Properties

Label 2016.4.a.h.1.1
Level $2016$
Weight $4$
Character 2016.1
Self dual yes
Analytic conductor $118.948$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,4,Mod(1,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2016.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-16,0,14,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(118.947850572\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{43}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-6.55744\) of defining polynomial
Character \(\chi\) \(=\) 2016.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.1149 q^{5} +7.00000 q^{7} +11.1149 q^{11} +26.0000 q^{13} -67.3446 q^{17} +42.2298 q^{19} -122.264 q^{23} +320.838 q^{25} +16.2298 q^{29} -279.149 q^{31} -147.804 q^{35} -123.838 q^{37} +32.2636 q^{41} -281.838 q^{43} +250.689 q^{47} +49.0000 q^{49} +27.8380 q^{53} -234.689 q^{55} -677.906 q^{59} +73.9322 q^{61} -548.987 q^{65} +845.446 q^{67} -739.250 q^{71} -702.203 q^{73} +77.8041 q^{77} +250.689 q^{79} +699.352 q^{83} +1421.97 q^{85} -489.574 q^{89} +182.000 q^{91} -891.676 q^{95} +1184.37 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{5} + 14 q^{7} - 4 q^{11} + 52 q^{13} - 56 q^{17} + 32 q^{19} + 44 q^{23} + 222 q^{25} - 20 q^{29} - 296 q^{31} - 112 q^{35} + 172 q^{37} - 224 q^{41} - 144 q^{43} + 344 q^{47} + 98 q^{49} - 364 q^{53}+ \cdots + 1372 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −21.1149 −1.88857 −0.944286 0.329126i \(-0.893246\pi\)
−0.944286 + 0.329126i \(0.893246\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 11.1149 0.304660 0.152330 0.988330i \(-0.451322\pi\)
0.152330 + 0.988330i \(0.451322\pi\)
\(12\) 0 0
\(13\) 26.0000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −67.3446 −0.960792 −0.480396 0.877052i \(-0.659507\pi\)
−0.480396 + 0.877052i \(0.659507\pi\)
\(18\) 0 0
\(19\) 42.2298 0.509904 0.254952 0.966954i \(-0.417940\pi\)
0.254952 + 0.966954i \(0.417940\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −122.264 −1.10842 −0.554212 0.832376i \(-0.686980\pi\)
−0.554212 + 0.832376i \(0.686980\pi\)
\(24\) 0 0
\(25\) 320.838 2.56670
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 16.2298 0.103924 0.0519619 0.998649i \(-0.483453\pi\)
0.0519619 + 0.998649i \(0.483453\pi\)
\(30\) 0 0
\(31\) −279.149 −1.61731 −0.808655 0.588283i \(-0.799804\pi\)
−0.808655 + 0.588283i \(0.799804\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −147.804 −0.713813
\(36\) 0 0
\(37\) −123.838 −0.550239 −0.275120 0.961410i \(-0.588717\pi\)
−0.275120 + 0.961410i \(0.588717\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 32.2636 0.122896 0.0614480 0.998110i \(-0.480428\pi\)
0.0614480 + 0.998110i \(0.480428\pi\)
\(42\) 0 0
\(43\) −281.838 −0.999532 −0.499766 0.866160i \(-0.666581\pi\)
−0.499766 + 0.866160i \(0.666581\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 250.689 0.778017 0.389008 0.921234i \(-0.372818\pi\)
0.389008 + 0.921234i \(0.372818\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 27.8380 0.0721481 0.0360740 0.999349i \(-0.488515\pi\)
0.0360740 + 0.999349i \(0.488515\pi\)
\(54\) 0 0
\(55\) −234.689 −0.575373
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −677.906 −1.49586 −0.747931 0.663777i \(-0.768952\pi\)
−0.747931 + 0.663777i \(0.768952\pi\)
\(60\) 0 0
\(61\) 73.9322 0.155181 0.0775906 0.996985i \(-0.475277\pi\)
0.0775906 + 0.996985i \(0.475277\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −548.987 −1.04759
\(66\) 0 0
\(67\) 845.446 1.54161 0.770804 0.637073i \(-0.219855\pi\)
0.770804 + 0.637073i \(0.219855\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −739.250 −1.23567 −0.617837 0.786306i \(-0.711991\pi\)
−0.617837 + 0.786306i \(0.711991\pi\)
\(72\) 0 0
\(73\) −702.203 −1.12585 −0.562923 0.826510i \(-0.690323\pi\)
−0.562923 + 0.826510i \(0.690323\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 77.8041 0.115151
\(78\) 0 0
\(79\) 250.689 0.357022 0.178511 0.983938i \(-0.442872\pi\)
0.178511 + 0.983938i \(0.442872\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 699.352 0.924866 0.462433 0.886654i \(-0.346977\pi\)
0.462433 + 0.886654i \(0.346977\pi\)
\(84\) 0 0
\(85\) 1421.97 1.81453
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −489.574 −0.583087 −0.291544 0.956558i \(-0.594169\pi\)
−0.291544 + 0.956558i \(0.594169\pi\)
\(90\) 0 0
\(91\) 182.000 0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −891.676 −0.962990
\(96\) 0 0
\(97\) 1184.37 1.23973 0.619866 0.784707i \(-0.287187\pi\)
0.619866 + 0.784707i \(0.287187\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1554.56 −1.53153 −0.765765 0.643120i \(-0.777640\pi\)
−0.765765 + 0.643120i \(0.777640\pi\)
\(102\) 0 0
\(103\) −1780.01 −1.70282 −0.851408 0.524504i \(-0.824251\pi\)
−0.851408 + 0.524504i \(0.824251\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1140.37 −1.03032 −0.515159 0.857095i \(-0.672267\pi\)
−0.515159 + 0.857095i \(0.672267\pi\)
\(108\) 0 0
\(109\) 2089.68 1.83628 0.918141 0.396255i \(-0.129690\pi\)
0.918141 + 0.396255i \(0.129690\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 332.298 0.276636 0.138318 0.990388i \(-0.455830\pi\)
0.138318 + 0.990388i \(0.455830\pi\)
\(114\) 0 0
\(115\) 2581.58 2.09334
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −471.412 −0.363145
\(120\) 0 0
\(121\) −1207.46 −0.907182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4135.10 −2.95883
\(126\) 0 0
\(127\) −1261.72 −0.881569 −0.440785 0.897613i \(-0.645300\pi\)
−0.440785 + 0.897613i \(0.645300\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2639.03 1.76010 0.880049 0.474882i \(-0.157509\pi\)
0.880049 + 0.474882i \(0.157509\pi\)
\(132\) 0 0
\(133\) 295.608 0.192725
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2000.18 1.24735 0.623674 0.781685i \(-0.285639\pi\)
0.623674 + 0.781685i \(0.285639\pi\)
\(138\) 0 0
\(139\) 2014.89 1.22950 0.614752 0.788721i \(-0.289256\pi\)
0.614752 + 0.788721i \(0.289256\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 288.987 0.168995
\(144\) 0 0
\(145\) −342.689 −0.196268
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −140.810 −0.0774201 −0.0387100 0.999250i \(-0.512325\pi\)
−0.0387100 + 0.999250i \(0.512325\pi\)
\(150\) 0 0
\(151\) 2493.00 1.34356 0.671780 0.740751i \(-0.265530\pi\)
0.671780 + 0.740751i \(0.265530\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5894.19 3.05441
\(156\) 0 0
\(157\) 2681.28 1.36299 0.681496 0.731822i \(-0.261330\pi\)
0.681496 + 0.731822i \(0.261330\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −855.846 −0.418945
\(162\) 0 0
\(163\) 3625.26 1.74204 0.871019 0.491250i \(-0.163460\pi\)
0.871019 + 0.491250i \(0.163460\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1242.82 0.575884 0.287942 0.957648i \(-0.407029\pi\)
0.287942 + 0.957648i \(0.407029\pi\)
\(168\) 0 0
\(169\) −1521.00 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −249.778 −0.109770 −0.0548851 0.998493i \(-0.517479\pi\)
−0.0548851 + 0.998493i \(0.517479\pi\)
\(174\) 0 0
\(175\) 2245.87 0.970123
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3529.48 1.47378 0.736888 0.676015i \(-0.236295\pi\)
0.736888 + 0.676015i \(0.236295\pi\)
\(180\) 0 0
\(181\) −2359.73 −0.969047 −0.484524 0.874778i \(-0.661007\pi\)
−0.484524 + 0.874778i \(0.661007\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2614.82 1.03917
\(186\) 0 0
\(187\) −748.527 −0.292715
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 686.859 0.260206 0.130103 0.991500i \(-0.458469\pi\)
0.130103 + 0.991500i \(0.458469\pi\)
\(192\) 0 0
\(193\) −1456.89 −0.543365 −0.271682 0.962387i \(-0.587580\pi\)
−0.271682 + 0.962387i \(0.587580\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4741.71 1.71489 0.857443 0.514579i \(-0.172052\pi\)
0.857443 + 0.514579i \(0.172052\pi\)
\(198\) 0 0
\(199\) 563.269 0.200649 0.100324 0.994955i \(-0.468012\pi\)
0.100324 + 0.994955i \(0.468012\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 113.608 0.0392795
\(204\) 0 0
\(205\) −681.243 −0.232098
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 469.379 0.155347
\(210\) 0 0
\(211\) 3241.19 1.05750 0.528751 0.848777i \(-0.322661\pi\)
0.528751 + 0.848777i \(0.322661\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5950.98 1.88769
\(216\) 0 0
\(217\) −1954.04 −0.611286
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1750.96 −0.532952
\(222\) 0 0
\(223\) 2656.65 0.797768 0.398884 0.917001i \(-0.369398\pi\)
0.398884 + 0.917001i \(0.369398\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3125.02 −0.913721 −0.456860 0.889538i \(-0.651026\pi\)
−0.456860 + 0.889538i \(0.651026\pi\)
\(228\) 0 0
\(229\) −403.107 −0.116324 −0.0581618 0.998307i \(-0.518524\pi\)
−0.0581618 + 0.998307i \(0.518524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1156.47 0.325163 0.162581 0.986695i \(-0.448018\pi\)
0.162581 + 0.986695i \(0.448018\pi\)
\(234\) 0 0
\(235\) −5293.27 −1.46934
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3733.02 −1.01033 −0.505165 0.863023i \(-0.668568\pi\)
−0.505165 + 0.863023i \(0.668568\pi\)
\(240\) 0 0
\(241\) 3153.04 0.842761 0.421380 0.906884i \(-0.361546\pi\)
0.421380 + 0.906884i \(0.361546\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1034.63 −0.269796
\(246\) 0 0
\(247\) 1097.97 0.282844
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2441.45 0.613955 0.306978 0.951717i \(-0.400682\pi\)
0.306978 + 0.951717i \(0.400682\pi\)
\(252\) 0 0
\(253\) −1358.95 −0.337692
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2416.55 −0.586538 −0.293269 0.956030i \(-0.594743\pi\)
−0.293269 + 0.956030i \(0.594743\pi\)
\(258\) 0 0
\(259\) −866.866 −0.207971
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −509.427 −0.119440 −0.0597198 0.998215i \(-0.519021\pi\)
−0.0597198 + 0.998215i \(0.519021\pi\)
\(264\) 0 0
\(265\) −587.797 −0.136257
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8309.43 1.88340 0.941701 0.336452i \(-0.109227\pi\)
0.941701 + 0.336452i \(0.109227\pi\)
\(270\) 0 0
\(271\) −1499.88 −0.336204 −0.168102 0.985770i \(-0.553764\pi\)
−0.168102 + 0.985770i \(0.553764\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3566.08 0.781972
\(276\) 0 0
\(277\) 1724.03 0.373959 0.186980 0.982364i \(-0.440130\pi\)
0.186980 + 0.982364i \(0.440130\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8393.23 1.78184 0.890922 0.454156i \(-0.150059\pi\)
0.890922 + 0.454156i \(0.150059\pi\)
\(282\) 0 0
\(283\) 8049.99 1.69089 0.845445 0.534062i \(-0.179335\pi\)
0.845445 + 0.534062i \(0.179335\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 225.846 0.0464503
\(288\) 0 0
\(289\) −377.701 −0.0768778
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9886.67 −1.97128 −0.985641 0.168854i \(-0.945993\pi\)
−0.985641 + 0.168854i \(0.945993\pi\)
\(294\) 0 0
\(295\) 14313.9 2.82504
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3178.85 −0.614843
\(300\) 0 0
\(301\) −1972.87 −0.377788
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1561.07 −0.293071
\(306\) 0 0
\(307\) 1721.15 0.319970 0.159985 0.987119i \(-0.448855\pi\)
0.159985 + 0.987119i \(0.448855\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4417.94 0.805525 0.402762 0.915305i \(-0.368050\pi\)
0.402762 + 0.915305i \(0.368050\pi\)
\(312\) 0 0
\(313\) −8351.08 −1.50809 −0.754043 0.656825i \(-0.771899\pi\)
−0.754043 + 0.656825i \(0.771899\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5002.52 −0.886339 −0.443170 0.896438i \(-0.646146\pi\)
−0.443170 + 0.896438i \(0.646146\pi\)
\(318\) 0 0
\(319\) 180.392 0.0316614
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2843.95 −0.489912
\(324\) 0 0
\(325\) 8341.79 1.42375
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1754.82 0.294063
\(330\) 0 0
\(331\) −1210.92 −0.201083 −0.100541 0.994933i \(-0.532057\pi\)
−0.100541 + 0.994933i \(0.532057\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17851.5 −2.91144
\(336\) 0 0
\(337\) 611.974 0.0989209 0.0494604 0.998776i \(-0.484250\pi\)
0.0494604 + 0.998776i \(0.484250\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3102.70 −0.492730
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8546.91 1.32225 0.661127 0.750274i \(-0.270078\pi\)
0.661127 + 0.750274i \(0.270078\pi\)
\(348\) 0 0
\(349\) −5144.82 −0.789101 −0.394550 0.918874i \(-0.629100\pi\)
−0.394550 + 0.918874i \(0.629100\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9998.93 1.50762 0.753809 0.657093i \(-0.228214\pi\)
0.753809 + 0.657093i \(0.228214\pi\)
\(354\) 0 0
\(355\) 15609.2 2.33366
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3832.83 0.563480 0.281740 0.959491i \(-0.409089\pi\)
0.281740 + 0.959491i \(0.409089\pi\)
\(360\) 0 0
\(361\) −5075.65 −0.739998
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14826.9 2.12624
\(366\) 0 0
\(367\) −5782.49 −0.822462 −0.411231 0.911531i \(-0.634901\pi\)
−0.411231 + 0.911531i \(0.634901\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 194.866 0.0272694
\(372\) 0 0
\(373\) −9914.87 −1.37633 −0.688167 0.725552i \(-0.741584\pi\)
−0.688167 + 0.725552i \(0.741584\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 421.974 0.0576465
\(378\) 0 0
\(379\) −9678.39 −1.31173 −0.655865 0.754879i \(-0.727696\pi\)
−0.655865 + 0.754879i \(0.727696\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8619.74 −1.14999 −0.574997 0.818155i \(-0.694997\pi\)
−0.574997 + 0.818155i \(0.694997\pi\)
\(384\) 0 0
\(385\) −1642.82 −0.217470
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9220.61 1.20181 0.600904 0.799321i \(-0.294807\pi\)
0.600904 + 0.799321i \(0.294807\pi\)
\(390\) 0 0
\(391\) 8233.80 1.06496
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5293.27 −0.674262
\(396\) 0 0
\(397\) −12551.5 −1.58676 −0.793379 0.608728i \(-0.791680\pi\)
−0.793379 + 0.608728i \(0.791680\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11057.6 1.37703 0.688514 0.725223i \(-0.258263\pi\)
0.688514 + 0.725223i \(0.258263\pi\)
\(402\) 0 0
\(403\) −7257.87 −0.897122
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1376.44 −0.167636
\(408\) 0 0
\(409\) −10535.3 −1.27368 −0.636842 0.770995i \(-0.719759\pi\)
−0.636842 + 0.770995i \(0.719759\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4745.34 −0.565382
\(414\) 0 0
\(415\) −14766.7 −1.74668
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4846.31 −0.565055 −0.282527 0.959259i \(-0.591173\pi\)
−0.282527 + 0.959259i \(0.591173\pi\)
\(420\) 0 0
\(421\) 9326.47 1.07968 0.539839 0.841768i \(-0.318485\pi\)
0.539839 + 0.841768i \(0.318485\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −21606.7 −2.46607
\(426\) 0 0
\(427\) 517.525 0.0586530
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15498.1 1.73205 0.866027 0.499998i \(-0.166666\pi\)
0.866027 + 0.499998i \(0.166666\pi\)
\(432\) 0 0
\(433\) 3861.65 0.428589 0.214294 0.976769i \(-0.431255\pi\)
0.214294 + 0.976769i \(0.431255\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5163.16 −0.565189
\(438\) 0 0
\(439\) 4826.85 0.524767 0.262384 0.964964i \(-0.415491\pi\)
0.262384 + 0.964964i \(0.415491\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4796.48 0.514419 0.257209 0.966356i \(-0.417197\pi\)
0.257209 + 0.966356i \(0.417197\pi\)
\(444\) 0 0
\(445\) 10337.3 1.10120
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10161.7 1.06806 0.534029 0.845466i \(-0.320677\pi\)
0.534029 + 0.845466i \(0.320677\pi\)
\(450\) 0 0
\(451\) 358.606 0.0374415
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3842.91 −0.395952
\(456\) 0 0
\(457\) 10037.3 1.02741 0.513704 0.857968i \(-0.328273\pi\)
0.513704 + 0.857968i \(0.328273\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12646.4 1.27766 0.638831 0.769347i \(-0.279418\pi\)
0.638831 + 0.769347i \(0.279418\pi\)
\(462\) 0 0
\(463\) 17077.8 1.71419 0.857097 0.515155i \(-0.172266\pi\)
0.857097 + 0.515155i \(0.172266\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −899.992 −0.0891792 −0.0445896 0.999005i \(-0.514198\pi\)
−0.0445896 + 0.999005i \(0.514198\pi\)
\(468\) 0 0
\(469\) 5918.12 0.582673
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3132.60 −0.304518
\(474\) 0 0
\(475\) 13548.9 1.30877
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5953.85 −0.567929 −0.283965 0.958835i \(-0.591650\pi\)
−0.283965 + 0.958835i \(0.591650\pi\)
\(480\) 0 0
\(481\) −3219.79 −0.305218
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −25007.7 −2.34132
\(486\) 0 0
\(487\) −13309.9 −1.23846 −0.619229 0.785211i \(-0.712555\pi\)
−0.619229 + 0.785211i \(0.712555\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1894.37 −0.174117 −0.0870587 0.996203i \(-0.527747\pi\)
−0.0870587 + 0.996203i \(0.527747\pi\)
\(492\) 0 0
\(493\) −1092.99 −0.0998492
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5174.75 −0.467041
\(498\) 0 0
\(499\) 5338.14 0.478894 0.239447 0.970909i \(-0.423034\pi\)
0.239447 + 0.970909i \(0.423034\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6895.58 0.611250 0.305625 0.952152i \(-0.401135\pi\)
0.305625 + 0.952152i \(0.401135\pi\)
\(504\) 0 0
\(505\) 32824.4 2.89241
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1638.74 −0.142703 −0.0713516 0.997451i \(-0.522731\pi\)
−0.0713516 + 0.997451i \(0.522731\pi\)
\(510\) 0 0
\(511\) −4915.42 −0.425529
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 37584.8 3.21589
\(516\) 0 0
\(517\) 2786.38 0.237031
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13423.8 −1.12880 −0.564401 0.825501i \(-0.690893\pi\)
−0.564401 + 0.825501i \(0.690893\pi\)
\(522\) 0 0
\(523\) −15758.4 −1.31753 −0.658763 0.752350i \(-0.728920\pi\)
−0.658763 + 0.752350i \(0.728920\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18799.2 1.55390
\(528\) 0 0
\(529\) 2781.40 0.228602
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 838.855 0.0681704
\(534\) 0 0
\(535\) 24078.8 1.94583
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 544.629 0.0435229
\(540\) 0 0
\(541\) −12144.5 −0.965127 −0.482564 0.875861i \(-0.660294\pi\)
−0.482564 + 0.875861i \(0.660294\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −44123.3 −3.46795
\(546\) 0 0
\(547\) 11271.8 0.881070 0.440535 0.897735i \(-0.354789\pi\)
0.440535 + 0.897735i \(0.354789\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 685.379 0.0529911
\(552\) 0 0
\(553\) 1754.82 0.134942
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13000.5 0.988954 0.494477 0.869191i \(-0.335360\pi\)
0.494477 + 0.869191i \(0.335360\pi\)
\(558\) 0 0
\(559\) −7327.79 −0.554441
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18246.0 1.36586 0.682929 0.730485i \(-0.260706\pi\)
0.682929 + 0.730485i \(0.260706\pi\)
\(564\) 0 0
\(565\) −7016.42 −0.522448
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10249.3 −0.755140 −0.377570 0.925981i \(-0.623240\pi\)
−0.377570 + 0.925981i \(0.623240\pi\)
\(570\) 0 0
\(571\) −1383.57 −0.101402 −0.0507011 0.998714i \(-0.516146\pi\)
−0.0507011 + 0.998714i \(0.516146\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −39226.8 −2.84499
\(576\) 0 0
\(577\) −346.308 −0.0249861 −0.0124931 0.999922i \(-0.503977\pi\)
−0.0124931 + 0.999922i \(0.503977\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4895.46 0.349566
\(582\) 0 0
\(583\) 309.416 0.0219806
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8208.65 0.577184 0.288592 0.957452i \(-0.406813\pi\)
0.288592 + 0.957452i \(0.406813\pi\)
\(588\) 0 0
\(589\) −11788.4 −0.824672
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19522.9 −1.35196 −0.675978 0.736922i \(-0.736279\pi\)
−0.675978 + 0.736922i \(0.736279\pi\)
\(594\) 0 0
\(595\) 9953.82 0.685826
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −294.580 −0.0200938 −0.0100469 0.999950i \(-0.503198\pi\)
−0.0100469 + 0.999950i \(0.503198\pi\)
\(600\) 0 0
\(601\) 1132.24 0.0768473 0.0384236 0.999262i \(-0.487766\pi\)
0.0384236 + 0.999262i \(0.487766\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25495.4 1.71328
\(606\) 0 0
\(607\) 2175.61 0.145478 0.0727390 0.997351i \(-0.476826\pi\)
0.0727390 + 0.997351i \(0.476826\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6517.92 0.431566
\(612\) 0 0
\(613\) 23243.3 1.53147 0.765734 0.643158i \(-0.222376\pi\)
0.765734 + 0.643158i \(0.222376\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23917.8 1.56060 0.780302 0.625403i \(-0.215065\pi\)
0.780302 + 0.625403i \(0.215065\pi\)
\(618\) 0 0
\(619\) 14915.1 0.968482 0.484241 0.874935i \(-0.339096\pi\)
0.484241 + 0.874935i \(0.339096\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3427.02 −0.220386
\(624\) 0 0
\(625\) 47207.3 3.02127
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8339.83 0.528666
\(630\) 0 0
\(631\) −14782.3 −0.932604 −0.466302 0.884626i \(-0.654414\pi\)
−0.466302 + 0.884626i \(0.654414\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26641.0 1.66491
\(636\) 0 0
\(637\) 1274.00 0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3820.66 −0.235424 −0.117712 0.993048i \(-0.537556\pi\)
−0.117712 + 0.993048i \(0.537556\pi\)
\(642\) 0 0
\(643\) 31644.8 1.94082 0.970411 0.241460i \(-0.0776264\pi\)
0.970411 + 0.241460i \(0.0776264\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28264.2 −1.71744 −0.858718 0.512448i \(-0.828739\pi\)
−0.858718 + 0.512448i \(0.828739\pi\)
\(648\) 0 0
\(649\) −7534.84 −0.455729
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10647.4 0.638076 0.319038 0.947742i \(-0.396640\pi\)
0.319038 + 0.947742i \(0.396640\pi\)
\(654\) 0 0
\(655\) −55722.8 −3.32407
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22956.8 1.35701 0.678505 0.734595i \(-0.262628\pi\)
0.678505 + 0.734595i \(0.262628\pi\)
\(660\) 0 0
\(661\) 11133.8 0.655149 0.327575 0.944825i \(-0.393769\pi\)
0.327575 + 0.944825i \(0.393769\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6241.73 −0.363976
\(666\) 0 0
\(667\) −1984.31 −0.115192
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 821.747 0.0472775
\(672\) 0 0
\(673\) 5327.32 0.305131 0.152565 0.988293i \(-0.451247\pi\)
0.152565 + 0.988293i \(0.451247\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15023.5 −0.852878 −0.426439 0.904516i \(-0.640232\pi\)
−0.426439 + 0.904516i \(0.640232\pi\)
\(678\) 0 0
\(679\) 8290.56 0.468575
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14635.9 −0.819954 −0.409977 0.912096i \(-0.634463\pi\)
−0.409977 + 0.912096i \(0.634463\pi\)
\(684\) 0 0
\(685\) −42233.5 −2.35571
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 723.789 0.0400206
\(690\) 0 0
\(691\) 7115.23 0.391717 0.195858 0.980632i \(-0.437251\pi\)
0.195858 + 0.980632i \(0.437251\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −42544.2 −2.32201
\(696\) 0 0
\(697\) −2172.78 −0.118078
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −14927.8 −0.804299 −0.402149 0.915574i \(-0.631737\pi\)
−0.402149 + 0.915574i \(0.631737\pi\)
\(702\) 0 0
\(703\) −5229.65 −0.280569
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10881.9 −0.578864
\(708\) 0 0
\(709\) 888.426 0.0470600 0.0235300 0.999723i \(-0.492509\pi\)
0.0235300 + 0.999723i \(0.492509\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 34129.7 1.79266
\(714\) 0 0
\(715\) −6101.92 −0.319159
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24155.9 1.25294 0.626470 0.779445i \(-0.284499\pi\)
0.626470 + 0.779445i \(0.284499\pi\)
\(720\) 0 0
\(721\) −12460.1 −0.643604
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5207.12 0.266742
\(726\) 0 0
\(727\) 11284.0 0.575654 0.287827 0.957682i \(-0.407067\pi\)
0.287827 + 0.957682i \(0.407067\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18980.3 0.960343
\(732\) 0 0
\(733\) 19307.2 0.972887 0.486444 0.873712i \(-0.338294\pi\)
0.486444 + 0.873712i \(0.338294\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9397.03 0.469666
\(738\) 0 0
\(739\) −16139.9 −0.803406 −0.401703 0.915770i \(-0.631582\pi\)
−0.401703 + 0.915770i \(0.631582\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6613.88 0.326568 0.163284 0.986579i \(-0.447791\pi\)
0.163284 + 0.986579i \(0.447791\pi\)
\(744\) 0 0
\(745\) 2973.18 0.146213
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7982.61 −0.389424
\(750\) 0 0
\(751\) −5167.07 −0.251064 −0.125532 0.992090i \(-0.540064\pi\)
−0.125532 + 0.992090i \(0.540064\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −52639.4 −2.53741
\(756\) 0 0
\(757\) −21745.4 −1.04405 −0.522027 0.852929i \(-0.674824\pi\)
−0.522027 + 0.852929i \(0.674824\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3002.22 −0.143010 −0.0715049 0.997440i \(-0.522780\pi\)
−0.0715049 + 0.997440i \(0.522780\pi\)
\(762\) 0 0
\(763\) 14627.7 0.694049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −17625.6 −0.829755
\(768\) 0 0
\(769\) −4008.18 −0.187957 −0.0939784 0.995574i \(-0.529958\pi\)
−0.0939784 + 0.995574i \(0.529958\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3816.48 −0.177580 −0.0887900 0.996050i \(-0.528300\pi\)
−0.0887900 + 0.996050i \(0.528300\pi\)
\(774\) 0 0
\(775\) −89561.5 −4.15116
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1362.49 0.0626651
\(780\) 0 0
\(781\) −8216.68 −0.376461
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −56615.0 −2.57411
\(786\) 0 0
\(787\) −22492.0 −1.01874 −0.509372 0.860546i \(-0.670122\pi\)
−0.509372 + 0.860546i \(0.670122\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2326.08 0.104559
\(792\) 0 0
\(793\) 1922.24 0.0860790
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −41001.1 −1.82225 −0.911124 0.412132i \(-0.864784\pi\)
−0.911124 + 0.412132i \(0.864784\pi\)
\(798\) 0 0
\(799\) −16882.6 −0.747513
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7804.90 −0.343000
\(804\) 0 0
\(805\) 18071.1 0.791207
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30507.0 1.32579 0.662897 0.748710i \(-0.269327\pi\)
0.662897 + 0.748710i \(0.269327\pi\)
\(810\) 0 0
\(811\) −3799.66 −0.164518 −0.0822590 0.996611i \(-0.526213\pi\)
−0.0822590 + 0.996611i \(0.526213\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −76546.9 −3.28996
\(816\) 0 0
\(817\) −11902.0 −0.509665
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27444.1 −1.16663 −0.583316 0.812245i \(-0.698245\pi\)
−0.583316 + 0.812245i \(0.698245\pi\)
\(822\) 0 0
\(823\) 9422.95 0.399105 0.199553 0.979887i \(-0.436051\pi\)
0.199553 + 0.979887i \(0.436051\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5531.49 0.232586 0.116293 0.993215i \(-0.462899\pi\)
0.116293 + 0.993215i \(0.462899\pi\)
\(828\) 0 0
\(829\) 47025.9 1.97018 0.985088 0.172050i \(-0.0550391\pi\)
0.985088 + 0.172050i \(0.0550391\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3299.89 −0.137256
\(834\) 0 0
\(835\) −26242.1 −1.08760
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −25249.1 −1.03897 −0.519484 0.854480i \(-0.673876\pi\)
−0.519484 + 0.854480i \(0.673876\pi\)
\(840\) 0 0
\(841\) −24125.6 −0.989200
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 32115.7 1.30747
\(846\) 0 0
\(847\) −8452.22 −0.342883
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15140.9 0.609898
\(852\) 0 0
\(853\) −5220.44 −0.209548 −0.104774 0.994496i \(-0.533412\pi\)
−0.104774 + 0.994496i \(0.533412\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16752.7 0.667751 0.333876 0.942617i \(-0.391643\pi\)
0.333876 + 0.942617i \(0.391643\pi\)
\(858\) 0 0
\(859\) −46840.6 −1.86051 −0.930257 0.366908i \(-0.880416\pi\)
−0.930257 + 0.366908i \(0.880416\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2861.77 −0.112881 −0.0564403 0.998406i \(-0.517975\pi\)
−0.0564403 + 0.998406i \(0.517975\pi\)
\(864\) 0 0
\(865\) 5274.03 0.207309
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2786.38 0.108770
\(870\) 0 0
\(871\) 21981.6 0.855130
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28945.7 −1.11833
\(876\) 0 0
\(877\) −28321.1 −1.09046 −0.545231 0.838286i \(-0.683558\pi\)
−0.545231 + 0.838286i \(0.683558\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17763.2 0.679293 0.339647 0.940553i \(-0.389693\pi\)
0.339647 + 0.940553i \(0.389693\pi\)
\(882\) 0 0
\(883\) 5366.85 0.204540 0.102270 0.994757i \(-0.467389\pi\)
0.102270 + 0.994757i \(0.467389\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 50485.4 1.91109 0.955544 0.294849i \(-0.0952693\pi\)
0.955544 + 0.294849i \(0.0952693\pi\)
\(888\) 0 0
\(889\) −8832.02 −0.333202
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10586.5 0.396714
\(894\) 0 0
\(895\) −74524.5 −2.78333
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4530.52 −0.168077
\(900\) 0 0
\(901\) −1874.74 −0.0693193
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 49825.5 1.83012
\(906\) 0 0
\(907\) 14517.9 0.531487 0.265744 0.964044i \(-0.414382\pi\)
0.265744 + 0.964044i \(0.414382\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −39837.6 −1.44883 −0.724413 0.689367i \(-0.757889\pi\)
−0.724413 + 0.689367i \(0.757889\pi\)
\(912\) 0 0
\(913\) 7773.21 0.281770
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18473.2 0.665255
\(918\) 0 0
\(919\) 3406.72 0.122282 0.0611411 0.998129i \(-0.480526\pi\)
0.0611411 + 0.998129i \(0.480526\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −19220.5 −0.685429
\(924\) 0 0
\(925\) −39732.0 −1.41230
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7453.31 0.263224 0.131612 0.991301i \(-0.457985\pi\)
0.131612 + 0.991301i \(0.457985\pi\)
\(930\) 0 0
\(931\) 2069.26 0.0728434
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15805.1 0.552814
\(936\) 0 0
\(937\) −13599.3 −0.474140 −0.237070 0.971493i \(-0.576187\pi\)
−0.237070 + 0.971493i \(0.576187\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1430.50 0.0495569 0.0247784 0.999693i \(-0.492112\pi\)
0.0247784 + 0.999693i \(0.492112\pi\)
\(942\) 0 0
\(943\) −3944.67 −0.136221
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7382.05 0.253310 0.126655 0.991947i \(-0.459576\pi\)
0.126655 + 0.991947i \(0.459576\pi\)
\(948\) 0 0
\(949\) −18257.3 −0.624506
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19941.7 −0.677833 −0.338916 0.940816i \(-0.610060\pi\)
−0.338916 + 0.940816i \(0.610060\pi\)
\(954\) 0 0
\(955\) −14502.9 −0.491418
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14001.2 0.471453
\(960\) 0 0
\(961\) 48133.0 1.61569
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30762.1 1.02618
\(966\) 0 0
\(967\) −6161.51 −0.204903 −0.102451 0.994738i \(-0.532669\pi\)
−0.102451 + 0.994738i \(0.532669\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 35313.3 1.16710 0.583552 0.812076i \(-0.301662\pi\)
0.583552 + 0.812076i \(0.301662\pi\)
\(972\) 0 0
\(973\) 14104.2 0.464709
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9684.81 −0.317139 −0.158569 0.987348i \(-0.550688\pi\)
−0.158569 + 0.987348i \(0.550688\pi\)
\(978\) 0 0
\(979\) −5441.56 −0.177643
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −52986.8 −1.71924 −0.859621 0.510932i \(-0.829301\pi\)
−0.859621 + 0.510932i \(0.829301\pi\)
\(984\) 0 0
\(985\) −100121. −3.23869
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 34458.5 1.10790
\(990\) 0 0
\(991\) 6415.80 0.205656 0.102828 0.994699i \(-0.467211\pi\)
0.102828 + 0.994699i \(0.467211\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11893.4 −0.378940
\(996\) 0 0
\(997\) −20825.7 −0.661540 −0.330770 0.943711i \(-0.607308\pi\)
−0.330770 + 0.943711i \(0.607308\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.4.a.h.1.1 2
3.2 odd 2 672.4.a.i.1.2 2
4.3 odd 2 2016.4.a.g.1.1 2
12.11 even 2 672.4.a.n.1.2 yes 2
24.5 odd 2 1344.4.a.bk.1.1 2
24.11 even 2 1344.4.a.bc.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.a.i.1.2 2 3.2 odd 2
672.4.a.n.1.2 yes 2 12.11 even 2
1344.4.a.bc.1.1 2 24.11 even 2
1344.4.a.bk.1.1 2 24.5 odd 2
2016.4.a.g.1.1 2 4.3 odd 2
2016.4.a.h.1.1 2 1.1 even 1 trivial