Properties

Label 669.6.a.d.1.7
Level $669$
Weight $6$
Character 669.1
Self dual yes
Analytic conductor $107.297$
Analytic rank $0$
Dimension $51$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,6,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.296775455\)
Analytic rank: \(0\)
Dimension: \(51\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.23985 q^{2} +9.00000 q^{3} +35.8952 q^{4} +71.4029 q^{5} -74.1587 q^{6} -149.227 q^{7} -32.0957 q^{8} +81.0000 q^{9} -588.350 q^{10} +441.170 q^{11} +323.057 q^{12} +590.317 q^{13} +1229.61 q^{14} +642.626 q^{15} -884.182 q^{16} +1948.51 q^{17} -667.428 q^{18} -165.391 q^{19} +2563.02 q^{20} -1343.04 q^{21} -3635.18 q^{22} +2313.91 q^{23} -288.862 q^{24} +1973.38 q^{25} -4864.12 q^{26} +729.000 q^{27} -5356.52 q^{28} +656.912 q^{29} -5295.15 q^{30} +280.478 q^{31} +8312.59 q^{32} +3970.53 q^{33} -16055.4 q^{34} -10655.2 q^{35} +2907.51 q^{36} -11990.1 q^{37} +1362.80 q^{38} +5312.85 q^{39} -2291.73 q^{40} +16067.0 q^{41} +11066.5 q^{42} +4384.92 q^{43} +15835.9 q^{44} +5783.64 q^{45} -19066.3 q^{46} +6219.53 q^{47} -7957.64 q^{48} +5461.59 q^{49} -16260.4 q^{50} +17536.6 q^{51} +21189.5 q^{52} +20557.7 q^{53} -6006.85 q^{54} +31500.9 q^{55} +4789.54 q^{56} -1488.52 q^{57} -5412.86 q^{58} +4007.23 q^{59} +23067.2 q^{60} -21726.3 q^{61} -2311.09 q^{62} -12087.4 q^{63} -40200.7 q^{64} +42150.3 q^{65} -32716.6 q^{66} +24741.3 q^{67} +69942.0 q^{68} +20825.2 q^{69} +87797.5 q^{70} +73404.2 q^{71} -2599.76 q^{72} -17255.2 q^{73} +98796.3 q^{74} +17760.4 q^{75} -5936.75 q^{76} -65834.4 q^{77} -43777.1 q^{78} -21699.4 q^{79} -63133.2 q^{80} +6561.00 q^{81} -132390. q^{82} -107758. q^{83} -48208.7 q^{84} +139129. q^{85} -36131.1 q^{86} +5912.21 q^{87} -14159.7 q^{88} -39299.9 q^{89} -47656.3 q^{90} -88091.0 q^{91} +83058.3 q^{92} +2524.30 q^{93} -51248.0 q^{94} -11809.4 q^{95} +74813.3 q^{96} +40453.4 q^{97} -45002.7 q^{98} +35734.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 51 q + 18 q^{2} + 459 q^{3} + 940 q^{4} + 97 q^{5} + 162 q^{6} + 794 q^{7} + 411 q^{8} + 4131 q^{9} + 1256 q^{10} + 2349 q^{11} + 8460 q^{12} + 2954 q^{13} + 1816 q^{14} + 873 q^{15} + 18580 q^{16} + 1567 q^{17}+ \cdots + 190269 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.23985 −1.45661 −0.728307 0.685251i \(-0.759693\pi\)
−0.728307 + 0.685251i \(0.759693\pi\)
\(3\) 9.00000 0.577350
\(4\) 35.8952 1.12172
\(5\) 71.4029 1.27729 0.638647 0.769500i \(-0.279494\pi\)
0.638647 + 0.769500i \(0.279494\pi\)
\(6\) −74.1587 −0.840977
\(7\) −149.227 −1.15107 −0.575534 0.817778i \(-0.695206\pi\)
−0.575534 + 0.817778i \(0.695206\pi\)
\(8\) −32.0957 −0.177306
\(9\) 81.0000 0.333333
\(10\) −588.350 −1.86053
\(11\) 441.170 1.09932 0.549661 0.835388i \(-0.314757\pi\)
0.549661 + 0.835388i \(0.314757\pi\)
\(12\) 323.057 0.647628
\(13\) 590.317 0.968783 0.484392 0.874851i \(-0.339041\pi\)
0.484392 + 0.874851i \(0.339041\pi\)
\(14\) 1229.61 1.67666
\(15\) 642.626 0.737446
\(16\) −884.182 −0.863459
\(17\) 1948.51 1.63523 0.817616 0.575764i \(-0.195295\pi\)
0.817616 + 0.575764i \(0.195295\pi\)
\(18\) −667.428 −0.485538
\(19\) −165.391 −0.105106 −0.0525532 0.998618i \(-0.516736\pi\)
−0.0525532 + 0.998618i \(0.516736\pi\)
\(20\) 2563.02 1.43277
\(21\) −1343.04 −0.664570
\(22\) −3635.18 −1.60129
\(23\) 2313.91 0.912068 0.456034 0.889962i \(-0.349269\pi\)
0.456034 + 0.889962i \(0.349269\pi\)
\(24\) −288.862 −0.102367
\(25\) 1973.38 0.631481
\(26\) −4864.12 −1.41114
\(27\) 729.000 0.192450
\(28\) −5356.52 −1.29118
\(29\) 656.912 0.145048 0.0725241 0.997367i \(-0.476895\pi\)
0.0725241 + 0.997367i \(0.476895\pi\)
\(30\) −5295.15 −1.07417
\(31\) 280.478 0.0524196 0.0262098 0.999656i \(-0.491656\pi\)
0.0262098 + 0.999656i \(0.491656\pi\)
\(32\) 8312.59 1.43503
\(33\) 3970.53 0.634694
\(34\) −16055.4 −2.38190
\(35\) −10655.2 −1.47025
\(36\) 2907.51 0.373908
\(37\) −11990.1 −1.43985 −0.719925 0.694052i \(-0.755824\pi\)
−0.719925 + 0.694052i \(0.755824\pi\)
\(38\) 1362.80 0.153099
\(39\) 5312.85 0.559327
\(40\) −2291.73 −0.226471
\(41\) 16067.0 1.49271 0.746354 0.665549i \(-0.231803\pi\)
0.746354 + 0.665549i \(0.231803\pi\)
\(42\) 11066.5 0.968022
\(43\) 4384.92 0.361652 0.180826 0.983515i \(-0.442123\pi\)
0.180826 + 0.983515i \(0.442123\pi\)
\(44\) 15835.9 1.23314
\(45\) 5783.64 0.425765
\(46\) −19066.3 −1.32853
\(47\) 6219.53 0.410689 0.205344 0.978690i \(-0.434169\pi\)
0.205344 + 0.978690i \(0.434169\pi\)
\(48\) −7957.64 −0.498518
\(49\) 5461.59 0.324960
\(50\) −16260.4 −0.919824
\(51\) 17536.6 0.944102
\(52\) 21189.5 1.08671
\(53\) 20557.7 1.00527 0.502636 0.864498i \(-0.332363\pi\)
0.502636 + 0.864498i \(0.332363\pi\)
\(54\) −6006.85 −0.280326
\(55\) 31500.9 1.40416
\(56\) 4789.54 0.204091
\(57\) −1488.52 −0.0606832
\(58\) −5412.86 −0.211279
\(59\) 4007.23 0.149870 0.0749349 0.997188i \(-0.476125\pi\)
0.0749349 + 0.997188i \(0.476125\pi\)
\(60\) 23067.2 0.827212
\(61\) −21726.3 −0.747585 −0.373793 0.927512i \(-0.621943\pi\)
−0.373793 + 0.927512i \(0.621943\pi\)
\(62\) −2311.09 −0.0763552
\(63\) −12087.4 −0.383690
\(64\) −40200.7 −1.22683
\(65\) 42150.3 1.23742
\(66\) −32716.6 −0.924504
\(67\) 24741.3 0.673341 0.336670 0.941623i \(-0.390699\pi\)
0.336670 + 0.941623i \(0.390699\pi\)
\(68\) 69942.0 1.83428
\(69\) 20825.2 0.526583
\(70\) 87797.5 2.14159
\(71\) 73404.2 1.72812 0.864062 0.503385i \(-0.167912\pi\)
0.864062 + 0.503385i \(0.167912\pi\)
\(72\) −2599.76 −0.0591019
\(73\) −17255.2 −0.378976 −0.189488 0.981883i \(-0.560683\pi\)
−0.189488 + 0.981883i \(0.560683\pi\)
\(74\) 98796.3 2.09730
\(75\) 17760.4 0.364586
\(76\) −5936.75 −0.117900
\(77\) −65834.4 −1.26539
\(78\) −43777.1 −0.814724
\(79\) −21699.4 −0.391184 −0.195592 0.980685i \(-0.562663\pi\)
−0.195592 + 0.980685i \(0.562663\pi\)
\(80\) −63133.2 −1.10289
\(81\) 6561.00 0.111111
\(82\) −132390. −2.17430
\(83\) −107758. −1.71694 −0.858470 0.512863i \(-0.828585\pi\)
−0.858470 + 0.512863i \(0.828585\pi\)
\(84\) −48208.7 −0.745464
\(85\) 139129. 2.08867
\(86\) −36131.1 −0.526788
\(87\) 5912.21 0.0837436
\(88\) −14159.7 −0.194916
\(89\) −39299.9 −0.525916 −0.262958 0.964807i \(-0.584698\pi\)
−0.262958 + 0.964807i \(0.584698\pi\)
\(90\) −47656.3 −0.620175
\(91\) −88091.0 −1.11514
\(92\) 83058.3 1.02309
\(93\) 2524.30 0.0302645
\(94\) −51248.0 −0.598215
\(95\) −11809.4 −0.134252
\(96\) 74813.3 0.828516
\(97\) 40453.4 0.436541 0.218271 0.975888i \(-0.429958\pi\)
0.218271 + 0.975888i \(0.429958\pi\)
\(98\) −45002.7 −0.473341
\(99\) 35734.8 0.366441
\(100\) 70834.8 0.708348
\(101\) −77503.5 −0.755994 −0.377997 0.925807i \(-0.623387\pi\)
−0.377997 + 0.925807i \(0.623387\pi\)
\(102\) −144499. −1.37519
\(103\) 89471.5 0.830982 0.415491 0.909597i \(-0.363610\pi\)
0.415491 + 0.909597i \(0.363610\pi\)
\(104\) −18946.7 −0.171771
\(105\) −95897.0 −0.848852
\(106\) −169392. −1.46429
\(107\) −167249. −1.41223 −0.706113 0.708099i \(-0.749553\pi\)
−0.706113 + 0.708099i \(0.749553\pi\)
\(108\) 26167.6 0.215876
\(109\) −246430. −1.98668 −0.993340 0.115222i \(-0.963242\pi\)
−0.993340 + 0.115222i \(0.963242\pi\)
\(110\) −259563. −2.04532
\(111\) −107911. −0.831297
\(112\) 131943. 0.993900
\(113\) 13820.8 0.101821 0.0509104 0.998703i \(-0.483788\pi\)
0.0509104 + 0.998703i \(0.483788\pi\)
\(114\) 12265.2 0.0883919
\(115\) 165220. 1.16498
\(116\) 23580.0 0.162704
\(117\) 47815.6 0.322928
\(118\) −33019.0 −0.218303
\(119\) −290769. −1.88226
\(120\) −20625.6 −0.130753
\(121\) 33580.4 0.208508
\(122\) 179021. 1.08894
\(123\) 144603. 0.861815
\(124\) 10067.8 0.0588004
\(125\) −82229.1 −0.470707
\(126\) 99598.1 0.558888
\(127\) 70949.1 0.390335 0.195168 0.980770i \(-0.437475\pi\)
0.195168 + 0.980770i \(0.437475\pi\)
\(128\) 65245.1 0.351984
\(129\) 39464.3 0.208800
\(130\) −347313. −1.80245
\(131\) 206316. 1.05040 0.525201 0.850978i \(-0.323990\pi\)
0.525201 + 0.850978i \(0.323990\pi\)
\(132\) 142523. 0.711951
\(133\) 24680.8 0.120985
\(134\) −203864. −0.980798
\(135\) 52052.7 0.245815
\(136\) −62538.7 −0.289936
\(137\) −58053.3 −0.264256 −0.132128 0.991233i \(-0.542181\pi\)
−0.132128 + 0.991233i \(0.542181\pi\)
\(138\) −171597. −0.767028
\(139\) 214235. 0.940489 0.470245 0.882536i \(-0.344166\pi\)
0.470245 + 0.882536i \(0.344166\pi\)
\(140\) −382471. −1.64922
\(141\) 55975.8 0.237111
\(142\) −604840. −2.51721
\(143\) 260430. 1.06500
\(144\) −71618.7 −0.287820
\(145\) 46905.5 0.185269
\(146\) 142180. 0.552022
\(147\) 49154.4 0.187615
\(148\) −430385. −1.61511
\(149\) 195759. 0.722363 0.361182 0.932496i \(-0.382373\pi\)
0.361182 + 0.932496i \(0.382373\pi\)
\(150\) −146343. −0.531061
\(151\) −410473. −1.46502 −0.732508 0.680759i \(-0.761650\pi\)
−0.732508 + 0.680759i \(0.761650\pi\)
\(152\) 5308.36 0.0186359
\(153\) 157829. 0.545077
\(154\) 542466. 1.84319
\(155\) 20026.9 0.0669553
\(156\) 190706. 0.627411
\(157\) −294794. −0.954487 −0.477243 0.878771i \(-0.658364\pi\)
−0.477243 + 0.878771i \(0.658364\pi\)
\(158\) 178800. 0.569803
\(159\) 185019. 0.580395
\(160\) 593543. 1.83296
\(161\) −345297. −1.04985
\(162\) −54061.7 −0.161846
\(163\) 656002. 1.93391 0.966955 0.254948i \(-0.0820583\pi\)
0.966955 + 0.254948i \(0.0820583\pi\)
\(164\) 576727. 1.67441
\(165\) 283508. 0.810691
\(166\) 887912. 2.50092
\(167\) 275449. 0.764276 0.382138 0.924105i \(-0.375188\pi\)
0.382138 + 0.924105i \(0.375188\pi\)
\(168\) 43105.9 0.117832
\(169\) −22819.3 −0.0614589
\(170\) −1.14640e6 −3.04239
\(171\) −13396.7 −0.0350354
\(172\) 157398. 0.405674
\(173\) 368098. 0.935080 0.467540 0.883972i \(-0.345140\pi\)
0.467540 + 0.883972i \(0.345140\pi\)
\(174\) −48715.8 −0.121982
\(175\) −294481. −0.726878
\(176\) −390075. −0.949219
\(177\) 36065.1 0.0865274
\(178\) 323825. 0.766057
\(179\) −567554. −1.32396 −0.661980 0.749522i \(-0.730284\pi\)
−0.661980 + 0.749522i \(0.730284\pi\)
\(180\) 207605. 0.477591
\(181\) 150491. 0.341440 0.170720 0.985320i \(-0.445391\pi\)
0.170720 + 0.985320i \(0.445391\pi\)
\(182\) 725857. 1.62432
\(183\) −195536. −0.431619
\(184\) −74266.7 −0.161715
\(185\) −856125. −1.83911
\(186\) −20799.9 −0.0440837
\(187\) 859623. 1.79765
\(188\) 223251. 0.460680
\(189\) −108786. −0.221523
\(190\) 97307.9 0.195553
\(191\) −636828. −1.26310 −0.631552 0.775334i \(-0.717582\pi\)
−0.631552 + 0.775334i \(0.717582\pi\)
\(192\) −361806. −0.708310
\(193\) −758636. −1.46602 −0.733011 0.680217i \(-0.761885\pi\)
−0.733011 + 0.680217i \(0.761885\pi\)
\(194\) −333330. −0.635872
\(195\) 379353. 0.714426
\(196\) 196045. 0.364515
\(197\) 439872. 0.807533 0.403767 0.914862i \(-0.367701\pi\)
0.403767 + 0.914862i \(0.367701\pi\)
\(198\) −294450. −0.533762
\(199\) −27237.0 −0.0487559 −0.0243779 0.999703i \(-0.507761\pi\)
−0.0243779 + 0.999703i \(0.507761\pi\)
\(200\) −63337.1 −0.111965
\(201\) 222671. 0.388754
\(202\) 638618. 1.10119
\(203\) −98028.8 −0.166961
\(204\) 629478. 1.05902
\(205\) 1.14723e6 1.90663
\(206\) −737232. −1.21042
\(207\) 187427. 0.304023
\(208\) −521947. −0.836504
\(209\) −72965.8 −0.115546
\(210\) 790177. 1.23645
\(211\) 1.01336e6 1.56696 0.783479 0.621419i \(-0.213443\pi\)
0.783479 + 0.621419i \(0.213443\pi\)
\(212\) 737921. 1.12764
\(213\) 660638. 0.997733
\(214\) 1.37811e6 2.05707
\(215\) 313096. 0.461936
\(216\) −23397.8 −0.0341225
\(217\) −41854.7 −0.0603386
\(218\) 2.03055e6 2.89383
\(219\) −155297. −0.218802
\(220\) 1.13073e6 1.57508
\(221\) 1.15024e6 1.58419
\(222\) 889167. 1.21088
\(223\) −49729.0 −0.0669650
\(224\) −1.24046e6 −1.65182
\(225\) 159844. 0.210494
\(226\) −113881. −0.148314
\(227\) −165686. −0.213413 −0.106706 0.994291i \(-0.534030\pi\)
−0.106706 + 0.994291i \(0.534030\pi\)
\(228\) −53430.8 −0.0680698
\(229\) −215031. −0.270964 −0.135482 0.990780i \(-0.543258\pi\)
−0.135482 + 0.990780i \(0.543258\pi\)
\(230\) −1.36139e6 −1.69693
\(231\) −592510. −0.730576
\(232\) −21084.1 −0.0257179
\(233\) 805130. 0.971574 0.485787 0.874077i \(-0.338533\pi\)
0.485787 + 0.874077i \(0.338533\pi\)
\(234\) −393994. −0.470381
\(235\) 444093. 0.524570
\(236\) 143840. 0.168113
\(237\) −195295. −0.225850
\(238\) 2.39589e6 2.74173
\(239\) 1.02310e6 1.15857 0.579285 0.815125i \(-0.303332\pi\)
0.579285 + 0.815125i \(0.303332\pi\)
\(240\) −568198. −0.636754
\(241\) 515136. 0.571320 0.285660 0.958331i \(-0.407787\pi\)
0.285660 + 0.958331i \(0.407787\pi\)
\(242\) −276698. −0.303715
\(243\) 59049.0 0.0641500
\(244\) −779869. −0.838585
\(245\) 389974. 0.415069
\(246\) −1.19151e6 −1.25533
\(247\) −97633.3 −0.101825
\(248\) −9002.14 −0.00929430
\(249\) −969824. −0.991276
\(250\) 677556. 0.685638
\(251\) −833582. −0.835149 −0.417575 0.908643i \(-0.637120\pi\)
−0.417575 + 0.908643i \(0.637120\pi\)
\(252\) −433878. −0.430394
\(253\) 1.02083e6 1.00266
\(254\) −584610. −0.568568
\(255\) 1.25216e6 1.20590
\(256\) 748813. 0.714124
\(257\) −96079.2 −0.0907395 −0.0453698 0.998970i \(-0.514447\pi\)
−0.0453698 + 0.998970i \(0.514447\pi\)
\(258\) −325180. −0.304141
\(259\) 1.78924e6 1.65737
\(260\) 1.51299e6 1.38805
\(261\) 53209.9 0.0483494
\(262\) −1.70002e6 −1.53003
\(263\) 574245. 0.511927 0.255964 0.966686i \(-0.417607\pi\)
0.255964 + 0.966686i \(0.417607\pi\)
\(264\) −127437. −0.112535
\(265\) 1.46788e6 1.28403
\(266\) −203366. −0.176228
\(267\) −353699. −0.303638
\(268\) 888093. 0.755303
\(269\) 592517. 0.499253 0.249626 0.968342i \(-0.419692\pi\)
0.249626 + 0.968342i \(0.419692\pi\)
\(270\) −428907. −0.358058
\(271\) 2.25720e6 1.86701 0.933507 0.358560i \(-0.116732\pi\)
0.933507 + 0.358560i \(0.116732\pi\)
\(272\) −1.72283e6 −1.41196
\(273\) −792819. −0.643824
\(274\) 478351. 0.384919
\(275\) 870597. 0.694201
\(276\) 747525. 0.590681
\(277\) −1.77986e6 −1.39375 −0.696877 0.717190i \(-0.745428\pi\)
−0.696877 + 0.717190i \(0.745428\pi\)
\(278\) −1.76527e6 −1.36993
\(279\) 22718.7 0.0174732
\(280\) 341987. 0.260684
\(281\) 1.06974e6 0.808184 0.404092 0.914718i \(-0.367587\pi\)
0.404092 + 0.914718i \(0.367587\pi\)
\(282\) −461232. −0.345380
\(283\) 344480. 0.255681 0.127840 0.991795i \(-0.459195\pi\)
0.127840 + 0.991795i \(0.459195\pi\)
\(284\) 2.63486e6 1.93848
\(285\) −106285. −0.0775103
\(286\) −2.14591e6 −1.55130
\(287\) −2.39762e6 −1.71821
\(288\) 673320. 0.478344
\(289\) 2.37682e6 1.67398
\(290\) −386494. −0.269866
\(291\) 364080. 0.252037
\(292\) −619378. −0.425107
\(293\) 235373. 0.160172 0.0800862 0.996788i \(-0.474480\pi\)
0.0800862 + 0.996788i \(0.474480\pi\)
\(294\) −405025. −0.273283
\(295\) 286128. 0.191428
\(296\) 384830. 0.255293
\(297\) 321613. 0.211565
\(298\) −1.61302e6 −1.05220
\(299\) 1.36594e6 0.883597
\(300\) 637513. 0.408965
\(301\) −654348. −0.416286
\(302\) 3.38224e6 2.13396
\(303\) −697532. −0.436473
\(304\) 146236. 0.0907550
\(305\) −1.55132e6 −0.954886
\(306\) −1.30049e6 −0.793967
\(307\) −800842. −0.484954 −0.242477 0.970157i \(-0.577960\pi\)
−0.242477 + 0.970157i \(0.577960\pi\)
\(308\) −2.36314e6 −1.41942
\(309\) 805244. 0.479768
\(310\) −165019. −0.0975281
\(311\) 204704. 0.120012 0.0600060 0.998198i \(-0.480888\pi\)
0.0600060 + 0.998198i \(0.480888\pi\)
\(312\) −170520. −0.0991719
\(313\) −552393. −0.318704 −0.159352 0.987222i \(-0.550940\pi\)
−0.159352 + 0.987222i \(0.550940\pi\)
\(314\) 2.42906e6 1.39032
\(315\) −863073. −0.490085
\(316\) −778905. −0.438800
\(317\) 162089. 0.0905951 0.0452976 0.998974i \(-0.485576\pi\)
0.0452976 + 0.998974i \(0.485576\pi\)
\(318\) −1.52453e6 −0.845411
\(319\) 289810. 0.159455
\(320\) −2.87045e6 −1.56702
\(321\) −1.50524e6 −0.815349
\(322\) 2.84520e6 1.52923
\(323\) −322266. −0.171873
\(324\) 235508. 0.124636
\(325\) 1.16492e6 0.611768
\(326\) −5.40536e6 −2.81696
\(327\) −2.21787e6 −1.14701
\(328\) −515682. −0.264665
\(329\) −928119. −0.472731
\(330\) −2.33606e6 −1.18086
\(331\) 1.80933e6 0.907709 0.453855 0.891076i \(-0.350049\pi\)
0.453855 + 0.891076i \(0.350049\pi\)
\(332\) −3.86800e6 −1.92593
\(333\) −971195. −0.479950
\(334\) −2.26966e6 −1.11325
\(335\) 1.76660e6 0.860055
\(336\) 1.18749e6 0.573829
\(337\) −3.31073e6 −1.58799 −0.793997 0.607922i \(-0.792003\pi\)
−0.793997 + 0.607922i \(0.792003\pi\)
\(338\) 188027. 0.0895220
\(339\) 124387. 0.0587863
\(340\) 4.99406e6 2.34292
\(341\) 123738. 0.0576260
\(342\) 110387. 0.0510331
\(343\) 1.69304e6 0.777018
\(344\) −140737. −0.0641229
\(345\) 1.48698e6 0.672601
\(346\) −3.03308e6 −1.36205
\(347\) 4.07902e6 1.81858 0.909289 0.416166i \(-0.136626\pi\)
0.909289 + 0.416166i \(0.136626\pi\)
\(348\) 212220. 0.0939373
\(349\) −630834. −0.277237 −0.138619 0.990346i \(-0.544266\pi\)
−0.138619 + 0.990346i \(0.544266\pi\)
\(350\) 2.42648e6 1.05878
\(351\) 430341. 0.186442
\(352\) 3.66727e6 1.57756
\(353\) 2.29220e6 0.979073 0.489537 0.871983i \(-0.337166\pi\)
0.489537 + 0.871983i \(0.337166\pi\)
\(354\) −297171. −0.126037
\(355\) 5.24128e6 2.20732
\(356\) −1.41068e6 −0.589933
\(357\) −2.61692e6 −1.08673
\(358\) 4.67656e6 1.92850
\(359\) 3.91592e6 1.60360 0.801802 0.597589i \(-0.203875\pi\)
0.801802 + 0.597589i \(0.203875\pi\)
\(360\) −185630. −0.0754905
\(361\) −2.44874e6 −0.988953
\(362\) −1.24003e6 −0.497347
\(363\) 302224. 0.120382
\(364\) −3.16204e6 −1.25088
\(365\) −1.23207e6 −0.484064
\(366\) 1.61119e6 0.628702
\(367\) −2.51377e6 −0.974227 −0.487114 0.873339i \(-0.661950\pi\)
−0.487114 + 0.873339i \(0.661950\pi\)
\(368\) −2.04592e6 −0.787533
\(369\) 1.30143e6 0.497569
\(370\) 7.05435e6 2.67888
\(371\) −3.06775e6 −1.15714
\(372\) 90610.2 0.0339484
\(373\) 2.76456e6 1.02885 0.514427 0.857534i \(-0.328005\pi\)
0.514427 + 0.857534i \(0.328005\pi\)
\(374\) −7.08317e6 −2.61848
\(375\) −740062. −0.271763
\(376\) −199620. −0.0728174
\(377\) 387786. 0.140520
\(378\) 896383. 0.322674
\(379\) 255046. 0.0912055 0.0456027 0.998960i \(-0.485479\pi\)
0.0456027 + 0.998960i \(0.485479\pi\)
\(380\) −423902. −0.150593
\(381\) 638542. 0.225360
\(382\) 5.24737e6 1.83985
\(383\) 2.13776e6 0.744665 0.372333 0.928099i \(-0.378558\pi\)
0.372333 + 0.928099i \(0.378558\pi\)
\(384\) 587206. 0.203218
\(385\) −4.70077e6 −1.61628
\(386\) 6.25105e6 2.13543
\(387\) 355179. 0.120551
\(388\) 1.45208e6 0.489679
\(389\) −1.53702e6 −0.514998 −0.257499 0.966279i \(-0.582898\pi\)
−0.257499 + 0.966279i \(0.582898\pi\)
\(390\) −3.12581e6 −1.04064
\(391\) 4.50867e6 1.49144
\(392\) −175294. −0.0576171
\(393\) 1.85685e6 0.606450
\(394\) −3.62448e6 −1.17626
\(395\) −1.54940e6 −0.499657
\(396\) 1.28271e6 0.411045
\(397\) −2.05751e6 −0.655188 −0.327594 0.944819i \(-0.606238\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(398\) 224429. 0.0710185
\(399\) 222127. 0.0698505
\(400\) −1.74483e6 −0.545258
\(401\) −2.96657e6 −0.921285 −0.460643 0.887586i \(-0.652381\pi\)
−0.460643 + 0.887586i \(0.652381\pi\)
\(402\) −1.83478e6 −0.566264
\(403\) 165571. 0.0507833
\(404\) −2.78200e6 −0.848017
\(405\) 468475. 0.141922
\(406\) 807743. 0.243197
\(407\) −5.28966e6 −1.58286
\(408\) −562849. −0.167395
\(409\) 4.28668e6 1.26711 0.633553 0.773700i \(-0.281596\pi\)
0.633553 + 0.773700i \(0.281596\pi\)
\(410\) −9.45301e6 −2.77722
\(411\) −522480. −0.152568
\(412\) 3.21160e6 0.932133
\(413\) −597986. −0.172511
\(414\) −1.54437e6 −0.442844
\(415\) −7.69426e6 −2.19304
\(416\) 4.90706e6 1.39023
\(417\) 1.92812e6 0.542992
\(418\) 601227. 0.168305
\(419\) 6.40941e6 1.78354 0.891770 0.452489i \(-0.149464\pi\)
0.891770 + 0.452489i \(0.149464\pi\)
\(420\) −3.44224e6 −0.952178
\(421\) 4.98237e6 1.37003 0.685016 0.728528i \(-0.259795\pi\)
0.685016 + 0.728528i \(0.259795\pi\)
\(422\) −8.34993e6 −2.28245
\(423\) 503782. 0.136896
\(424\) −659813. −0.178240
\(425\) 3.84514e6 1.03262
\(426\) −5.44356e6 −1.45331
\(427\) 3.24214e6 0.860522
\(428\) −6.00343e6 −1.58413
\(429\) 2.34387e6 0.614881
\(430\) −2.57987e6 −0.672863
\(431\) 1.79826e6 0.466294 0.233147 0.972441i \(-0.425098\pi\)
0.233147 + 0.972441i \(0.425098\pi\)
\(432\) −644568. −0.166173
\(433\) −4.04335e6 −1.03639 −0.518193 0.855264i \(-0.673395\pi\)
−0.518193 + 0.855264i \(0.673395\pi\)
\(434\) 344877. 0.0878901
\(435\) 422149. 0.106965
\(436\) −8.84566e6 −2.22851
\(437\) −382701. −0.0958641
\(438\) 1.27962e6 0.318710
\(439\) −6.75844e6 −1.67373 −0.836865 0.547409i \(-0.815614\pi\)
−0.836865 + 0.547409i \(0.815614\pi\)
\(440\) −1.01104e6 −0.248965
\(441\) 442389. 0.108320
\(442\) −9.47777e6 −2.30755
\(443\) 2.58421e6 0.625631 0.312816 0.949814i \(-0.398728\pi\)
0.312816 + 0.949814i \(0.398728\pi\)
\(444\) −3.87347e6 −0.932487
\(445\) −2.80613e6 −0.671750
\(446\) 409760. 0.0975421
\(447\) 1.76183e6 0.417057
\(448\) 5.99902e6 1.41216
\(449\) 1.61661e6 0.378434 0.189217 0.981935i \(-0.439405\pi\)
0.189217 + 0.981935i \(0.439405\pi\)
\(450\) −1.31709e6 −0.306608
\(451\) 7.08828e6 1.64097
\(452\) 496100. 0.114215
\(453\) −3.69426e6 −0.845827
\(454\) 1.36522e6 0.310860
\(455\) −6.28995e6 −1.42436
\(456\) 47775.2 0.0107595
\(457\) 1.62866e6 0.364787 0.182394 0.983226i \(-0.441615\pi\)
0.182394 + 0.983226i \(0.441615\pi\)
\(458\) 1.77182e6 0.394690
\(459\) 1.42046e6 0.314701
\(460\) 5.93061e6 1.30679
\(461\) −8.71180e6 −1.90922 −0.954609 0.297862i \(-0.903726\pi\)
−0.954609 + 0.297862i \(0.903726\pi\)
\(462\) 4.88219e6 1.06417
\(463\) −6.31119e6 −1.36823 −0.684115 0.729374i \(-0.739811\pi\)
−0.684115 + 0.729374i \(0.739811\pi\)
\(464\) −580830. −0.125243
\(465\) 180242. 0.0386567
\(466\) −6.63415e6 −1.41521
\(467\) 6.24110e6 1.32425 0.662123 0.749395i \(-0.269656\pi\)
0.662123 + 0.749395i \(0.269656\pi\)
\(468\) 1.71635e6 0.362236
\(469\) −3.69206e6 −0.775062
\(470\) −3.65926e6 −0.764097
\(471\) −2.65315e6 −0.551073
\(472\) −128615. −0.0265728
\(473\) 1.93450e6 0.397572
\(474\) 1.60920e6 0.328976
\(475\) −326380. −0.0663727
\(476\) −1.04372e7 −2.11138
\(477\) 1.66517e6 0.335091
\(478\) −8.43017e6 −1.68759
\(479\) 274741. 0.0547122 0.0273561 0.999626i \(-0.491291\pi\)
0.0273561 + 0.999626i \(0.491291\pi\)
\(480\) 5.34189e6 1.05826
\(481\) −7.07793e6 −1.39490
\(482\) −4.24465e6 −0.832193
\(483\) −3.10768e6 −0.606133
\(484\) 1.20537e6 0.233888
\(485\) 2.88849e6 0.557592
\(486\) −486555. −0.0934418
\(487\) −6.09595e6 −1.16471 −0.582357 0.812933i \(-0.697869\pi\)
−0.582357 + 0.812933i \(0.697869\pi\)
\(488\) 697321. 0.132551
\(489\) 5.90402e6 1.11654
\(490\) −3.21333e6 −0.604595
\(491\) 6.40956e6 1.19984 0.599922 0.800058i \(-0.295198\pi\)
0.599922 + 0.800058i \(0.295198\pi\)
\(492\) 5.19055e6 0.966719
\(493\) 1.28000e6 0.237188
\(494\) 804484. 0.148320
\(495\) 2.55157e6 0.468052
\(496\) −247993. −0.0452622
\(497\) −1.09539e7 −1.98919
\(498\) 7.99121e6 1.44391
\(499\) −7.58918e6 −1.36441 −0.682203 0.731163i \(-0.738978\pi\)
−0.682203 + 0.731163i \(0.738978\pi\)
\(500\) −2.95163e6 −0.528004
\(501\) 2.47904e6 0.441255
\(502\) 6.86860e6 1.21649
\(503\) 2.75453e6 0.485432 0.242716 0.970097i \(-0.421962\pi\)
0.242716 + 0.970097i \(0.421962\pi\)
\(504\) 387953. 0.0680303
\(505\) −5.53398e6 −0.965626
\(506\) −8.41149e6 −1.46048
\(507\) −205373. −0.0354833
\(508\) 2.54673e6 0.437849
\(509\) −3.27074e6 −0.559566 −0.279783 0.960063i \(-0.590262\pi\)
−0.279783 + 0.960063i \(0.590262\pi\)
\(510\) −1.03176e7 −1.75653
\(511\) 2.57493e6 0.436228
\(512\) −8.25795e6 −1.39219
\(513\) −120570. −0.0202277
\(514\) 791679. 0.132172
\(515\) 6.38853e6 1.06141
\(516\) 1.41658e6 0.234216
\(517\) 2.74387e6 0.451479
\(518\) −1.47430e7 −2.41414
\(519\) 3.31288e6 0.539868
\(520\) −1.35285e6 −0.219402
\(521\) 3.91993e6 0.632680 0.316340 0.948646i \(-0.397546\pi\)
0.316340 + 0.948646i \(0.397546\pi\)
\(522\) −438442. −0.0704264
\(523\) −7.50864e6 −1.20035 −0.600174 0.799870i \(-0.704902\pi\)
−0.600174 + 0.799870i \(0.704902\pi\)
\(524\) 7.40576e6 1.17826
\(525\) −2.65033e6 −0.419663
\(526\) −4.73170e6 −0.745680
\(527\) 546512. 0.0857183
\(528\) −3.51067e6 −0.548032
\(529\) −1.08215e6 −0.168131
\(530\) −1.20951e7 −1.87034
\(531\) 324586. 0.0499566
\(532\) 885922. 0.135711
\(533\) 9.48461e6 1.44611
\(534\) 2.91443e6 0.442283
\(535\) −1.19421e7 −1.80383
\(536\) −794090. −0.119387
\(537\) −5.10799e6 −0.764389
\(538\) −4.88226e6 −0.727218
\(539\) 2.40949e6 0.357235
\(540\) 1.86844e6 0.275737
\(541\) 1.05098e7 1.54384 0.771919 0.635721i \(-0.219297\pi\)
0.771919 + 0.635721i \(0.219297\pi\)
\(542\) −1.85990e7 −2.71952
\(543\) 1.35442e6 0.197131
\(544\) 1.61971e7 2.34661
\(545\) −1.75958e7 −2.53757
\(546\) 6.53271e6 0.937803
\(547\) 776514. 0.110964 0.0554818 0.998460i \(-0.482331\pi\)
0.0554818 + 0.998460i \(0.482331\pi\)
\(548\) −2.08383e6 −0.296423
\(549\) −1.75983e6 −0.249195
\(550\) −7.17359e6 −1.01118
\(551\) −108648. −0.0152455
\(552\) −668401. −0.0933661
\(553\) 3.23813e6 0.450279
\(554\) 1.46658e7 2.03016
\(555\) −7.70513e6 −1.06181
\(556\) 7.69001e6 1.05497
\(557\) −8.05840e6 −1.10055 −0.550277 0.834982i \(-0.685478\pi\)
−0.550277 + 0.834982i \(0.685478\pi\)
\(558\) −187199. −0.0254517
\(559\) 2.58849e6 0.350363
\(560\) 9.42115e6 1.26950
\(561\) 7.73661e6 1.03787
\(562\) −8.81446e6 −1.17721
\(563\) 1.74718e6 0.232309 0.116154 0.993231i \(-0.462943\pi\)
0.116154 + 0.993231i \(0.462943\pi\)
\(564\) 2.00926e6 0.265973
\(565\) 986845. 0.130055
\(566\) −2.83847e6 −0.372428
\(567\) −979076. −0.127897
\(568\) −2.35596e6 −0.306406
\(569\) −2.10807e6 −0.272963 −0.136482 0.990643i \(-0.543579\pi\)
−0.136482 + 0.990643i \(0.543579\pi\)
\(570\) 875772. 0.112903
\(571\) 1.08820e7 1.39675 0.698375 0.715733i \(-0.253907\pi\)
0.698375 + 0.715733i \(0.253907\pi\)
\(572\) 9.34819e6 1.19464
\(573\) −5.73146e6 −0.729253
\(574\) 1.97561e7 2.50277
\(575\) 4.56623e6 0.575954
\(576\) −3.25626e6 −0.408943
\(577\) −1.16376e6 −0.145521 −0.0727604 0.997349i \(-0.523181\pi\)
−0.0727604 + 0.997349i \(0.523181\pi\)
\(578\) −1.95846e7 −2.43835
\(579\) −6.82772e6 −0.846408
\(580\) 1.68368e6 0.207821
\(581\) 1.60804e7 1.97632
\(582\) −2.99997e6 −0.367121
\(583\) 9.06943e6 1.10512
\(584\) 553818. 0.0671946
\(585\) 3.41418e6 0.412474
\(586\) −1.93944e6 −0.233309
\(587\) 1.45829e7 1.74682 0.873411 0.486984i \(-0.161903\pi\)
0.873411 + 0.486984i \(0.161903\pi\)
\(588\) 1.76440e6 0.210453
\(589\) −46388.6 −0.00550963
\(590\) −2.35765e6 −0.278837
\(591\) 3.95885e6 0.466230
\(592\) 1.06014e7 1.24325
\(593\) 8.69521e6 1.01541 0.507707 0.861530i \(-0.330493\pi\)
0.507707 + 0.861530i \(0.330493\pi\)
\(594\) −2.65005e6 −0.308168
\(595\) −2.07618e7 −2.40421
\(596\) 7.02680e6 0.810292
\(597\) −245133. −0.0281492
\(598\) −1.12552e7 −1.28706
\(599\) 1.19426e7 1.35998 0.679990 0.733222i \(-0.261984\pi\)
0.679990 + 0.733222i \(0.261984\pi\)
\(600\) −570034. −0.0646431
\(601\) 118781. 0.0134141 0.00670706 0.999978i \(-0.497865\pi\)
0.00670706 + 0.999978i \(0.497865\pi\)
\(602\) 5.39173e6 0.606369
\(603\) 2.00404e6 0.224447
\(604\) −1.47340e7 −1.64334
\(605\) 2.39774e6 0.266326
\(606\) 5.74756e6 0.635773
\(607\) 6.90113e6 0.760237 0.380118 0.924938i \(-0.375883\pi\)
0.380118 + 0.924938i \(0.375883\pi\)
\(608\) −1.37483e6 −0.150831
\(609\) −882260. −0.0963947
\(610\) 1.27826e7 1.39090
\(611\) 3.67149e6 0.397868
\(612\) 5.66530e6 0.611427
\(613\) 2.93745e6 0.315732 0.157866 0.987461i \(-0.449539\pi\)
0.157866 + 0.987461i \(0.449539\pi\)
\(614\) 6.59882e6 0.706391
\(615\) 1.03251e7 1.10079
\(616\) 2.11300e6 0.224362
\(617\) −1.11757e7 −1.18184 −0.590922 0.806729i \(-0.701236\pi\)
−0.590922 + 0.806729i \(0.701236\pi\)
\(618\) −6.63509e6 −0.698836
\(619\) 5.61018e6 0.588505 0.294253 0.955728i \(-0.404929\pi\)
0.294253 + 0.955728i \(0.404929\pi\)
\(620\) 718870. 0.0751054
\(621\) 1.68684e6 0.175528
\(622\) −1.68673e6 −0.174811
\(623\) 5.86459e6 0.605366
\(624\) −4.69752e6 −0.482956
\(625\) −1.20382e7 −1.23271
\(626\) 4.55164e6 0.464228
\(627\) −656692. −0.0667103
\(628\) −1.05817e7 −1.07067
\(629\) −2.33627e7 −2.35449
\(630\) 7.11159e6 0.713864
\(631\) −1.15144e7 −1.15124 −0.575622 0.817716i \(-0.695240\pi\)
−0.575622 + 0.817716i \(0.695240\pi\)
\(632\) 696459. 0.0693590
\(633\) 9.12023e6 0.904683
\(634\) −1.33559e6 −0.131962
\(635\) 5.06597e6 0.498573
\(636\) 6.64129e6 0.651043
\(637\) 3.22407e6 0.314815
\(638\) −2.38800e6 −0.232264
\(639\) 5.94574e6 0.576042
\(640\) 4.65869e6 0.449587
\(641\) −1.99471e6 −0.191750 −0.0958748 0.995393i \(-0.530565\pi\)
−0.0958748 + 0.995393i \(0.530565\pi\)
\(642\) 1.24030e7 1.18765
\(643\) −1.33477e7 −1.27315 −0.636576 0.771214i \(-0.719650\pi\)
−0.636576 + 0.771214i \(0.719650\pi\)
\(644\) −1.23945e7 −1.17765
\(645\) 2.81787e6 0.266699
\(646\) 2.65542e6 0.250353
\(647\) −1.35684e7 −1.27429 −0.637143 0.770745i \(-0.719884\pi\)
−0.637143 + 0.770745i \(0.719884\pi\)
\(648\) −210580. −0.0197006
\(649\) 1.76787e6 0.164755
\(650\) −9.59876e6 −0.891111
\(651\) −376693. −0.0348365
\(652\) 2.35473e7 2.16931
\(653\) −8.27964e6 −0.759851 −0.379926 0.925017i \(-0.624050\pi\)
−0.379926 + 0.925017i \(0.624050\pi\)
\(654\) 1.82749e7 1.67075
\(655\) 1.47316e7 1.34167
\(656\) −1.42061e7 −1.28889
\(657\) −1.39767e6 −0.126325
\(658\) 7.64757e6 0.688587
\(659\) 8.88700e6 0.797153 0.398576 0.917135i \(-0.369504\pi\)
0.398576 + 0.917135i \(0.369504\pi\)
\(660\) 1.01766e7 0.909372
\(661\) 5.99404e6 0.533600 0.266800 0.963752i \(-0.414034\pi\)
0.266800 + 0.963752i \(0.414034\pi\)
\(662\) −1.49086e7 −1.32218
\(663\) 1.03521e7 0.914630
\(664\) 3.45858e6 0.304423
\(665\) 1.76228e6 0.154533
\(666\) 8.00250e6 0.699101
\(667\) 1.52004e6 0.132294
\(668\) 9.88729e6 0.857307
\(669\) −447561. −0.0386622
\(670\) −1.45565e7 −1.25277
\(671\) −9.58499e6 −0.821837
\(672\) −1.11641e7 −0.953679
\(673\) 9.42030e6 0.801728 0.400864 0.916138i \(-0.368710\pi\)
0.400864 + 0.916138i \(0.368710\pi\)
\(674\) 2.72799e7 2.31309
\(675\) 1.43859e6 0.121529
\(676\) −819102. −0.0689400
\(677\) 1.54362e7 1.29440 0.647200 0.762320i \(-0.275940\pi\)
0.647200 + 0.762320i \(0.275940\pi\)
\(678\) −1.02493e6 −0.0856290
\(679\) −6.03672e6 −0.502489
\(680\) −4.46545e6 −0.370333
\(681\) −1.49117e6 −0.123214
\(682\) −1.01959e6 −0.0839389
\(683\) −1.35048e7 −1.10774 −0.553870 0.832603i \(-0.686849\pi\)
−0.553870 + 0.832603i \(0.686849\pi\)
\(684\) −480877. −0.0393001
\(685\) −4.14517e6 −0.337533
\(686\) −1.39504e7 −1.13182
\(687\) −1.93528e6 −0.156441
\(688\) −3.87707e6 −0.312272
\(689\) 1.21355e7 0.973891
\(690\) −1.22525e7 −0.979721
\(691\) 2.31713e7 1.84610 0.923051 0.384678i \(-0.125688\pi\)
0.923051 + 0.384678i \(0.125688\pi\)
\(692\) 1.32130e7 1.04890
\(693\) −5.33259e6 −0.421798
\(694\) −3.36105e7 −2.64897
\(695\) 1.52970e7 1.20128
\(696\) −189757. −0.0148482
\(697\) 3.13066e7 2.44092
\(698\) 5.19798e6 0.403828
\(699\) 7.24617e6 0.560939
\(700\) −1.05704e7 −0.815357
\(701\) −1.53562e6 −0.118029 −0.0590144 0.998257i \(-0.518796\pi\)
−0.0590144 + 0.998257i \(0.518796\pi\)
\(702\) −3.54595e6 −0.271575
\(703\) 1.98305e6 0.151337
\(704\) −1.77354e7 −1.34868
\(705\) 3.99683e6 0.302861
\(706\) −1.88874e7 −1.42613
\(707\) 1.15656e7 0.870201
\(708\) 1.29456e6 0.0970599
\(709\) −4.48906e6 −0.335382 −0.167691 0.985840i \(-0.553631\pi\)
−0.167691 + 0.985840i \(0.553631\pi\)
\(710\) −4.31873e7 −3.21522
\(711\) −1.75765e6 −0.130395
\(712\) 1.26136e6 0.0932479
\(713\) 649001. 0.0478103
\(714\) 2.15630e7 1.58294
\(715\) 1.85955e7 1.36032
\(716\) −2.03725e7 −1.48512
\(717\) 9.20788e6 0.668901
\(718\) −3.22666e7 −2.33583
\(719\) 3.19461e6 0.230460 0.115230 0.993339i \(-0.463240\pi\)
0.115230 + 0.993339i \(0.463240\pi\)
\(720\) −5.11379e6 −0.367630
\(721\) −1.33515e7 −0.956518
\(722\) 2.01773e7 1.44052
\(723\) 4.63623e6 0.329852
\(724\) 5.40191e6 0.383002
\(725\) 1.29634e6 0.0915953
\(726\) −2.49028e6 −0.175350
\(727\) −8.08345e6 −0.567232 −0.283616 0.958938i \(-0.591534\pi\)
−0.283616 + 0.958938i \(0.591534\pi\)
\(728\) 2.82735e6 0.197720
\(729\) 531441. 0.0370370
\(730\) 1.01521e7 0.705095
\(731\) 8.54405e6 0.591385
\(732\) −7.01882e6 −0.484157
\(733\) 1.82682e7 1.25584 0.627921 0.778277i \(-0.283906\pi\)
0.627921 + 0.778277i \(0.283906\pi\)
\(734\) 2.07131e7 1.41907
\(735\) 3.50977e6 0.239640
\(736\) 1.92346e7 1.30885
\(737\) 1.09151e7 0.740218
\(738\) −1.07236e7 −0.724766
\(739\) −3.43808e6 −0.231582 −0.115791 0.993274i \(-0.536940\pi\)
−0.115791 + 0.993274i \(0.536940\pi\)
\(740\) −3.07308e7 −2.06298
\(741\) −878699. −0.0587888
\(742\) 2.52778e7 1.68550
\(743\) −7.59067e6 −0.504438 −0.252219 0.967670i \(-0.581160\pi\)
−0.252219 + 0.967670i \(0.581160\pi\)
\(744\) −81019.2 −0.00536606
\(745\) 1.39778e7 0.922671
\(746\) −2.27796e7 −1.49864
\(747\) −8.72842e6 −0.572314
\(748\) 3.08563e7 2.01646
\(749\) 2.49580e7 1.62557
\(750\) 6.09800e6 0.395854
\(751\) 9.30430e6 0.601983 0.300991 0.953627i \(-0.402682\pi\)
0.300991 + 0.953627i \(0.402682\pi\)
\(752\) −5.49919e6 −0.354613
\(753\) −7.50224e6 −0.482174
\(754\) −3.19530e6 −0.204684
\(755\) −2.93090e7 −1.87126
\(756\) −3.90490e6 −0.248488
\(757\) 2.91274e6 0.184741 0.0923703 0.995725i \(-0.470556\pi\)
0.0923703 + 0.995725i \(0.470556\pi\)
\(758\) −2.10154e6 −0.132851
\(759\) 9.18747e6 0.578884
\(760\) 379032. 0.0238036
\(761\) −1.33479e7 −0.835508 −0.417754 0.908560i \(-0.637183\pi\)
−0.417754 + 0.908560i \(0.637183\pi\)
\(762\) −5.26149e6 −0.328263
\(763\) 3.67740e7 2.28681
\(764\) −2.28591e7 −1.41685
\(765\) 1.12695e7 0.696224
\(766\) −1.76148e7 −1.08469
\(767\) 2.36554e6 0.145191
\(768\) 6.73932e6 0.412299
\(769\) −2.85066e7 −1.73832 −0.869160 0.494531i \(-0.835340\pi\)
−0.869160 + 0.494531i \(0.835340\pi\)
\(770\) 3.87336e7 2.35430
\(771\) −864713. −0.0523885
\(772\) −2.72314e7 −1.64447
\(773\) −6.15622e6 −0.370566 −0.185283 0.982685i \(-0.559320\pi\)
−0.185283 + 0.982685i \(0.559320\pi\)
\(774\) −2.92662e6 −0.175596
\(775\) 553489. 0.0331020
\(776\) −1.29838e6 −0.0774012
\(777\) 1.61031e7 0.956880
\(778\) 1.26648e7 0.750154
\(779\) −2.65734e6 −0.156893
\(780\) 1.36169e7 0.801389
\(781\) 3.23838e7 1.89976
\(782\) −3.71508e7 −2.17246
\(783\) 478889. 0.0279145
\(784\) −4.82904e6 −0.280589
\(785\) −2.10492e7 −1.21916
\(786\) −1.53001e7 −0.883363
\(787\) −5.46039e6 −0.314258 −0.157129 0.987578i \(-0.550224\pi\)
−0.157129 + 0.987578i \(0.550224\pi\)
\(788\) 1.57893e7 0.905830
\(789\) 5.16821e6 0.295561
\(790\) 1.27669e7 0.727807
\(791\) −2.06243e6 −0.117203
\(792\) −1.14694e6 −0.0649720
\(793\) −1.28254e7 −0.724248
\(794\) 1.69536e7 0.954356
\(795\) 1.32109e7 0.741335
\(796\) −977678. −0.0546906
\(797\) −1.47544e7 −0.822765 −0.411383 0.911463i \(-0.634954\pi\)
−0.411383 + 0.911463i \(0.634954\pi\)
\(798\) −1.83030e6 −0.101745
\(799\) 1.21188e7 0.671571
\(800\) 1.64039e7 0.906196
\(801\) −3.18329e6 −0.175305
\(802\) 2.44441e7 1.34196
\(803\) −7.61247e6 −0.416617
\(804\) 7.99283e6 0.436074
\(805\) −2.46553e7 −1.34097
\(806\) −1.36428e6 −0.0739716
\(807\) 5.33265e6 0.288244
\(808\) 2.48753e6 0.134042
\(809\) 2.45767e7 1.32024 0.660120 0.751160i \(-0.270505\pi\)
0.660120 + 0.751160i \(0.270505\pi\)
\(810\) −3.86016e6 −0.206725
\(811\) −825944. −0.0440959 −0.0220480 0.999757i \(-0.507019\pi\)
−0.0220480 + 0.999757i \(0.507019\pi\)
\(812\) −3.51876e6 −0.187284
\(813\) 2.03148e7 1.07792
\(814\) 4.35860e7 2.30561
\(815\) 4.68405e7 2.47017
\(816\) −1.55055e7 −0.815193
\(817\) −725229. −0.0380119
\(818\) −3.53216e7 −1.84568
\(819\) −7.13537e6 −0.371712
\(820\) 4.11800e7 2.13871
\(821\) 6.25802e6 0.324025 0.162013 0.986789i \(-0.448201\pi\)
0.162013 + 0.986789i \(0.448201\pi\)
\(822\) 4.30515e6 0.222233
\(823\) −1.67942e7 −0.864291 −0.432146 0.901804i \(-0.642243\pi\)
−0.432146 + 0.901804i \(0.642243\pi\)
\(824\) −2.87165e6 −0.147338
\(825\) 7.83537e6 0.400797
\(826\) 4.92731e6 0.251281
\(827\) −1.10649e7 −0.562578 −0.281289 0.959623i \(-0.590762\pi\)
−0.281289 + 0.959623i \(0.590762\pi\)
\(828\) 6.72772e6 0.341030
\(829\) −3.30122e7 −1.66835 −0.834176 0.551499i \(-0.814056\pi\)
−0.834176 + 0.551499i \(0.814056\pi\)
\(830\) 6.33995e7 3.19441
\(831\) −1.60187e7 −0.804684
\(832\) −2.37312e7 −1.18853
\(833\) 1.06420e7 0.531384
\(834\) −1.58874e7 −0.790929
\(835\) 1.96679e7 0.976205
\(836\) −2.61912e6 −0.129610
\(837\) 204468. 0.0100882
\(838\) −5.28126e7 −2.59793
\(839\) 2.73255e7 1.34018 0.670090 0.742280i \(-0.266256\pi\)
0.670090 + 0.742280i \(0.266256\pi\)
\(840\) 3.07788e6 0.150506
\(841\) −2.00796e7 −0.978961
\(842\) −4.10540e7 −1.99561
\(843\) 9.62762e6 0.466605
\(844\) 3.63747e7 1.75769
\(845\) −1.62936e6 −0.0785012
\(846\) −4.15109e6 −0.199405
\(847\) −5.01109e6 −0.240007
\(848\) −1.81767e7 −0.868012
\(849\) 3.10032e6 0.147617
\(850\) −3.16834e7 −1.50413
\(851\) −2.77439e7 −1.31324
\(852\) 2.37137e7 1.11918
\(853\) −2.04074e7 −0.960316 −0.480158 0.877182i \(-0.659421\pi\)
−0.480158 + 0.877182i \(0.659421\pi\)
\(854\) −2.67148e7 −1.25345
\(855\) −956564. −0.0447506
\(856\) 5.36798e6 0.250395
\(857\) −1.33604e7 −0.621393 −0.310696 0.950509i \(-0.600562\pi\)
−0.310696 + 0.950509i \(0.600562\pi\)
\(858\) −1.93132e7 −0.895644
\(859\) 1.13841e7 0.526400 0.263200 0.964741i \(-0.415222\pi\)
0.263200 + 0.964741i \(0.415222\pi\)
\(860\) 1.12387e7 0.518165
\(861\) −2.15786e7 −0.992009
\(862\) −1.48174e7 −0.679211
\(863\) 5.23427e6 0.239237 0.119619 0.992820i \(-0.461833\pi\)
0.119619 + 0.992820i \(0.461833\pi\)
\(864\) 6.05988e6 0.276172
\(865\) 2.62833e7 1.19437
\(866\) 3.33166e7 1.50962
\(867\) 2.13914e7 0.966475
\(868\) −1.50238e6 −0.0676833
\(869\) −9.57315e6 −0.430036
\(870\) −3.47845e6 −0.155807
\(871\) 1.46052e7 0.652321
\(872\) 7.90936e6 0.352249
\(873\) 3.27672e6 0.145514
\(874\) 3.15340e6 0.139637
\(875\) 1.22708e7 0.541816
\(876\) −5.57440e6 −0.245436
\(877\) −4.34612e7 −1.90811 −0.954054 0.299636i \(-0.903135\pi\)
−0.954054 + 0.299636i \(0.903135\pi\)
\(878\) 5.56886e7 2.43798
\(879\) 2.11836e6 0.0924755
\(880\) −2.78525e7 −1.21243
\(881\) 4.45487e6 0.193373 0.0966864 0.995315i \(-0.469176\pi\)
0.0966864 + 0.995315i \(0.469176\pi\)
\(882\) −3.64522e6 −0.157780
\(883\) 2.04007e7 0.880529 0.440264 0.897868i \(-0.354885\pi\)
0.440264 + 0.897868i \(0.354885\pi\)
\(884\) 4.12879e7 1.77702
\(885\) 2.57515e6 0.110521
\(886\) −2.12935e7 −0.911303
\(887\) −1.97489e7 −0.842816 −0.421408 0.906871i \(-0.638464\pi\)
−0.421408 + 0.906871i \(0.638464\pi\)
\(888\) 3.46347e6 0.147394
\(889\) −1.05875e7 −0.449303
\(890\) 2.31221e7 0.978480
\(891\) 2.89452e6 0.122147
\(892\) −1.78503e6 −0.0751162
\(893\) −1.02866e6 −0.0431660
\(894\) −1.45172e7 −0.607490
\(895\) −4.05250e7 −1.69109
\(896\) −9.73631e6 −0.405158
\(897\) 1.22935e7 0.510145
\(898\) −1.33206e7 −0.551232
\(899\) 184249. 0.00760338
\(900\) 5.73762e6 0.236116
\(901\) 4.00567e7 1.64385
\(902\) −5.84064e7 −2.39025
\(903\) −5.88913e6 −0.240343
\(904\) −443589. −0.0180534
\(905\) 1.07455e7 0.436120
\(906\) 3.04401e7 1.23204
\(907\) −2.14610e7 −0.866226 −0.433113 0.901340i \(-0.642585\pi\)
−0.433113 + 0.901340i \(0.642585\pi\)
\(908\) −5.94731e6 −0.239390
\(909\) −6.27779e6 −0.251998
\(910\) 5.18283e7 2.07474
\(911\) −3.70251e7 −1.47809 −0.739044 0.673658i \(-0.764722\pi\)
−0.739044 + 0.673658i \(0.764722\pi\)
\(912\) 1.31612e6 0.0523974
\(913\) −4.75398e7 −1.88747
\(914\) −1.34199e7 −0.531354
\(915\) −1.39619e7 −0.551304
\(916\) −7.71856e6 −0.303947
\(917\) −3.07879e7 −1.20908
\(918\) −1.17044e7 −0.458397
\(919\) −3.50073e7 −1.36732 −0.683660 0.729801i \(-0.739613\pi\)
−0.683660 + 0.729801i \(0.739613\pi\)
\(920\) −5.30286e6 −0.206557
\(921\) −7.20758e6 −0.279988
\(922\) 7.17839e7 2.78099
\(923\) 4.33317e7 1.67418
\(924\) −2.12682e7 −0.819505
\(925\) −2.36609e7 −0.909238
\(926\) 5.20033e7 1.99298
\(927\) 7.24719e6 0.276994
\(928\) 5.46064e6 0.208149
\(929\) 9.91282e6 0.376841 0.188420 0.982088i \(-0.439663\pi\)
0.188420 + 0.982088i \(0.439663\pi\)
\(930\) −1.48517e6 −0.0563078
\(931\) −903301. −0.0341553
\(932\) 2.89003e7 1.08984
\(933\) 1.84233e6 0.0692889
\(934\) −5.14257e7 −1.92892
\(935\) 6.13796e7 2.29612
\(936\) −1.53468e6 −0.0572569
\(937\) −7.06990e6 −0.263066 −0.131533 0.991312i \(-0.541990\pi\)
−0.131533 + 0.991312i \(0.541990\pi\)
\(938\) 3.04220e7 1.12897
\(939\) −4.97154e6 −0.184004
\(940\) 1.59408e7 0.588424
\(941\) −1.38641e7 −0.510410 −0.255205 0.966887i \(-0.582143\pi\)
−0.255205 + 0.966887i \(0.582143\pi\)
\(942\) 2.18616e7 0.802701
\(943\) 3.71776e7 1.36145
\(944\) −3.54312e6 −0.129406
\(945\) −7.76766e6 −0.282951
\(946\) −1.59400e7 −0.579109
\(947\) −2.83757e7 −1.02819 −0.514093 0.857735i \(-0.671871\pi\)
−0.514093 + 0.857735i \(0.671871\pi\)
\(948\) −7.01014e6 −0.253341
\(949\) −1.01860e7 −0.367146
\(950\) 2.68932e6 0.0966794
\(951\) 1.45880e6 0.0523051
\(952\) 9.33245e6 0.333736
\(953\) −1.11592e7 −0.398016 −0.199008 0.979998i \(-0.563772\pi\)
−0.199008 + 0.979998i \(0.563772\pi\)
\(954\) −1.37208e7 −0.488098
\(955\) −4.54714e7 −1.61336
\(956\) 3.67243e7 1.29960
\(957\) 2.60829e6 0.0920612
\(958\) −2.26382e6 −0.0796946
\(959\) 8.66310e6 0.304177
\(960\) −2.58340e7 −0.904720
\(961\) −2.85505e7 −0.997252
\(962\) 5.83211e7 2.03183
\(963\) −1.35472e7 −0.470742
\(964\) 1.84909e7 0.640864
\(965\) −5.41688e7 −1.87254
\(966\) 2.56068e7 0.882902
\(967\) −4.02717e7 −1.38495 −0.692474 0.721443i \(-0.743479\pi\)
−0.692474 + 0.721443i \(0.743479\pi\)
\(968\) −1.07779e6 −0.0369696
\(969\) −2.90039e6 −0.0992311
\(970\) −2.38007e7 −0.812196
\(971\) −4.23365e7 −1.44101 −0.720505 0.693449i \(-0.756090\pi\)
−0.720505 + 0.693449i \(0.756090\pi\)
\(972\) 2.11957e6 0.0719587
\(973\) −3.19696e7 −1.08257
\(974\) 5.02297e7 1.69654
\(975\) 1.04843e7 0.353205
\(976\) 1.92100e7 0.645509
\(977\) 1.55990e7 0.522830 0.261415 0.965226i \(-0.415811\pi\)
0.261415 + 0.965226i \(0.415811\pi\)
\(978\) −4.86482e7 −1.62637
\(979\) −1.73380e7 −0.578151
\(980\) 1.39982e7 0.465593
\(981\) −1.99609e7 −0.662227
\(982\) −5.28139e7 −1.74771
\(983\) −1.97648e7 −0.652393 −0.326197 0.945302i \(-0.605767\pi\)
−0.326197 + 0.945302i \(0.605767\pi\)
\(984\) −4.64114e6 −0.152805
\(985\) 3.14081e7 1.03146
\(986\) −1.05470e7 −0.345491
\(987\) −8.35307e6 −0.272931
\(988\) −3.50456e6 −0.114220
\(989\) 1.01463e7 0.329851
\(990\) −2.10246e7 −0.681772
\(991\) −4.33057e7 −1.40075 −0.700375 0.713775i \(-0.746984\pi\)
−0.700375 + 0.713775i \(0.746984\pi\)
\(992\) 2.33150e6 0.0752238
\(993\) 1.62839e7 0.524066
\(994\) 9.02582e7 2.89748
\(995\) −1.94480e6 −0.0622756
\(996\) −3.48120e7 −1.11194
\(997\) −5.21220e7 −1.66067 −0.830334 0.557266i \(-0.811850\pi\)
−0.830334 + 0.557266i \(0.811850\pi\)
\(998\) 6.25337e7 1.98741
\(999\) −8.74075e6 −0.277099
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.6.a.d.1.7 51
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.6.a.d.1.7 51 1.1 even 1 trivial