Properties

Label 672.4.a.i.1.2
Level $672$
Weight $4$
Character 672.1
Self dual yes
Analytic conductor $39.649$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(1,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{43}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.55744\) of defining polynomial
Character \(\chi\) \(=\) 672.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +21.1149 q^{5} +7.00000 q^{7} +9.00000 q^{9} -11.1149 q^{11} +26.0000 q^{13} -63.3446 q^{15} +67.3446 q^{17} +42.2298 q^{19} -21.0000 q^{21} +122.264 q^{23} +320.838 q^{25} -27.0000 q^{27} -16.2298 q^{29} -279.149 q^{31} +33.3446 q^{33} +147.804 q^{35} -123.838 q^{37} -78.0000 q^{39} -32.2636 q^{41} -281.838 q^{43} +190.034 q^{45} -250.689 q^{47} +49.0000 q^{49} -202.034 q^{51} -27.8380 q^{53} -234.689 q^{55} -126.689 q^{57} +677.906 q^{59} +73.9322 q^{61} +63.0000 q^{63} +548.987 q^{65} +845.446 q^{67} -366.791 q^{69} +739.250 q^{71} -702.203 q^{73} -962.514 q^{75} -77.8041 q^{77} +250.689 q^{79} +81.0000 q^{81} -699.352 q^{83} +1421.97 q^{85} +48.6893 q^{87} +489.574 q^{89} +182.000 q^{91} +837.446 q^{93} +891.676 q^{95} +1184.37 q^{97} -100.034 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 16 q^{5} + 14 q^{7} + 18 q^{9} + 4 q^{11} + 52 q^{13} - 48 q^{15} + 56 q^{17} + 32 q^{19} - 42 q^{21} - 44 q^{23} + 222 q^{25} - 54 q^{27} + 20 q^{29} - 296 q^{31} - 12 q^{33} + 112 q^{35}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 21.1149 1.88857 0.944286 0.329126i \(-0.106754\pi\)
0.944286 + 0.329126i \(0.106754\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −11.1149 −0.304660 −0.152330 0.988330i \(-0.548678\pi\)
−0.152330 + 0.988330i \(0.548678\pi\)
\(12\) 0 0
\(13\) 26.0000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −63.3446 −1.09037
\(16\) 0 0
\(17\) 67.3446 0.960792 0.480396 0.877052i \(-0.340493\pi\)
0.480396 + 0.877052i \(0.340493\pi\)
\(18\) 0 0
\(19\) 42.2298 0.509904 0.254952 0.966954i \(-0.417940\pi\)
0.254952 + 0.966954i \(0.417940\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) 122.264 1.10842 0.554212 0.832376i \(-0.313020\pi\)
0.554212 + 0.832376i \(0.313020\pi\)
\(24\) 0 0
\(25\) 320.838 2.56670
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −16.2298 −0.103924 −0.0519619 0.998649i \(-0.516547\pi\)
−0.0519619 + 0.998649i \(0.516547\pi\)
\(30\) 0 0
\(31\) −279.149 −1.61731 −0.808655 0.588283i \(-0.799804\pi\)
−0.808655 + 0.588283i \(0.799804\pi\)
\(32\) 0 0
\(33\) 33.3446 0.175896
\(34\) 0 0
\(35\) 147.804 0.713813
\(36\) 0 0
\(37\) −123.838 −0.550239 −0.275120 0.961410i \(-0.588717\pi\)
−0.275120 + 0.961410i \(0.588717\pi\)
\(38\) 0 0
\(39\) −78.0000 −0.320256
\(40\) 0 0
\(41\) −32.2636 −0.122896 −0.0614480 0.998110i \(-0.519572\pi\)
−0.0614480 + 0.998110i \(0.519572\pi\)
\(42\) 0 0
\(43\) −281.838 −0.999532 −0.499766 0.866160i \(-0.666581\pi\)
−0.499766 + 0.866160i \(0.666581\pi\)
\(44\) 0 0
\(45\) 190.034 0.629524
\(46\) 0 0
\(47\) −250.689 −0.778017 −0.389008 0.921234i \(-0.627182\pi\)
−0.389008 + 0.921234i \(0.627182\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −202.034 −0.554714
\(52\) 0 0
\(53\) −27.8380 −0.0721481 −0.0360740 0.999349i \(-0.511485\pi\)
−0.0360740 + 0.999349i \(0.511485\pi\)
\(54\) 0 0
\(55\) −234.689 −0.575373
\(56\) 0 0
\(57\) −126.689 −0.294393
\(58\) 0 0
\(59\) 677.906 1.49586 0.747931 0.663777i \(-0.231048\pi\)
0.747931 + 0.663777i \(0.231048\pi\)
\(60\) 0 0
\(61\) 73.9322 0.155181 0.0775906 0.996985i \(-0.475277\pi\)
0.0775906 + 0.996985i \(0.475277\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) 548.987 1.04759
\(66\) 0 0
\(67\) 845.446 1.54161 0.770804 0.637073i \(-0.219855\pi\)
0.770804 + 0.637073i \(0.219855\pi\)
\(68\) 0 0
\(69\) −366.791 −0.639948
\(70\) 0 0
\(71\) 739.250 1.23567 0.617837 0.786306i \(-0.288009\pi\)
0.617837 + 0.786306i \(0.288009\pi\)
\(72\) 0 0
\(73\) −702.203 −1.12585 −0.562923 0.826510i \(-0.690323\pi\)
−0.562923 + 0.826510i \(0.690323\pi\)
\(74\) 0 0
\(75\) −962.514 −1.48189
\(76\) 0 0
\(77\) −77.8041 −0.115151
\(78\) 0 0
\(79\) 250.689 0.357022 0.178511 0.983938i \(-0.442872\pi\)
0.178511 + 0.983938i \(0.442872\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −699.352 −0.924866 −0.462433 0.886654i \(-0.653023\pi\)
−0.462433 + 0.886654i \(0.653023\pi\)
\(84\) 0 0
\(85\) 1421.97 1.81453
\(86\) 0 0
\(87\) 48.6893 0.0600004
\(88\) 0 0
\(89\) 489.574 0.583087 0.291544 0.956558i \(-0.405831\pi\)
0.291544 + 0.956558i \(0.405831\pi\)
\(90\) 0 0
\(91\) 182.000 0.209657
\(92\) 0 0
\(93\) 837.446 0.933754
\(94\) 0 0
\(95\) 891.676 0.962990
\(96\) 0 0
\(97\) 1184.37 1.23973 0.619866 0.784707i \(-0.287187\pi\)
0.619866 + 0.784707i \(0.287187\pi\)
\(98\) 0 0
\(99\) −100.034 −0.101553
\(100\) 0 0
\(101\) 1554.56 1.53153 0.765765 0.643120i \(-0.222360\pi\)
0.765765 + 0.643120i \(0.222360\pi\)
\(102\) 0 0
\(103\) −1780.01 −1.70282 −0.851408 0.524504i \(-0.824251\pi\)
−0.851408 + 0.524504i \(0.824251\pi\)
\(104\) 0 0
\(105\) −443.412 −0.412120
\(106\) 0 0
\(107\) 1140.37 1.03032 0.515159 0.857095i \(-0.327733\pi\)
0.515159 + 0.857095i \(0.327733\pi\)
\(108\) 0 0
\(109\) 2089.68 1.83628 0.918141 0.396255i \(-0.129690\pi\)
0.918141 + 0.396255i \(0.129690\pi\)
\(110\) 0 0
\(111\) 371.514 0.317681
\(112\) 0 0
\(113\) −332.298 −0.276636 −0.138318 0.990388i \(-0.544170\pi\)
−0.138318 + 0.990388i \(0.544170\pi\)
\(114\) 0 0
\(115\) 2581.58 2.09334
\(116\) 0 0
\(117\) 234.000 0.184900
\(118\) 0 0
\(119\) 471.412 0.363145
\(120\) 0 0
\(121\) −1207.46 −0.907182
\(122\) 0 0
\(123\) 96.7909 0.0709540
\(124\) 0 0
\(125\) 4135.10 2.95883
\(126\) 0 0
\(127\) −1261.72 −0.881569 −0.440785 0.897613i \(-0.645300\pi\)
−0.440785 + 0.897613i \(0.645300\pi\)
\(128\) 0 0
\(129\) 845.514 0.577080
\(130\) 0 0
\(131\) −2639.03 −1.76010 −0.880049 0.474882i \(-0.842491\pi\)
−0.880049 + 0.474882i \(0.842491\pi\)
\(132\) 0 0
\(133\) 295.608 0.192725
\(134\) 0 0
\(135\) −570.102 −0.363456
\(136\) 0 0
\(137\) −2000.18 −1.24735 −0.623674 0.781685i \(-0.714361\pi\)
−0.623674 + 0.781685i \(0.714361\pi\)
\(138\) 0 0
\(139\) 2014.89 1.22950 0.614752 0.788721i \(-0.289256\pi\)
0.614752 + 0.788721i \(0.289256\pi\)
\(140\) 0 0
\(141\) 752.068 0.449188
\(142\) 0 0
\(143\) −288.987 −0.168995
\(144\) 0 0
\(145\) −342.689 −0.196268
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) 140.810 0.0774201 0.0387100 0.999250i \(-0.487675\pi\)
0.0387100 + 0.999250i \(0.487675\pi\)
\(150\) 0 0
\(151\) 2493.00 1.34356 0.671780 0.740751i \(-0.265530\pi\)
0.671780 + 0.740751i \(0.265530\pi\)
\(152\) 0 0
\(153\) 606.102 0.320264
\(154\) 0 0
\(155\) −5894.19 −3.05441
\(156\) 0 0
\(157\) 2681.28 1.36299 0.681496 0.731822i \(-0.261330\pi\)
0.681496 + 0.731822i \(0.261330\pi\)
\(158\) 0 0
\(159\) 83.5141 0.0416547
\(160\) 0 0
\(161\) 855.846 0.418945
\(162\) 0 0
\(163\) 3625.26 1.74204 0.871019 0.491250i \(-0.163460\pi\)
0.871019 + 0.491250i \(0.163460\pi\)
\(164\) 0 0
\(165\) 704.068 0.332192
\(166\) 0 0
\(167\) −1242.82 −0.575884 −0.287942 0.957648i \(-0.592971\pi\)
−0.287942 + 0.957648i \(0.592971\pi\)
\(168\) 0 0
\(169\) −1521.00 −0.692308
\(170\) 0 0
\(171\) 380.068 0.169968
\(172\) 0 0
\(173\) 249.778 0.109770 0.0548851 0.998493i \(-0.482521\pi\)
0.0548851 + 0.998493i \(0.482521\pi\)
\(174\) 0 0
\(175\) 2245.87 0.970123
\(176\) 0 0
\(177\) −2033.72 −0.863636
\(178\) 0 0
\(179\) −3529.48 −1.47378 −0.736888 0.676015i \(-0.763705\pi\)
−0.736888 + 0.676015i \(0.763705\pi\)
\(180\) 0 0
\(181\) −2359.73 −0.969047 −0.484524 0.874778i \(-0.661007\pi\)
−0.484524 + 0.874778i \(0.661007\pi\)
\(182\) 0 0
\(183\) −221.797 −0.0895939
\(184\) 0 0
\(185\) −2614.82 −1.03917
\(186\) 0 0
\(187\) −748.527 −0.292715
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −686.859 −0.260206 −0.130103 0.991500i \(-0.541531\pi\)
−0.130103 + 0.991500i \(0.541531\pi\)
\(192\) 0 0
\(193\) −1456.89 −0.543365 −0.271682 0.962387i \(-0.587580\pi\)
−0.271682 + 0.962387i \(0.587580\pi\)
\(194\) 0 0
\(195\) −1646.96 −0.604827
\(196\) 0 0
\(197\) −4741.71 −1.71489 −0.857443 0.514579i \(-0.827948\pi\)
−0.857443 + 0.514579i \(0.827948\pi\)
\(198\) 0 0
\(199\) 563.269 0.200649 0.100324 0.994955i \(-0.468012\pi\)
0.100324 + 0.994955i \(0.468012\pi\)
\(200\) 0 0
\(201\) −2536.34 −0.890048
\(202\) 0 0
\(203\) −113.608 −0.0392795
\(204\) 0 0
\(205\) −681.243 −0.232098
\(206\) 0 0
\(207\) 1100.37 0.369474
\(208\) 0 0
\(209\) −469.379 −0.155347
\(210\) 0 0
\(211\) 3241.19 1.05750 0.528751 0.848777i \(-0.322661\pi\)
0.528751 + 0.848777i \(0.322661\pi\)
\(212\) 0 0
\(213\) −2217.75 −0.713417
\(214\) 0 0
\(215\) −5950.98 −1.88769
\(216\) 0 0
\(217\) −1954.04 −0.611286
\(218\) 0 0
\(219\) 2106.61 0.650007
\(220\) 0 0
\(221\) 1750.96 0.532952
\(222\) 0 0
\(223\) 2656.65 0.797768 0.398884 0.917001i \(-0.369398\pi\)
0.398884 + 0.917001i \(0.369398\pi\)
\(224\) 0 0
\(225\) 2887.54 0.855568
\(226\) 0 0
\(227\) 3125.02 0.913721 0.456860 0.889538i \(-0.348974\pi\)
0.456860 + 0.889538i \(0.348974\pi\)
\(228\) 0 0
\(229\) −403.107 −0.116324 −0.0581618 0.998307i \(-0.518524\pi\)
−0.0581618 + 0.998307i \(0.518524\pi\)
\(230\) 0 0
\(231\) 233.412 0.0664823
\(232\) 0 0
\(233\) −1156.47 −0.325163 −0.162581 0.986695i \(-0.551982\pi\)
−0.162581 + 0.986695i \(0.551982\pi\)
\(234\) 0 0
\(235\) −5293.27 −1.46934
\(236\) 0 0
\(237\) −752.068 −0.206127
\(238\) 0 0
\(239\) 3733.02 1.01033 0.505165 0.863023i \(-0.331432\pi\)
0.505165 + 0.863023i \(0.331432\pi\)
\(240\) 0 0
\(241\) 3153.04 0.842761 0.421380 0.906884i \(-0.361546\pi\)
0.421380 + 0.906884i \(0.361546\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1034.63 0.269796
\(246\) 0 0
\(247\) 1097.97 0.282844
\(248\) 0 0
\(249\) 2098.06 0.533972
\(250\) 0 0
\(251\) −2441.45 −0.613955 −0.306978 0.951717i \(-0.599318\pi\)
−0.306978 + 0.951717i \(0.599318\pi\)
\(252\) 0 0
\(253\) −1358.95 −0.337692
\(254\) 0 0
\(255\) −4265.92 −1.04762
\(256\) 0 0
\(257\) 2416.55 0.586538 0.293269 0.956030i \(-0.405257\pi\)
0.293269 + 0.956030i \(0.405257\pi\)
\(258\) 0 0
\(259\) −866.866 −0.207971
\(260\) 0 0
\(261\) −146.068 −0.0346413
\(262\) 0 0
\(263\) 509.427 0.119440 0.0597198 0.998215i \(-0.480979\pi\)
0.0597198 + 0.998215i \(0.480979\pi\)
\(264\) 0 0
\(265\) −587.797 −0.136257
\(266\) 0 0
\(267\) −1468.72 −0.336646
\(268\) 0 0
\(269\) −8309.43 −1.88340 −0.941701 0.336452i \(-0.890773\pi\)
−0.941701 + 0.336452i \(0.890773\pi\)
\(270\) 0 0
\(271\) −1499.88 −0.336204 −0.168102 0.985770i \(-0.553764\pi\)
−0.168102 + 0.985770i \(0.553764\pi\)
\(272\) 0 0
\(273\) −546.000 −0.121046
\(274\) 0 0
\(275\) −3566.08 −0.781972
\(276\) 0 0
\(277\) 1724.03 0.373959 0.186980 0.982364i \(-0.440130\pi\)
0.186980 + 0.982364i \(0.440130\pi\)
\(278\) 0 0
\(279\) −2512.34 −0.539103
\(280\) 0 0
\(281\) −8393.23 −1.78184 −0.890922 0.454156i \(-0.849941\pi\)
−0.890922 + 0.454156i \(0.849941\pi\)
\(282\) 0 0
\(283\) 8049.99 1.69089 0.845445 0.534062i \(-0.179335\pi\)
0.845445 + 0.534062i \(0.179335\pi\)
\(284\) 0 0
\(285\) −2675.03 −0.555982
\(286\) 0 0
\(287\) −225.846 −0.0464503
\(288\) 0 0
\(289\) −377.701 −0.0768778
\(290\) 0 0
\(291\) −3553.10 −0.715760
\(292\) 0 0
\(293\) 9886.67 1.97128 0.985641 0.168854i \(-0.0540067\pi\)
0.985641 + 0.168854i \(0.0540067\pi\)
\(294\) 0 0
\(295\) 14313.9 2.82504
\(296\) 0 0
\(297\) 300.102 0.0586319
\(298\) 0 0
\(299\) 3178.85 0.614843
\(300\) 0 0
\(301\) −1972.87 −0.377788
\(302\) 0 0
\(303\) −4663.68 −0.884230
\(304\) 0 0
\(305\) 1561.07 0.293071
\(306\) 0 0
\(307\) 1721.15 0.319970 0.159985 0.987119i \(-0.448855\pi\)
0.159985 + 0.987119i \(0.448855\pi\)
\(308\) 0 0
\(309\) 5340.04 0.983122
\(310\) 0 0
\(311\) −4417.94 −0.805525 −0.402762 0.915305i \(-0.631950\pi\)
−0.402762 + 0.915305i \(0.631950\pi\)
\(312\) 0 0
\(313\) −8351.08 −1.50809 −0.754043 0.656825i \(-0.771899\pi\)
−0.754043 + 0.656825i \(0.771899\pi\)
\(314\) 0 0
\(315\) 1330.24 0.237938
\(316\) 0 0
\(317\) 5002.52 0.886339 0.443170 0.896438i \(-0.353854\pi\)
0.443170 + 0.896438i \(0.353854\pi\)
\(318\) 0 0
\(319\) 180.392 0.0316614
\(320\) 0 0
\(321\) −3421.12 −0.594854
\(322\) 0 0
\(323\) 2843.95 0.489912
\(324\) 0 0
\(325\) 8341.79 1.42375
\(326\) 0 0
\(327\) −6269.03 −1.06018
\(328\) 0 0
\(329\) −1754.82 −0.294063
\(330\) 0 0
\(331\) −1210.92 −0.201083 −0.100541 0.994933i \(-0.532057\pi\)
−0.100541 + 0.994933i \(0.532057\pi\)
\(332\) 0 0
\(333\) −1114.54 −0.183413
\(334\) 0 0
\(335\) 17851.5 2.91144
\(336\) 0 0
\(337\) 611.974 0.0989209 0.0494604 0.998776i \(-0.484250\pi\)
0.0494604 + 0.998776i \(0.484250\pi\)
\(338\) 0 0
\(339\) 996.893 0.159716
\(340\) 0 0
\(341\) 3102.70 0.492730
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −7744.75 −1.20859
\(346\) 0 0
\(347\) −8546.91 −1.32225 −0.661127 0.750274i \(-0.729922\pi\)
−0.661127 + 0.750274i \(0.729922\pi\)
\(348\) 0 0
\(349\) −5144.82 −0.789101 −0.394550 0.918874i \(-0.629100\pi\)
−0.394550 + 0.918874i \(0.629100\pi\)
\(350\) 0 0
\(351\) −702.000 −0.106752
\(352\) 0 0
\(353\) −9998.93 −1.50762 −0.753809 0.657093i \(-0.771786\pi\)
−0.753809 + 0.657093i \(0.771786\pi\)
\(354\) 0 0
\(355\) 15609.2 2.33366
\(356\) 0 0
\(357\) −1414.24 −0.209662
\(358\) 0 0
\(359\) −3832.83 −0.563480 −0.281740 0.959491i \(-0.590911\pi\)
−0.281740 + 0.959491i \(0.590911\pi\)
\(360\) 0 0
\(361\) −5075.65 −0.739998
\(362\) 0 0
\(363\) 3622.38 0.523762
\(364\) 0 0
\(365\) −14826.9 −2.12624
\(366\) 0 0
\(367\) −5782.49 −0.822462 −0.411231 0.911531i \(-0.634901\pi\)
−0.411231 + 0.911531i \(0.634901\pi\)
\(368\) 0 0
\(369\) −290.373 −0.0409653
\(370\) 0 0
\(371\) −194.866 −0.0272694
\(372\) 0 0
\(373\) −9914.87 −1.37633 −0.688167 0.725552i \(-0.741584\pi\)
−0.688167 + 0.725552i \(0.741584\pi\)
\(374\) 0 0
\(375\) −12405.3 −1.70828
\(376\) 0 0
\(377\) −421.974 −0.0576465
\(378\) 0 0
\(379\) −9678.39 −1.31173 −0.655865 0.754879i \(-0.727696\pi\)
−0.655865 + 0.754879i \(0.727696\pi\)
\(380\) 0 0
\(381\) 3785.15 0.508974
\(382\) 0 0
\(383\) 8619.74 1.14999 0.574997 0.818155i \(-0.305003\pi\)
0.574997 + 0.818155i \(0.305003\pi\)
\(384\) 0 0
\(385\) −1642.82 −0.217470
\(386\) 0 0
\(387\) −2536.54 −0.333177
\(388\) 0 0
\(389\) −9220.61 −1.20181 −0.600904 0.799321i \(-0.705193\pi\)
−0.600904 + 0.799321i \(0.705193\pi\)
\(390\) 0 0
\(391\) 8233.80 1.06496
\(392\) 0 0
\(393\) 7917.08 1.01619
\(394\) 0 0
\(395\) 5293.27 0.674262
\(396\) 0 0
\(397\) −12551.5 −1.58676 −0.793379 0.608728i \(-0.791680\pi\)
−0.793379 + 0.608728i \(0.791680\pi\)
\(398\) 0 0
\(399\) −886.825 −0.111270
\(400\) 0 0
\(401\) −11057.6 −1.37703 −0.688514 0.725223i \(-0.741737\pi\)
−0.688514 + 0.725223i \(0.741737\pi\)
\(402\) 0 0
\(403\) −7257.87 −0.897122
\(404\) 0 0
\(405\) 1710.31 0.209841
\(406\) 0 0
\(407\) 1376.44 0.167636
\(408\) 0 0
\(409\) −10535.3 −1.27368 −0.636842 0.770995i \(-0.719759\pi\)
−0.636842 + 0.770995i \(0.719759\pi\)
\(410\) 0 0
\(411\) 6000.53 0.720157
\(412\) 0 0
\(413\) 4745.34 0.565382
\(414\) 0 0
\(415\) −14766.7 −1.74668
\(416\) 0 0
\(417\) −6044.68 −0.709854
\(418\) 0 0
\(419\) 4846.31 0.565055 0.282527 0.959259i \(-0.408827\pi\)
0.282527 + 0.959259i \(0.408827\pi\)
\(420\) 0 0
\(421\) 9326.47 1.07968 0.539839 0.841768i \(-0.318485\pi\)
0.539839 + 0.841768i \(0.318485\pi\)
\(422\) 0 0
\(423\) −2256.20 −0.259339
\(424\) 0 0
\(425\) 21606.7 2.46607
\(426\) 0 0
\(427\) 517.525 0.0586530
\(428\) 0 0
\(429\) 866.960 0.0975693
\(430\) 0 0
\(431\) −15498.1 −1.73205 −0.866027 0.499998i \(-0.833334\pi\)
−0.866027 + 0.499998i \(0.833334\pi\)
\(432\) 0 0
\(433\) 3861.65 0.428589 0.214294 0.976769i \(-0.431255\pi\)
0.214294 + 0.976769i \(0.431255\pi\)
\(434\) 0 0
\(435\) 1028.07 0.113315
\(436\) 0 0
\(437\) 5163.16 0.565189
\(438\) 0 0
\(439\) 4826.85 0.524767 0.262384 0.964964i \(-0.415491\pi\)
0.262384 + 0.964964i \(0.415491\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −4796.48 −0.514419 −0.257209 0.966356i \(-0.582803\pi\)
−0.257209 + 0.966356i \(0.582803\pi\)
\(444\) 0 0
\(445\) 10337.3 1.10120
\(446\) 0 0
\(447\) −422.430 −0.0446985
\(448\) 0 0
\(449\) −10161.7 −1.06806 −0.534029 0.845466i \(-0.679323\pi\)
−0.534029 + 0.845466i \(0.679323\pi\)
\(450\) 0 0
\(451\) 358.606 0.0374415
\(452\) 0 0
\(453\) −7479.01 −0.775705
\(454\) 0 0
\(455\) 3842.91 0.395952
\(456\) 0 0
\(457\) 10037.3 1.02741 0.513704 0.857968i \(-0.328273\pi\)
0.513704 + 0.857968i \(0.328273\pi\)
\(458\) 0 0
\(459\) −1818.31 −0.184905
\(460\) 0 0
\(461\) −12646.4 −1.27766 −0.638831 0.769347i \(-0.720582\pi\)
−0.638831 + 0.769347i \(0.720582\pi\)
\(462\) 0 0
\(463\) 17077.8 1.71419 0.857097 0.515155i \(-0.172266\pi\)
0.857097 + 0.515155i \(0.172266\pi\)
\(464\) 0 0
\(465\) 17682.6 1.76346
\(466\) 0 0
\(467\) 899.992 0.0891792 0.0445896 0.999005i \(-0.485802\pi\)
0.0445896 + 0.999005i \(0.485802\pi\)
\(468\) 0 0
\(469\) 5918.12 0.582673
\(470\) 0 0
\(471\) −8043.85 −0.786924
\(472\) 0 0
\(473\) 3132.60 0.304518
\(474\) 0 0
\(475\) 13548.9 1.30877
\(476\) 0 0
\(477\) −250.542 −0.0240494
\(478\) 0 0
\(479\) 5953.85 0.567929 0.283965 0.958835i \(-0.408350\pi\)
0.283965 + 0.958835i \(0.408350\pi\)
\(480\) 0 0
\(481\) −3219.79 −0.305218
\(482\) 0 0
\(483\) −2567.54 −0.241878
\(484\) 0 0
\(485\) 25007.7 2.34132
\(486\) 0 0
\(487\) −13309.9 −1.23846 −0.619229 0.785211i \(-0.712555\pi\)
−0.619229 + 0.785211i \(0.712555\pi\)
\(488\) 0 0
\(489\) −10875.8 −1.00577
\(490\) 0 0
\(491\) 1894.37 0.174117 0.0870587 0.996203i \(-0.472253\pi\)
0.0870587 + 0.996203i \(0.472253\pi\)
\(492\) 0 0
\(493\) −1092.99 −0.0998492
\(494\) 0 0
\(495\) −2112.20 −0.191791
\(496\) 0 0
\(497\) 5174.75 0.467041
\(498\) 0 0
\(499\) 5338.14 0.478894 0.239447 0.970909i \(-0.423034\pi\)
0.239447 + 0.970909i \(0.423034\pi\)
\(500\) 0 0
\(501\) 3728.47 0.332487
\(502\) 0 0
\(503\) −6895.58 −0.611250 −0.305625 0.952152i \(-0.598865\pi\)
−0.305625 + 0.952152i \(0.598865\pi\)
\(504\) 0 0
\(505\) 32824.4 2.89241
\(506\) 0 0
\(507\) 4563.00 0.399704
\(508\) 0 0
\(509\) 1638.74 0.142703 0.0713516 0.997451i \(-0.477269\pi\)
0.0713516 + 0.997451i \(0.477269\pi\)
\(510\) 0 0
\(511\) −4915.42 −0.425529
\(512\) 0 0
\(513\) −1140.20 −0.0981310
\(514\) 0 0
\(515\) −37584.8 −3.21589
\(516\) 0 0
\(517\) 2786.38 0.237031
\(518\) 0 0
\(519\) −749.333 −0.0633759
\(520\) 0 0
\(521\) 13423.8 1.12880 0.564401 0.825501i \(-0.309107\pi\)
0.564401 + 0.825501i \(0.309107\pi\)
\(522\) 0 0
\(523\) −15758.4 −1.31753 −0.658763 0.752350i \(-0.728920\pi\)
−0.658763 + 0.752350i \(0.728920\pi\)
\(524\) 0 0
\(525\) −6737.60 −0.560101
\(526\) 0 0
\(527\) −18799.2 −1.55390
\(528\) 0 0
\(529\) 2781.40 0.228602
\(530\) 0 0
\(531\) 6101.15 0.498620
\(532\) 0 0
\(533\) −838.855 −0.0681704
\(534\) 0 0
\(535\) 24078.8 1.94583
\(536\) 0 0
\(537\) 10588.4 0.850884
\(538\) 0 0
\(539\) −544.629 −0.0435229
\(540\) 0 0
\(541\) −12144.5 −0.965127 −0.482564 0.875861i \(-0.660294\pi\)
−0.482564 + 0.875861i \(0.660294\pi\)
\(542\) 0 0
\(543\) 7079.20 0.559480
\(544\) 0 0
\(545\) 44123.3 3.46795
\(546\) 0 0
\(547\) 11271.8 0.881070 0.440535 0.897735i \(-0.354789\pi\)
0.440535 + 0.897735i \(0.354789\pi\)
\(548\) 0 0
\(549\) 665.390 0.0517270
\(550\) 0 0
\(551\) −685.379 −0.0529911
\(552\) 0 0
\(553\) 1754.82 0.134942
\(554\) 0 0
\(555\) 7844.47 0.599963
\(556\) 0 0
\(557\) −13000.5 −0.988954 −0.494477 0.869191i \(-0.664640\pi\)
−0.494477 + 0.869191i \(0.664640\pi\)
\(558\) 0 0
\(559\) −7327.79 −0.554441
\(560\) 0 0
\(561\) 2245.58 0.168999
\(562\) 0 0
\(563\) −18246.0 −1.36586 −0.682929 0.730485i \(-0.739294\pi\)
−0.682929 + 0.730485i \(0.739294\pi\)
\(564\) 0 0
\(565\) −7016.42 −0.522448
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) 10249.3 0.755140 0.377570 0.925981i \(-0.376760\pi\)
0.377570 + 0.925981i \(0.376760\pi\)
\(570\) 0 0
\(571\) −1383.57 −0.101402 −0.0507011 0.998714i \(-0.516146\pi\)
−0.0507011 + 0.998714i \(0.516146\pi\)
\(572\) 0 0
\(573\) 2060.58 0.150230
\(574\) 0 0
\(575\) 39226.8 2.84499
\(576\) 0 0
\(577\) −346.308 −0.0249861 −0.0124931 0.999922i \(-0.503977\pi\)
−0.0124931 + 0.999922i \(0.503977\pi\)
\(578\) 0 0
\(579\) 4370.68 0.313712
\(580\) 0 0
\(581\) −4895.46 −0.349566
\(582\) 0 0
\(583\) 309.416 0.0219806
\(584\) 0 0
\(585\) 4940.88 0.349197
\(586\) 0 0
\(587\) −8208.65 −0.577184 −0.288592 0.957452i \(-0.593187\pi\)
−0.288592 + 0.957452i \(0.593187\pi\)
\(588\) 0 0
\(589\) −11788.4 −0.824672
\(590\) 0 0
\(591\) 14225.1 0.990090
\(592\) 0 0
\(593\) 19522.9 1.35196 0.675978 0.736922i \(-0.263721\pi\)
0.675978 + 0.736922i \(0.263721\pi\)
\(594\) 0 0
\(595\) 9953.82 0.685826
\(596\) 0 0
\(597\) −1689.81 −0.115845
\(598\) 0 0
\(599\) 294.580 0.0200938 0.0100469 0.999950i \(-0.496802\pi\)
0.0100469 + 0.999950i \(0.496802\pi\)
\(600\) 0 0
\(601\) 1132.24 0.0768473 0.0384236 0.999262i \(-0.487766\pi\)
0.0384236 + 0.999262i \(0.487766\pi\)
\(602\) 0 0
\(603\) 7609.02 0.513869
\(604\) 0 0
\(605\) −25495.4 −1.71328
\(606\) 0 0
\(607\) 2175.61 0.145478 0.0727390 0.997351i \(-0.476826\pi\)
0.0727390 + 0.997351i \(0.476826\pi\)
\(608\) 0 0
\(609\) 340.825 0.0226780
\(610\) 0 0
\(611\) −6517.92 −0.431566
\(612\) 0 0
\(613\) 23243.3 1.53147 0.765734 0.643158i \(-0.222376\pi\)
0.765734 + 0.643158i \(0.222376\pi\)
\(614\) 0 0
\(615\) 2043.73 0.134002
\(616\) 0 0
\(617\) −23917.8 −1.56060 −0.780302 0.625403i \(-0.784935\pi\)
−0.780302 + 0.625403i \(0.784935\pi\)
\(618\) 0 0
\(619\) 14915.1 0.968482 0.484241 0.874935i \(-0.339096\pi\)
0.484241 + 0.874935i \(0.339096\pi\)
\(620\) 0 0
\(621\) −3301.12 −0.213316
\(622\) 0 0
\(623\) 3427.02 0.220386
\(624\) 0 0
\(625\) 47207.3 3.02127
\(626\) 0 0
\(627\) 1408.14 0.0896898
\(628\) 0 0
\(629\) −8339.83 −0.528666
\(630\) 0 0
\(631\) −14782.3 −0.932604 −0.466302 0.884626i \(-0.654414\pi\)
−0.466302 + 0.884626i \(0.654414\pi\)
\(632\) 0 0
\(633\) −9723.57 −0.610549
\(634\) 0 0
\(635\) −26641.0 −1.66491
\(636\) 0 0
\(637\) 1274.00 0.0792429
\(638\) 0 0
\(639\) 6653.25 0.411891
\(640\) 0 0
\(641\) 3820.66 0.235424 0.117712 0.993048i \(-0.462444\pi\)
0.117712 + 0.993048i \(0.462444\pi\)
\(642\) 0 0
\(643\) 31644.8 1.94082 0.970411 0.241460i \(-0.0776264\pi\)
0.970411 + 0.241460i \(0.0776264\pi\)
\(644\) 0 0
\(645\) 17852.9 1.08986
\(646\) 0 0
\(647\) 28264.2 1.71744 0.858718 0.512448i \(-0.171261\pi\)
0.858718 + 0.512448i \(0.171261\pi\)
\(648\) 0 0
\(649\) −7534.84 −0.455729
\(650\) 0 0
\(651\) 5862.12 0.352926
\(652\) 0 0
\(653\) −10647.4 −0.638076 −0.319038 0.947742i \(-0.603360\pi\)
−0.319038 + 0.947742i \(0.603360\pi\)
\(654\) 0 0
\(655\) −55722.8 −3.32407
\(656\) 0 0
\(657\) −6319.83 −0.375282
\(658\) 0 0
\(659\) −22956.8 −1.35701 −0.678505 0.734595i \(-0.737372\pi\)
−0.678505 + 0.734595i \(0.737372\pi\)
\(660\) 0 0
\(661\) 11133.8 0.655149 0.327575 0.944825i \(-0.393769\pi\)
0.327575 + 0.944825i \(0.393769\pi\)
\(662\) 0 0
\(663\) −5252.88 −0.307700
\(664\) 0 0
\(665\) 6241.73 0.363976
\(666\) 0 0
\(667\) −1984.31 −0.115192
\(668\) 0 0
\(669\) −7969.94 −0.460592
\(670\) 0 0
\(671\) −821.747 −0.0472775
\(672\) 0 0
\(673\) 5327.32 0.305131 0.152565 0.988293i \(-0.451247\pi\)
0.152565 + 0.988293i \(0.451247\pi\)
\(674\) 0 0
\(675\) −8662.63 −0.493962
\(676\) 0 0
\(677\) 15023.5 0.852878 0.426439 0.904516i \(-0.359768\pi\)
0.426439 + 0.904516i \(0.359768\pi\)
\(678\) 0 0
\(679\) 8290.56 0.468575
\(680\) 0 0
\(681\) −9375.05 −0.527537
\(682\) 0 0
\(683\) 14635.9 0.819954 0.409977 0.912096i \(-0.365537\pi\)
0.409977 + 0.912096i \(0.365537\pi\)
\(684\) 0 0
\(685\) −42233.5 −2.35571
\(686\) 0 0
\(687\) 1209.32 0.0671594
\(688\) 0 0
\(689\) −723.789 −0.0400206
\(690\) 0 0
\(691\) 7115.23 0.391717 0.195858 0.980632i \(-0.437251\pi\)
0.195858 + 0.980632i \(0.437251\pi\)
\(692\) 0 0
\(693\) −700.237 −0.0383836
\(694\) 0 0
\(695\) 42544.2 2.32201
\(696\) 0 0
\(697\) −2172.78 −0.118078
\(698\) 0 0
\(699\) 3469.41 0.187733
\(700\) 0 0
\(701\) 14927.8 0.804299 0.402149 0.915574i \(-0.368263\pi\)
0.402149 + 0.915574i \(0.368263\pi\)
\(702\) 0 0
\(703\) −5229.65 −0.280569
\(704\) 0 0
\(705\) 15879.8 0.848324
\(706\) 0 0
\(707\) 10881.9 0.578864
\(708\) 0 0
\(709\) 888.426 0.0470600 0.0235300 0.999723i \(-0.492509\pi\)
0.0235300 + 0.999723i \(0.492509\pi\)
\(710\) 0 0
\(711\) 2256.20 0.119007
\(712\) 0 0
\(713\) −34129.7 −1.79266
\(714\) 0 0
\(715\) −6101.92 −0.319159
\(716\) 0 0
\(717\) −11199.1 −0.583315
\(718\) 0 0
\(719\) −24155.9 −1.25294 −0.626470 0.779445i \(-0.715501\pi\)
−0.626470 + 0.779445i \(0.715501\pi\)
\(720\) 0 0
\(721\) −12460.1 −0.643604
\(722\) 0 0
\(723\) −9459.13 −0.486568
\(724\) 0 0
\(725\) −5207.12 −0.266742
\(726\) 0 0
\(727\) 11284.0 0.575654 0.287827 0.957682i \(-0.407067\pi\)
0.287827 + 0.957682i \(0.407067\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −18980.3 −0.960343
\(732\) 0 0
\(733\) 19307.2 0.972887 0.486444 0.873712i \(-0.338294\pi\)
0.486444 + 0.873712i \(0.338294\pi\)
\(734\) 0 0
\(735\) −3103.89 −0.155767
\(736\) 0 0
\(737\) −9397.03 −0.469666
\(738\) 0 0
\(739\) −16139.9 −0.803406 −0.401703 0.915770i \(-0.631582\pi\)
−0.401703 + 0.915770i \(0.631582\pi\)
\(740\) 0 0
\(741\) −3293.92 −0.163300
\(742\) 0 0
\(743\) −6613.88 −0.326568 −0.163284 0.986579i \(-0.552209\pi\)
−0.163284 + 0.986579i \(0.552209\pi\)
\(744\) 0 0
\(745\) 2973.18 0.146213
\(746\) 0 0
\(747\) −6294.17 −0.308289
\(748\) 0 0
\(749\) 7982.61 0.389424
\(750\) 0 0
\(751\) −5167.07 −0.251064 −0.125532 0.992090i \(-0.540064\pi\)
−0.125532 + 0.992090i \(0.540064\pi\)
\(752\) 0 0
\(753\) 7324.34 0.354467
\(754\) 0 0
\(755\) 52639.4 2.53741
\(756\) 0 0
\(757\) −21745.4 −1.04405 −0.522027 0.852929i \(-0.674824\pi\)
−0.522027 + 0.852929i \(0.674824\pi\)
\(758\) 0 0
\(759\) 4076.84 0.194967
\(760\) 0 0
\(761\) 3002.22 0.143010 0.0715049 0.997440i \(-0.477220\pi\)
0.0715049 + 0.997440i \(0.477220\pi\)
\(762\) 0 0
\(763\) 14627.7 0.694049
\(764\) 0 0
\(765\) 12797.8 0.604842
\(766\) 0 0
\(767\) 17625.6 0.829755
\(768\) 0 0
\(769\) −4008.18 −0.187957 −0.0939784 0.995574i \(-0.529958\pi\)
−0.0939784 + 0.995574i \(0.529958\pi\)
\(770\) 0 0
\(771\) −7249.65 −0.338638
\(772\) 0 0
\(773\) 3816.48 0.177580 0.0887900 0.996050i \(-0.471700\pi\)
0.0887900 + 0.996050i \(0.471700\pi\)
\(774\) 0 0
\(775\) −89561.5 −4.15116
\(776\) 0 0
\(777\) 2600.60 0.120072
\(778\) 0 0
\(779\) −1362.49 −0.0626651
\(780\) 0 0
\(781\) −8216.68 −0.376461
\(782\) 0 0
\(783\) 438.203 0.0200001
\(784\) 0 0
\(785\) 56615.0 2.57411
\(786\) 0 0
\(787\) −22492.0 −1.01874 −0.509372 0.860546i \(-0.670122\pi\)
−0.509372 + 0.860546i \(0.670122\pi\)
\(788\) 0 0
\(789\) −1528.28 −0.0689585
\(790\) 0 0
\(791\) −2326.08 −0.104559
\(792\) 0 0
\(793\) 1922.24 0.0860790
\(794\) 0 0
\(795\) 1763.39 0.0786679
\(796\) 0 0
\(797\) 41001.1 1.82225 0.911124 0.412132i \(-0.135216\pi\)
0.911124 + 0.412132i \(0.135216\pi\)
\(798\) 0 0
\(799\) −16882.6 −0.747513
\(800\) 0 0
\(801\) 4406.17 0.194362
\(802\) 0 0
\(803\) 7804.90 0.343000
\(804\) 0 0
\(805\) 18071.1 0.791207
\(806\) 0 0
\(807\) 24928.3 1.08738
\(808\) 0 0
\(809\) −30507.0 −1.32579 −0.662897 0.748710i \(-0.730673\pi\)
−0.662897 + 0.748710i \(0.730673\pi\)
\(810\) 0 0
\(811\) −3799.66 −0.164518 −0.0822590 0.996611i \(-0.526213\pi\)
−0.0822590 + 0.996611i \(0.526213\pi\)
\(812\) 0 0
\(813\) 4499.64 0.194107
\(814\) 0 0
\(815\) 76546.9 3.28996
\(816\) 0 0
\(817\) −11902.0 −0.509665
\(818\) 0 0
\(819\) 1638.00 0.0698857
\(820\) 0 0
\(821\) 27444.1 1.16663 0.583316 0.812245i \(-0.301755\pi\)
0.583316 + 0.812245i \(0.301755\pi\)
\(822\) 0 0
\(823\) 9422.95 0.399105 0.199553 0.979887i \(-0.436051\pi\)
0.199553 + 0.979887i \(0.436051\pi\)
\(824\) 0 0
\(825\) 10698.2 0.451472
\(826\) 0 0
\(827\) −5531.49 −0.232586 −0.116293 0.993215i \(-0.537101\pi\)
−0.116293 + 0.993215i \(0.537101\pi\)
\(828\) 0 0
\(829\) 47025.9 1.97018 0.985088 0.172050i \(-0.0550391\pi\)
0.985088 + 0.172050i \(0.0550391\pi\)
\(830\) 0 0
\(831\) −5172.08 −0.215905
\(832\) 0 0
\(833\) 3299.89 0.137256
\(834\) 0 0
\(835\) −26242.1 −1.08760
\(836\) 0 0
\(837\) 7537.02 0.311251
\(838\) 0 0
\(839\) 25249.1 1.03897 0.519484 0.854480i \(-0.326124\pi\)
0.519484 + 0.854480i \(0.326124\pi\)
\(840\) 0 0
\(841\) −24125.6 −0.989200
\(842\) 0 0
\(843\) 25179.7 1.02875
\(844\) 0 0
\(845\) −32115.7 −1.30747
\(846\) 0 0
\(847\) −8452.22 −0.342883
\(848\) 0 0
\(849\) −24150.0 −0.976236
\(850\) 0 0
\(851\) −15140.9 −0.609898
\(852\) 0 0
\(853\) −5220.44 −0.209548 −0.104774 0.994496i \(-0.533412\pi\)
−0.104774 + 0.994496i \(0.533412\pi\)
\(854\) 0 0
\(855\) 8025.08 0.320997
\(856\) 0 0
\(857\) −16752.7 −0.667751 −0.333876 0.942617i \(-0.608357\pi\)
−0.333876 + 0.942617i \(0.608357\pi\)
\(858\) 0 0
\(859\) −46840.6 −1.86051 −0.930257 0.366908i \(-0.880416\pi\)
−0.930257 + 0.366908i \(0.880416\pi\)
\(860\) 0 0
\(861\) 677.537 0.0268181
\(862\) 0 0
\(863\) 2861.77 0.112881 0.0564403 0.998406i \(-0.482025\pi\)
0.0564403 + 0.998406i \(0.482025\pi\)
\(864\) 0 0
\(865\) 5274.03 0.207309
\(866\) 0 0
\(867\) 1133.10 0.0443854
\(868\) 0 0
\(869\) −2786.38 −0.108770
\(870\) 0 0
\(871\) 21981.6 0.855130
\(872\) 0 0
\(873\) 10659.3 0.413244
\(874\) 0 0
\(875\) 28945.7 1.11833
\(876\) 0 0
\(877\) −28321.1 −1.09046 −0.545231 0.838286i \(-0.683558\pi\)
−0.545231 + 0.838286i \(0.683558\pi\)
\(878\) 0 0
\(879\) −29660.0 −1.13812
\(880\) 0 0
\(881\) −17763.2 −0.679293 −0.339647 0.940553i \(-0.610307\pi\)
−0.339647 + 0.940553i \(0.610307\pi\)
\(882\) 0 0
\(883\) 5366.85 0.204540 0.102270 0.994757i \(-0.467389\pi\)
0.102270 + 0.994757i \(0.467389\pi\)
\(884\) 0 0
\(885\) −42941.7 −1.63104
\(886\) 0 0
\(887\) −50485.4 −1.91109 −0.955544 0.294849i \(-0.904731\pi\)
−0.955544 + 0.294849i \(0.904731\pi\)
\(888\) 0 0
\(889\) −8832.02 −0.333202
\(890\) 0 0
\(891\) −900.305 −0.0338511
\(892\) 0 0
\(893\) −10586.5 −0.396714
\(894\) 0 0
\(895\) −74524.5 −2.78333
\(896\) 0 0
\(897\) −9536.56 −0.354980
\(898\) 0 0
\(899\) 4530.52 0.168077
\(900\) 0 0
\(901\) −1874.74 −0.0693193
\(902\) 0 0
\(903\) 5918.60 0.218116
\(904\) 0 0
\(905\) −49825.5 −1.83012
\(906\) 0 0
\(907\) 14517.9 0.531487 0.265744 0.964044i \(-0.414382\pi\)
0.265744 + 0.964044i \(0.414382\pi\)
\(908\) 0 0
\(909\) 13991.1 0.510510
\(910\) 0 0
\(911\) 39837.6 1.44883 0.724413 0.689367i \(-0.242111\pi\)
0.724413 + 0.689367i \(0.242111\pi\)
\(912\) 0 0
\(913\) 7773.21 0.281770
\(914\) 0 0
\(915\) −4683.21 −0.169204
\(916\) 0 0
\(917\) −18473.2 −0.665255
\(918\) 0 0
\(919\) 3406.72 0.122282 0.0611411 0.998129i \(-0.480526\pi\)
0.0611411 + 0.998129i \(0.480526\pi\)
\(920\) 0 0
\(921\) −5163.44 −0.184735
\(922\) 0 0
\(923\) 19220.5 0.685429
\(924\) 0 0
\(925\) −39732.0 −1.41230
\(926\) 0 0
\(927\) −16020.1 −0.567605
\(928\) 0 0
\(929\) −7453.31 −0.263224 −0.131612 0.991301i \(-0.542015\pi\)
−0.131612 + 0.991301i \(0.542015\pi\)
\(930\) 0 0
\(931\) 2069.26 0.0728434
\(932\) 0 0
\(933\) 13253.8 0.465070
\(934\) 0 0
\(935\) −15805.1 −0.552814
\(936\) 0 0
\(937\) −13599.3 −0.474140 −0.237070 0.971493i \(-0.576187\pi\)
−0.237070 + 0.971493i \(0.576187\pi\)
\(938\) 0 0
\(939\) 25053.3 0.870694
\(940\) 0 0
\(941\) −1430.50 −0.0495569 −0.0247784 0.999693i \(-0.507888\pi\)
−0.0247784 + 0.999693i \(0.507888\pi\)
\(942\) 0 0
\(943\) −3944.67 −0.136221
\(944\) 0 0
\(945\) −3990.71 −0.137373
\(946\) 0 0
\(947\) −7382.05 −0.253310 −0.126655 0.991947i \(-0.540424\pi\)
−0.126655 + 0.991947i \(0.540424\pi\)
\(948\) 0 0
\(949\) −18257.3 −0.624506
\(950\) 0 0
\(951\) −15007.6 −0.511728
\(952\) 0 0
\(953\) 19941.7 0.677833 0.338916 0.940816i \(-0.389940\pi\)
0.338916 + 0.940816i \(0.389940\pi\)
\(954\) 0 0
\(955\) −14502.9 −0.491418
\(956\) 0 0
\(957\) −541.175 −0.0182797
\(958\) 0 0
\(959\) −14001.2 −0.471453
\(960\) 0 0
\(961\) 48133.0 1.61569
\(962\) 0 0
\(963\) 10263.4 0.343439
\(964\) 0 0
\(965\) −30762.1 −1.02618
\(966\) 0 0
\(967\) −6161.51 −0.204903 −0.102451 0.994738i \(-0.532669\pi\)
−0.102451 + 0.994738i \(0.532669\pi\)
\(968\) 0 0
\(969\) −8531.84 −0.282851
\(970\) 0 0
\(971\) −35313.3 −1.16710 −0.583552 0.812076i \(-0.698338\pi\)
−0.583552 + 0.812076i \(0.698338\pi\)
\(972\) 0 0
\(973\) 14104.2 0.464709
\(974\) 0 0
\(975\) −25025.4 −0.822003
\(976\) 0 0
\(977\) 9684.81 0.317139 0.158569 0.987348i \(-0.449312\pi\)
0.158569 + 0.987348i \(0.449312\pi\)
\(978\) 0 0
\(979\) −5441.56 −0.177643
\(980\) 0 0
\(981\) 18807.1 0.612094
\(982\) 0 0
\(983\) 52986.8 1.71924 0.859621 0.510932i \(-0.170699\pi\)
0.859621 + 0.510932i \(0.170699\pi\)
\(984\) 0 0
\(985\) −100121. −3.23869
\(986\) 0 0
\(987\) 5264.47 0.169777
\(988\) 0 0
\(989\) −34458.5 −1.10790
\(990\) 0 0
\(991\) 6415.80 0.205656 0.102828 0.994699i \(-0.467211\pi\)
0.102828 + 0.994699i \(0.467211\pi\)
\(992\) 0 0
\(993\) 3632.77 0.116095
\(994\) 0 0
\(995\) 11893.4 0.378940
\(996\) 0 0
\(997\) −20825.7 −0.661540 −0.330770 0.943711i \(-0.607308\pi\)
−0.330770 + 0.943711i \(0.607308\pi\)
\(998\) 0 0
\(999\) 3343.63 0.105894
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.a.i.1.2 2
3.2 odd 2 2016.4.a.h.1.1 2
4.3 odd 2 672.4.a.n.1.2 yes 2
8.3 odd 2 1344.4.a.bc.1.1 2
8.5 even 2 1344.4.a.bk.1.1 2
12.11 even 2 2016.4.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.a.i.1.2 2 1.1 even 1 trivial
672.4.a.n.1.2 yes 2 4.3 odd 2
1344.4.a.bc.1.1 2 8.3 odd 2
1344.4.a.bk.1.1 2 8.5 even 2
2016.4.a.g.1.1 2 12.11 even 2
2016.4.a.h.1.1 2 3.2 odd 2