Defining parameters
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(672, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 272 | 48 | 224 |
Cusp forms | 240 | 48 | 192 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(672, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
672.3.d.a | $4$ | $18.311$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{5}+\beta _{3}q^{7}+(5+\cdots)q^{9}+\cdots\) |
672.3.d.b | $8$ | $18.311$ | 8.0.157351936.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3\beta _{4}q^{3}+(\beta _{2}+4\beta _{3}+\beta _{7})q^{5}+\beta _{6}q^{7}+\cdots\) |
672.3.d.c | $12$ | $18.311$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+(\beta _{5}-\beta _{7}+\beta _{11})q^{5}+\beta _{1}q^{7}+\cdots\) |
672.3.d.d | $24$ | $18.311$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(672, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)