Properties

Label 672.3.d
Level $672$
Weight $3$
Character orbit 672.d
Rep. character $\chi_{672}(449,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $4$
Sturm bound $384$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(384\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(672, [\chi])\).

Total New Old
Modular forms 272 48 224
Cusp forms 240 48 192
Eisenstein series 32 0 32

Trace form

\( 48 q - 16 q^{9} - 240 q^{25} + 128 q^{33} + 64 q^{37} + 96 q^{45} + 336 q^{49} - 384 q^{57} - 320 q^{61} - 480 q^{69} + 96 q^{73} + 496 q^{81} + 480 q^{85} + 672 q^{93} - 480 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(672, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
672.3.d.a 672.d 3.b $4$ $18.311$ \(\Q(\sqrt{-2}, \sqrt{7})\) None 672.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{5}+\beta _{3}q^{7}+(5+\cdots)q^{9}+\cdots\)
672.3.d.b 672.d 3.b $8$ $18.311$ 8.0.157351936.1 None 672.3.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3\beta _{4}q^{3}+(\beta _{2}+4\beta _{3}+\beta _{7})q^{5}+\beta _{6}q^{7}+\cdots\)
672.3.d.c 672.d 3.b $12$ $18.311$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 672.3.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+(\beta _{5}-\beta _{7}+\beta _{11})q^{5}+\beta _{1}q^{7}+\cdots\)
672.3.d.d 672.d 3.b $24$ $18.311$ None 672.3.d.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(672, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)