Defining parameters
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.o (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 84 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(672, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 272 | 64 | 208 |
Cusp forms | 240 | 64 | 176 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(672, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
672.3.o.a | $32$ | $18.311$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
672.3.o.b | $32$ | $18.311$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(672, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)