 0 0
\(587\) 25425.5 1.78777 0.893885 0.448296i \(-0.147969\pi\)
0.893885 + 0.448296i \(0.147969\pi\)
\(588\) 0 0
\(589\) 9400.05 0.657593
\(590\) 0 0
\(591\) 7779.14 0.541440
\(592\) 0 0
\(593\) −10089.0 −0.698660 −0.349330 0.937000i \(-0.613591\pi\)
−0.349330 + 0.937000i \(0.613591\pi\)
\(594\) 0 0
\(595\) 385.329 0.0265495
\(596\) 0 0
\(597\) −13223.3 −0.906520
\(598\) 0 0
\(599\) −17402.3 −1.18704 −0.593520 0.804819i \(-0.702262\pi\)
−0.593520 + 0.804819i \(0.702262\pi\)
\(600\) 0 0
\(601\) 2731.58 0.185397 0.0926985 0.995694i \(-0.470451\pi\)
0.0926985 + 0.995694i \(0.470451\pi\)
\(602\) 0 0
\(603\) −3178.27 −0.214642
\(604\) 0 0
\(605\) −13622.6 −0.915436
\(606\) 0 0
\(607\) −5374.07 −0.359352 −0.179676 0.983726i \(-0.557505\pi\)
−0.179676 + 0.983726i \(0.557505\pi\)
\(608\) 0 0
\(609\) −4537.97 −0.301951
\(610\) 0 0
\(611\) 2144.51 0.141993
\(612\) 0 0
\(613\) −24411.6 −1.60844 −0.804222 0.594330i \(-0.797417\pi\)
−0.804222 + 0.594330i \(0.797417\pi\)
\(614\) 0 0
\(615\) −1167.42 −0.0765448
\(616\) 0 0
\(617\) 8070.23 0.526572 0.263286 0.964718i \(-0.415194\pi\)
0.263286 + 0.964718i \(0.415194\pi\)
\(618\) 0 0
\(619\) −22451.4 −1.45783 −0.728915 0.684604i \(-0.759975\pi\)
−0.728915 + 0.684604i \(0.759975\pi\)
\(620\) 0 0
\(621\) 2055.08 0.132798
\(622\) 0 0
\(623\) −11181.2 −0.719043
\(624\) 0 0
\(625\) −11150.4 −0.713625
\(626\) 0 0
\(627\) 4278.85 0.272537
\(628\) 0 0
\(629\) 619.074 0.0392434
\(630\) 0 0
\(631\) 23936.0 1.51011 0.755054 0.655662i \(-0.227610\pi\)
0.755054 + 0.655662i \(0.227610\pi\)
\(632\) 0 0
\(633\) −11235.4 −0.705476
\(634\) 0 0
\(635\) 23744.2 1.48387
\(636\) 0 0
\(637\) −559.061 −0.0347736
\(638\) 0 0
\(639\) 4189.71 0.259378
\(640\) 0 0
\(641\) −10470.3 −0.645164 −0.322582 0.946542i \(-0.604551\pi\)
−0.322582 + 0.946542i \(0.604551\pi\)
\(642\) 0 0
\(643\) 7322.20 0.449081 0.224541 0.974465i \(-0.427912\pi\)
0.224541 + 0.974465i \(0.427912\pi\)
\(644\) 0 0
\(645\) −10729.1 −0.654975
\(646\) 0 0
\(647\) 10714.9 0.651074 0.325537 0.945529i \(-0.394455\pi\)
0.325537 + 0.945529i \(0.394455\pi\)
\(648\) 0 0
\(649\) 5117.85 0.309543
\(650\) 0 0
\(651\) 3142.39 0.189186
\(652\) 0 0
\(653\) 265.840 0.0159313 0.00796565 0.999968i \(-0.497464\pi\)
0.00796565 + 0.999968i \(0.497464\pi\)
\(654\) 0 0
\(655\) 12613.5 0.752443
\(656\) 0 0
\(657\) 3873.75 0.230029
\(658\) 0 0
\(659\) −1989.35 −0.117593 −0.0587967 0.998270i \(-0.518726\pi\)
−0.0587967 + 0.998270i \(0.518726\pi\)
\(660\) 0 0
\(661\) −5879.26 −0.345956 −0.172978 0.984926i \(-0.555339\pi\)
−0.172978 + 0.984926i \(0.555339\pi\)
\(662\) 0 0
\(663\) −112.792 −0.00660707
\(664\) 0 0
\(665\) 7345.58 0.428345
\(666\) 0 0
\(667\) −16447.8 −0.954815
\(668\) 0 0
\(669\) −3597.50 −0.207904
\(670\) 0 0
\(671\) −12401.0 −0.713467
\(672\) 0 0
\(673\) −16670.1 −0.954805 −0.477403 0.878685i \(-0.658422\pi\)
−0.477403 + 0.878685i \(0.658422\pi\)
\(674\) 0 0
\(675\) 4159.27 0.237171
\(676\) 0 0
\(677\) −13648.0 −0.774795 −0.387398 0.921913i \(-0.626626\pi\)
−0.387398 + 0.921913i \(0.626626\pi\)
\(678\) 0 0
\(679\) −11239.8 −0.635266
\(680\) 0 0
\(681\) 13134.2 0.739068
\(682\) 0 0
\(683\) 811.575 0.0454671 0.0227336 0.999742i \(-0.492763\pi\)
0.0227336 + 0.999742i \(0.492763\pi\)
\(684\) 0 0
\(685\) 27044.6 1.50850
\(686\) 0 0
\(687\) −16556.5 −0.919459
\(688\) 0 0
\(689\) 1399.76 0.0773970
\(690\) 0 0
\(691\) −4615.20 −0.254082 −0.127041 0.991897i \(-0.540548\pi\)
−0.127041 + 0.991897i \(0.540548\pi\)
\(692\) 0 0
\(693\) 1430.40 0.0784073
\(694\) 0 0
\(695\) −24370.9 −1.33013
\(696\) 0 0
\(697\) −76.7650 −0.00417171
\(698\) 0 0
\(699\) 7535.36 0.407744
\(700\) 0 0
\(701\) −6054.51 −0.326214 −0.163107 0.986608i \(-0.552152\pi\)
−0.163107 + 0.986608i \(0.552152\pi\)
\(702\) 0 0
\(703\) 11801.5 0.633147
\(704\) 0 0
\(705\) −9419.44 −0.503201
\(706\) 0 0
\(707\) 9519.58 0.506394
\(708\) 0 0
\(709\) 19774.2 1.04744 0.523721 0.851890i \(-0.324543\pi\)
0.523721 + 0.851890i \(0.324543\pi\)
\(710\) 0 0
\(711\) 4792.47 0.252787
\(712\) 0 0
\(713\) 11389.5 0.598235
\(714\) 0 0
\(715\) −4327.30 −0.226338
\(716\) 0 0
\(717\) 21439.7 1.11671
\(718\) 0 0
\(719\) −26139.8 −1.35584 −0.677920 0.735135i \(-0.737119\pi\)
−0.677920 + 0.735135i \(0.737119\pi\)
\(720\) 0 0
\(721\) 12750.9 0.658625
\(722\) 0 0
\(723\) −997.690 −0.0513202
\(724\) 0 0
\(725\) −33288.6 −1.70525
\(726\) 0 0
\(727\) 19081.7 0.973454 0.486727 0.873554i \(-0.338191\pi\)
0.486727 + 0.873554i \(0.338191\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −705.504 −0.0356963
\(732\) 0 0
\(733\) −34359.5 −1.73138 −0.865688 0.500584i \(-0.833119\pi\)
−0.865688 + 0.500584i \(0.833119\pi\)
\(734\) 0 0
\(735\) 2455.59 0.123232
\(736\) 0 0
\(737\) −8017.96 −0.400740
\(738\) 0 0
\(739\) 4097.73 0.203975 0.101988 0.994786i \(-0.467480\pi\)
0.101988 + 0.994786i \(0.467480\pi\)
\(740\) 0 0
\(741\) −2150.17 −0.106597
\(742\) 0 0
\(743\) 5253.98 0.259421 0.129711 0.991552i \(-0.458595\pi\)
0.129711 + 0.991552i \(0.458595\pi\)
\(744\) 0 0
\(745\) 54625.5 2.68634
\(746\) 0 0
\(747\) 1666.63 0.0816316
\(748\) 0 0
\(749\) 10083.7 0.491924
\(750\) 0 0
\(751\) −128.052 −0.00622195 −0.00311098 0.999995i \(-0.500990\pi\)
−0.00311098 + 0.999995i \(0.500990\pi\)
\(752\) 0 0
\(753\) −14499.7 −0.701727
\(754\) 0 0
\(755\) 20012.5 0.964673
\(756\) 0 0
\(757\) 16625.5 0.798235 0.399117 0.916900i \(-0.369317\pi\)
0.399117 + 0.916900i \(0.369317\pi\)
\(758\) 0 0
\(759\) 5184.44 0.247936
\(760\) 0 0
\(761\) −29091.6 −1.38577 −0.692885 0.721048i \(-0.743661\pi\)
−0.692885 + 0.721048i \(0.743661\pi\)
\(762\) 0 0
\(763\) 6188.10 0.293610
\(764\) 0 0
\(765\) 495.423 0.0234145
\(766\) 0 0
\(767\) −2571.79 −0.121071
\(768\) 0 0
\(769\) −2004.69 −0.0940063 −0.0470032 0.998895i \(-0.514967\pi\)
−0.0470032 + 0.998895i \(0.514967\pi\)
\(770\) 0 0
\(771\) −4116.54 −0.192288
\(772\) 0 0
\(773\) 10983.8 0.511071 0.255536 0.966800i \(-0.417748\pi\)
0.255536 + 0.966800i \(0.417748\pi\)
\(774\) 0 0
\(775\) 23051.2 1.06842
\(776\) 0 0
\(777\) 3945.18 0.182153
\(778\) 0 0
\(779\) −1463.38 −0.0673057
\(780\) 0 0
\(781\) 10569.6 0.484262
\(782\) 0 0
\(783\) −5834.54 −0.266295
\(784\) 0 0
\(785\) −20976.8 −0.953753
\(786\) 0 0
\(787\) −21513.7 −0.974436 −0.487218 0.873280i \(-0.661988\pi\)
−0.487218 + 0.873280i \(0.661988\pi\)
\(788\) 0 0
\(789\) −3511.79 −0.158458
\(790\) 0 0
\(791\) −10454.2 −0.469924
\(792\) 0 0
\(793\) 6231.68 0.279058
\(794\) 0 0
\(795\) −6148.23 −0.274283
\(796\) 0 0
\(797\) 5231.43 0.232505 0.116253 0.993220i \(-0.462912\pi\)
0.116253 + 0.993220i \(0.462912\pi\)
\(798\) 0 0
\(799\) −619.384 −0.0274246
\(800\) 0 0
\(801\) −14375.8 −0.634136
\(802\) 0 0
\(803\) 9772.47 0.429468
\(804\) 0 0
\(805\) 8900.24 0.389680
\(806\) 0 0
\(807\) 12781.1 0.557515
\(808\) 0 0
\(809\) −18118.0 −0.787384 −0.393692 0.919242i \(-0.628802\pi\)
−0.393692 + 0.919242i \(0.628802\pi\)
\(810\) 0 0
\(811\) 34536.2 1.49535 0.747676 0.664064i \(-0.231170\pi\)
0.747676 + 0.664064i \(0.231170\pi\)
\(812\) 0 0
\(813\) −7724.54 −0.333224
\(814\) 0 0
\(815\) 20183.1 0.867464
\(816\) 0 0
\(817\) −13449.1 −0.575919
\(818\) 0 0
\(819\) −718.792 −0.0306674
\(820\) 0 0
\(821\) −10122.4 −0.430297 −0.215148 0.976581i \(-0.569024\pi\)
−0.215148 + 0.976581i \(0.569024\pi\)
\(822\) 0 0
\(823\) −1623.67 −0.0687696 −0.0343848 0.999409i \(-0.510947\pi\)
−0.0343848 + 0.999409i \(0.510947\pi\)
\(824\) 0 0
\(825\) 10492.8 0.442802
\(826\) 0 0
\(827\) −23112.3 −0.971819 −0.485910 0.874009i \(-0.661512\pi\)
−0.485910 + 0.874009i \(0.661512\pi\)
\(828\) 0 0
\(829\) 23292.5 0.975851 0.487925 0.872885i \(-0.337754\pi\)
0.487925 + 0.872885i \(0.337754\pi\)
\(830\) 0 0
\(831\) −19359.4 −0.808146
\(832\) 0 0
\(833\) 161.470 0.00671620
\(834\) 0 0
\(835\) −46524.9 −1.92822
\(836\) 0 0
\(837\) 4040.22 0.166846
\(838\) 0 0
\(839\) −21603.7 −0.888968 −0.444484 0.895787i \(-0.646613\pi\)
−0.444484 + 0.895787i \(0.646613\pi\)
\(840\) 0 0
\(841\) 22307.6 0.914659
\(842\) 0 0
\(843\) 1048.99 0.0428579
\(844\) 0 0
\(845\) −34525.7 −1.40559
\(846\) 0 0
\(847\) −5708.48 −0.231577
\(848\) 0 0
\(849\) −2099.60 −0.0848739
\(850\) 0 0
\(851\) 14299.2 0.575995
\(852\) 0 0
\(853\) 38664.5 1.55199 0.775995 0.630739i \(-0.217248\pi\)
0.775995 + 0.630739i \(0.217248\pi\)
\(854\) 0 0
\(855\) 9444.32 0.377765
\(856\) 0 0
\(857\) 9703.63 0.386779 0.193390 0.981122i \(-0.438052\pi\)
0.193390 + 0.981122i \(0.438052\pi\)
\(858\) 0 0
\(859\) 21634.2 0.859312 0.429656 0.902993i \(-0.358635\pi\)
0.429656 + 0.902993i \(0.358635\pi\)
\(860\) 0 0
\(861\) −489.201 −0.0193635
\(862\) 0 0
\(863\) 27307.4 1.07712 0.538561 0.842587i \(-0.318968\pi\)
0.538561 + 0.842587i \(0.318968\pi\)
\(864\) 0 0
\(865\) 14630.5 0.575089
\(866\) 0 0
\(867\) −14706.4 −0.576074
\(868\) 0 0
\(869\) 12090.2 0.471958
\(870\) 0 0
\(871\) 4029.13 0.156741
\(872\) 0 0
\(873\) −14451.2 −0.560252
\(874\) 0 0
\(875\) 3396.55 0.131228
\(876\) 0 0
\(877\) 32605.7 1.25544 0.627718 0.778441i \(-0.283989\pi\)
0.627718 + 0.778441i \(0.283989\pi\)
\(878\) 0 0
\(879\) 486.261 0.0186589
\(880\) 0 0
\(881\) −19306.3 −0.738303 −0.369151 0.929369i \(-0.620352\pi\)
−0.369151 + 0.929369i \(0.620352\pi\)
\(882\) 0 0
\(883\) −14203.0 −0.541299 −0.270650 0.962678i \(-0.587239\pi\)
−0.270650 + 0.962678i \(0.587239\pi\)
\(884\) 0 0
\(885\) 11296.2 0.429059
\(886\) 0 0
\(887\) 1468.77 0.0555991 0.0277996 0.999614i \(-0.491150\pi\)
0.0277996 + 0.999614i \(0.491150\pi\)
\(888\) 0 0
\(889\) 9949.87 0.375374
\(890\) 0 0
\(891\) 1839.08 0.0691487
\(892\) 0 0
\(893\) −11807.4 −0.442463
\(894\) 0 0
\(895\) −19189.0 −0.716667
\(896\) 0 0
\(897\) −2605.25 −0.0969752
\(898\) 0 0
\(899\) −32335.8 −1.19962
\(900\) 0 0
\(901\) −404.283 −0.0149485
\(902\) 0 0
\(903\) −4495.97 −0.165688
\(904\) 0 0
\(905\) 29035.2 1.06648
\(906\) 0 0
\(907\) −4131.84 −0.151263 −0.0756314 0.997136i \(-0.524097\pi\)
−0.0756314 + 0.997136i \(0.524097\pi\)
\(908\) 0 0
\(909\) 12239.5 0.446598
\(910\) 0 0
\(911\) −45434.5 −1.65237 −0.826187 0.563395i \(-0.809495\pi\)
−0.826187 + 0.563395i \(0.809495\pi\)
\(912\) 0 0
\(913\) 4204.48 0.152408
\(914\) 0 0
\(915\) −27371.7 −0.988941
\(916\) 0 0
\(917\) 5285.61 0.190345
\(918\) 0 0
\(919\) −14032.4 −0.503685 −0.251842 0.967768i \(-0.581036\pi\)
−0.251842 + 0.967768i \(0.581036\pi\)
\(920\) 0 0
\(921\) 6555.47 0.234538
\(922\) 0 0
\(923\) −5311.34 −0.189410
\(924\) 0 0
\(925\) 28940.2 1.02870
\(926\) 0 0
\(927\) 16394.0 0.580852
\(928\) 0 0
\(929\) −48732.4 −1.72105 −0.860527 0.509405i \(-0.829866\pi\)
−0.860527 + 0.509405i \(0.829866\pi\)
\(930\) 0 0
\(931\) 3078.12 0.108358
\(932\) 0 0
\(933\) −14290.3 −0.501439
\(934\) 0 0
\(935\) 1249.83 0.0437152
\(936\) 0 0
\(937\) 12813.8 0.446755 0.223378 0.974732i \(-0.428292\pi\)
0.223378 + 0.974732i \(0.428292\pi\)
\(938\) 0 0
\(939\) −3242.53 −0.112690
\(940\) 0 0
\(941\) 28586.5 0.990323 0.495162 0.868801i \(-0.335109\pi\)
0.495162 + 0.868801i \(0.335109\pi\)
\(942\) 0 0
\(943\) −1773.10 −0.0612302
\(944\) 0 0
\(945\) 3157.19 0.108681
\(946\) 0 0
\(947\) 32669.6 1.12103 0.560517 0.828143i \(-0.310603\pi\)
0.560517 + 0.828143i \(0.310603\pi\)
\(948\) 0 0
\(949\) −4910.79 −0.167978
\(950\) 0 0
\(951\) −17498.7 −0.596672
\(952\) 0 0
\(953\) −3583.93 −0.121821 −0.0609103 0.998143i \(-0.519400\pi\)
−0.0609103 + 0.998143i \(0.519400\pi\)
\(954\) 0 0
\(955\) −63132.7 −2.13919
\(956\) 0 0
\(957\) −14719.0 −0.497178
\(958\) 0 0
\(959\) 11332.9 0.381603
\(960\) 0 0
\(961\) −7399.59 −0.248383
\(962\) 0 0
\(963\) 12964.8 0.433836
\(964\) 0 0
\(965\) −66253.3 −2.21012
\(966\) 0 0
\(967\) 6332.28 0.210582 0.105291 0.994441i \(-0.466423\pi\)
0.105291 + 0.994441i \(0.466423\pi\)
\(968\) 0 0
\(969\) 621.020 0.0205883
\(970\) 0 0
\(971\) −21547.7 −0.712152 −0.356076 0.934457i \(-0.615886\pi\)
−0.356076 + 0.934457i \(0.615886\pi\)
\(972\) 0 0
\(973\) −10212.5 −0.336482
\(974\) 0 0
\(975\) −5272.75 −0.173193
\(976\) 0 0
\(977\) −15024.3 −0.491987 −0.245994 0.969271i \(-0.579114\pi\)
−0.245994 + 0.969271i \(0.579114\pi\)
\(978\) 0 0
\(979\) −36266.4 −1.18394
\(980\) 0 0
\(981\) 7956.12 0.258939
\(982\) 0 0
\(983\) −22229.5 −0.721271 −0.360636 0.932707i \(-0.617440\pi\)
−0.360636 + 0.932707i \(0.617440\pi\)
\(984\) 0 0
\(985\) 43316.1 1.40118
\(986\) 0 0
\(987\) −3947.16 −0.127294
\(988\) 0 0
\(989\) −16295.6 −0.523932
\(990\) 0 0
\(991\) −37009.0 −1.18631 −0.593154 0.805089i \(-0.702117\pi\)
−0.593154 + 0.805089i \(0.702117\pi\)
\(992\) 0 0
\(993\) −10449.3 −0.333937
\(994\) 0 0
\(995\) −73630.3 −2.34597
\(996\) 0 0
\(997\) −15364.0 −0.488048 −0.244024 0.969769i \(-0.578468\pi\)
−0.244024 + 0.969769i \(0.578468\pi\)
\(998\) 0 0
\(999\) 5072.38 0.160644
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.a.m.1.2 yes 2
3.2 odd 2 2016.4.a.j.1.1 2
4.3 odd 2 672.4.a.h.1.2 2
8.3 odd 2 1344.4.a.bm.1.1 2
8.5 even 2 1344.4.a.be.1.1 2
12.11 even 2 2016.4.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.a.h.1.2 2 4.3 odd 2
672.4.a.m.1.2 yes 2 1.1 even 1 trivial
1344.4.a.be.1.1 2 8.5 even 2
1344.4.a.bm.1.1 2 8.3 odd 2
2016.4.a.i.1.1 2 12.11 even 2
2016.4.a.j.1.1 2 3.2 odd 2