Properties

Label 669.6.a.d.1.19
Level $669$
Weight $6$
Character 669.1
Self dual yes
Analytic conductor $107.297$
Analytic rank $0$
Dimension $51$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,6,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.296775455\)
Analytic rank: \(0\)
Dimension: \(51\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.13600 q^{2} +9.00000 q^{3} -22.1655 q^{4} -69.7481 q^{5} -28.2240 q^{6} +144.343 q^{7} +169.863 q^{8} +81.0000 q^{9} +218.730 q^{10} +9.52941 q^{11} -199.489 q^{12} +902.753 q^{13} -452.658 q^{14} -627.733 q^{15} +176.605 q^{16} +174.036 q^{17} -254.016 q^{18} -673.507 q^{19} +1546.00 q^{20} +1299.08 q^{21} -29.8842 q^{22} -1007.02 q^{23} +1528.77 q^{24} +1739.79 q^{25} -2831.04 q^{26} +729.000 q^{27} -3199.42 q^{28} +6850.62 q^{29} +1968.57 q^{30} +2964.67 q^{31} -5989.45 q^{32} +85.7647 q^{33} -545.778 q^{34} -10067.6 q^{35} -1795.41 q^{36} +5887.00 q^{37} +2112.12 q^{38} +8124.78 q^{39} -11847.6 q^{40} +1157.45 q^{41} -4073.93 q^{42} +4856.73 q^{43} -211.224 q^{44} -5649.59 q^{45} +3158.00 q^{46} -22608.8 q^{47} +1589.45 q^{48} +4027.78 q^{49} -5455.99 q^{50} +1566.33 q^{51} -20010.0 q^{52} -20693.3 q^{53} -2286.14 q^{54} -664.658 q^{55} +24518.5 q^{56} -6061.56 q^{57} -21483.6 q^{58} -48135.9 q^{59} +13914.0 q^{60} -14504.1 q^{61} -9297.22 q^{62} +11691.7 q^{63} +13131.6 q^{64} -62965.3 q^{65} -268.958 q^{66} +16748.7 q^{67} -3857.60 q^{68} -9063.14 q^{69} +31572.1 q^{70} +67759.3 q^{71} +13758.9 q^{72} -15219.7 q^{73} -18461.6 q^{74} +15658.1 q^{75} +14928.6 q^{76} +1375.50 q^{77} -25479.3 q^{78} +66285.0 q^{79} -12317.9 q^{80} +6561.00 q^{81} -3629.77 q^{82} -94589.5 q^{83} -28794.8 q^{84} -12138.7 q^{85} -15230.7 q^{86} +61655.6 q^{87} +1618.69 q^{88} +117203. q^{89} +17717.1 q^{90} +130306. q^{91} +22321.0 q^{92} +26682.1 q^{93} +70901.1 q^{94} +46975.8 q^{95} -53905.1 q^{96} -93697.5 q^{97} -12631.1 q^{98} +771.882 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 51 q + 18 q^{2} + 459 q^{3} + 940 q^{4} + 97 q^{5} + 162 q^{6} + 794 q^{7} + 411 q^{8} + 4131 q^{9} + 1256 q^{10} + 2349 q^{11} + 8460 q^{12} + 2954 q^{13} + 1816 q^{14} + 873 q^{15} + 18580 q^{16} + 1567 q^{17}+ \cdots + 190269 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.13600 −0.554372 −0.277186 0.960816i \(-0.589402\pi\)
−0.277186 + 0.960816i \(0.589402\pi\)
\(3\) 9.00000 0.577350
\(4\) −22.1655 −0.692672
\(5\) −69.7481 −1.24769 −0.623846 0.781548i \(-0.714431\pi\)
−0.623846 + 0.781548i \(0.714431\pi\)
\(6\) −28.2240 −0.320067
\(7\) 144.343 1.11340 0.556698 0.830715i \(-0.312068\pi\)
0.556698 + 0.830715i \(0.312068\pi\)
\(8\) 169.863 0.938370
\(9\) 81.0000 0.333333
\(10\) 218.730 0.691685
\(11\) 9.52941 0.0237457 0.0118728 0.999930i \(-0.496221\pi\)
0.0118728 + 0.999930i \(0.496221\pi\)
\(12\) −199.489 −0.399914
\(13\) 902.753 1.48153 0.740765 0.671764i \(-0.234463\pi\)
0.740765 + 0.671764i \(0.234463\pi\)
\(14\) −452.658 −0.617235
\(15\) −627.733 −0.720355
\(16\) 176.605 0.172466
\(17\) 174.036 0.146055 0.0730277 0.997330i \(-0.476734\pi\)
0.0730277 + 0.997330i \(0.476734\pi\)
\(18\) −254.016 −0.184791
\(19\) −673.507 −0.428014 −0.214007 0.976832i \(-0.568652\pi\)
−0.214007 + 0.976832i \(0.568652\pi\)
\(20\) 1546.00 0.864241
\(21\) 1299.08 0.642819
\(22\) −29.8842 −0.0131639
\(23\) −1007.02 −0.396933 −0.198466 0.980108i \(-0.563596\pi\)
−0.198466 + 0.980108i \(0.563596\pi\)
\(24\) 1528.77 0.541768
\(25\) 1739.79 0.556734
\(26\) −2831.04 −0.821319
\(27\) 729.000 0.192450
\(28\) −3199.42 −0.771217
\(29\) 6850.62 1.51264 0.756319 0.654203i \(-0.226996\pi\)
0.756319 + 0.654203i \(0.226996\pi\)
\(30\) 1968.57 0.399345
\(31\) 2964.67 0.554080 0.277040 0.960858i \(-0.410647\pi\)
0.277040 + 0.960858i \(0.410647\pi\)
\(32\) −5989.45 −1.03398
\(33\) 85.7647 0.0137096
\(34\) −545.778 −0.0809690
\(35\) −10067.6 −1.38917
\(36\) −1795.41 −0.230891
\(37\) 5887.00 0.706951 0.353476 0.935444i \(-0.385000\pi\)
0.353476 + 0.935444i \(0.385000\pi\)
\(38\) 2112.12 0.237279
\(39\) 8124.78 0.855362
\(40\) −11847.6 −1.17080
\(41\) 1157.45 0.107534 0.0537668 0.998554i \(-0.482877\pi\)
0.0537668 + 0.998554i \(0.482877\pi\)
\(42\) −4073.93 −0.356361
\(43\) 4856.73 0.400565 0.200282 0.979738i \(-0.435814\pi\)
0.200282 + 0.979738i \(0.435814\pi\)
\(44\) −211.224 −0.0164479
\(45\) −5649.59 −0.415897
\(46\) 3158.00 0.220048
\(47\) −22608.8 −1.49291 −0.746453 0.665438i \(-0.768245\pi\)
−0.746453 + 0.665438i \(0.768245\pi\)
\(48\) 1589.45 0.0995733
\(49\) 4027.78 0.239649
\(50\) −5455.99 −0.308638
\(51\) 1566.33 0.0843251
\(52\) −20010.0 −1.02621
\(53\) −20693.3 −1.01191 −0.505954 0.862561i \(-0.668859\pi\)
−0.505954 + 0.862561i \(0.668859\pi\)
\(54\) −2286.14 −0.106689
\(55\) −664.658 −0.0296273
\(56\) 24518.5 1.04478
\(57\) −6061.56 −0.247114
\(58\) −21483.6 −0.838564
\(59\) −48135.9 −1.80028 −0.900139 0.435604i \(-0.856535\pi\)
−0.900139 + 0.435604i \(0.856535\pi\)
\(60\) 13914.0 0.498970
\(61\) −14504.1 −0.499076 −0.249538 0.968365i \(-0.580279\pi\)
−0.249538 + 0.968365i \(0.580279\pi\)
\(62\) −9297.22 −0.307166
\(63\) 11691.7 0.371132
\(64\) 13131.6 0.400744
\(65\) −62965.3 −1.84849
\(66\) −268.958 −0.00760020
\(67\) 16748.7 0.455822 0.227911 0.973682i \(-0.426811\pi\)
0.227911 + 0.973682i \(0.426811\pi\)
\(68\) −3857.60 −0.101168
\(69\) −9063.14 −0.229169
\(70\) 31572.1 0.770119
\(71\) 67759.3 1.59523 0.797614 0.603168i \(-0.206095\pi\)
0.797614 + 0.603168i \(0.206095\pi\)
\(72\) 13758.9 0.312790
\(73\) −15219.7 −0.334272 −0.167136 0.985934i \(-0.553452\pi\)
−0.167136 + 0.985934i \(0.553452\pi\)
\(74\) −18461.6 −0.391914
\(75\) 15658.1 0.321430
\(76\) 14928.6 0.296473
\(77\) 1375.50 0.0264383
\(78\) −25479.3 −0.474189
\(79\) 66285.0 1.19494 0.597472 0.801890i \(-0.296172\pi\)
0.597472 + 0.801890i \(0.296172\pi\)
\(80\) −12317.9 −0.215184
\(81\) 6561.00 0.111111
\(82\) −3629.77 −0.0596136
\(83\) −94589.5 −1.50712 −0.753560 0.657380i \(-0.771665\pi\)
−0.753560 + 0.657380i \(0.771665\pi\)
\(84\) −28794.8 −0.445263
\(85\) −12138.7 −0.182232
\(86\) −15230.7 −0.222062
\(87\) 61655.6 0.873322
\(88\) 1618.69 0.0222822
\(89\) 117203. 1.56842 0.784211 0.620495i \(-0.213068\pi\)
0.784211 + 0.620495i \(0.213068\pi\)
\(90\) 17717.1 0.230562
\(91\) 130306. 1.64953
\(92\) 22321.0 0.274944
\(93\) 26682.1 0.319898
\(94\) 70901.1 0.827625
\(95\) 46975.8 0.534029
\(96\) −53905.1 −0.596969
\(97\) −93697.5 −1.01111 −0.505555 0.862794i \(-0.668712\pi\)
−0.505555 + 0.862794i \(0.668712\pi\)
\(98\) −12631.1 −0.132855
\(99\) 771.882 0.00791522
\(100\) −38563.4 −0.385634
\(101\) 110449. 1.07736 0.538679 0.842511i \(-0.318924\pi\)
0.538679 + 0.842511i \(0.318924\pi\)
\(102\) −4912.00 −0.0467475
\(103\) 48959.2 0.454717 0.227358 0.973811i \(-0.426991\pi\)
0.227358 + 0.973811i \(0.426991\pi\)
\(104\) 153344. 1.39022
\(105\) −90608.5 −0.802040
\(106\) 64894.3 0.560973
\(107\) 68185.2 0.575746 0.287873 0.957669i \(-0.407052\pi\)
0.287873 + 0.957669i \(0.407052\pi\)
\(108\) −16158.6 −0.133305
\(109\) 22800.1 0.183811 0.0919054 0.995768i \(-0.470704\pi\)
0.0919054 + 0.995768i \(0.470704\pi\)
\(110\) 2084.37 0.0164245
\(111\) 52983.0 0.408159
\(112\) 25491.6 0.192023
\(113\) −20268.9 −0.149326 −0.0746628 0.997209i \(-0.523788\pi\)
−0.0746628 + 0.997209i \(0.523788\pi\)
\(114\) 19009.1 0.136993
\(115\) 70237.4 0.495249
\(116\) −151848. −1.04776
\(117\) 73123.0 0.493844
\(118\) 150954. 0.998023
\(119\) 25120.9 0.162617
\(120\) −106629. −0.675959
\(121\) −160960. −0.999436
\(122\) 45484.9 0.276674
\(123\) 10417.1 0.0620845
\(124\) −65713.4 −0.383796
\(125\) 96615.5 0.553059
\(126\) −36665.3 −0.205745
\(127\) 214868. 1.18212 0.591062 0.806626i \(-0.298709\pi\)
0.591062 + 0.806626i \(0.298709\pi\)
\(128\) 150482. 0.811819
\(129\) 43710.6 0.231266
\(130\) 197459. 1.02475
\(131\) 103896. 0.528956 0.264478 0.964392i \(-0.414800\pi\)
0.264478 + 0.964392i \(0.414800\pi\)
\(132\) −1901.02 −0.00949623
\(133\) −97215.7 −0.476549
\(134\) −52524.1 −0.252695
\(135\) −50846.3 −0.240118
\(136\) 29562.3 0.137054
\(137\) −314470. −1.43146 −0.715728 0.698379i \(-0.753905\pi\)
−0.715728 + 0.698379i \(0.753905\pi\)
\(138\) 28422.0 0.127045
\(139\) 120193. 0.527647 0.263824 0.964571i \(-0.415016\pi\)
0.263824 + 0.964571i \(0.415016\pi\)
\(140\) 223154. 0.962241
\(141\) −203479. −0.861929
\(142\) −212493. −0.884350
\(143\) 8602.70 0.0351799
\(144\) 14305.0 0.0574886
\(145\) −477818. −1.88731
\(146\) 47729.1 0.185311
\(147\) 36250.0 0.138361
\(148\) −130488. −0.489685
\(149\) 383320. 1.41448 0.707238 0.706975i \(-0.249941\pi\)
0.707238 + 0.706975i \(0.249941\pi\)
\(150\) −49103.9 −0.178192
\(151\) 324607. 1.15855 0.579276 0.815131i \(-0.303335\pi\)
0.579276 + 0.815131i \(0.303335\pi\)
\(152\) −114404. −0.401635
\(153\) 14096.9 0.0486851
\(154\) −4313.57 −0.0146567
\(155\) −206780. −0.691321
\(156\) −180090. −0.592485
\(157\) 195639. 0.633442 0.316721 0.948519i \(-0.397418\pi\)
0.316721 + 0.948519i \(0.397418\pi\)
\(158\) −207870. −0.662443
\(159\) −186240. −0.584225
\(160\) 417753. 1.29009
\(161\) −145355. −0.441943
\(162\) −20575.3 −0.0615969
\(163\) −117122. −0.345279 −0.172640 0.984985i \(-0.555230\pi\)
−0.172640 + 0.984985i \(0.555230\pi\)
\(164\) −25655.5 −0.0744854
\(165\) −5981.92 −0.0171053
\(166\) 296633. 0.835505
\(167\) 600937. 1.66739 0.833696 0.552223i \(-0.186220\pi\)
0.833696 + 0.552223i \(0.186220\pi\)
\(168\) 220666. 0.603202
\(169\) 443670. 1.19493
\(170\) 38067.0 0.101024
\(171\) −54554.0 −0.142671
\(172\) −107652. −0.277460
\(173\) −91476.6 −0.232378 −0.116189 0.993227i \(-0.537068\pi\)
−0.116189 + 0.993227i \(0.537068\pi\)
\(174\) −193352. −0.484145
\(175\) 251126. 0.619865
\(176\) 1682.94 0.00409532
\(177\) −433223. −1.03939
\(178\) −367548. −0.869489
\(179\) −331899. −0.774235 −0.387117 0.922030i \(-0.626529\pi\)
−0.387117 + 0.922030i \(0.626529\pi\)
\(180\) 125226. 0.288080
\(181\) −245557. −0.557129 −0.278565 0.960417i \(-0.589859\pi\)
−0.278565 + 0.960417i \(0.589859\pi\)
\(182\) −408639. −0.914453
\(183\) −130537. −0.288142
\(184\) −171055. −0.372469
\(185\) −410607. −0.882057
\(186\) −83675.0 −0.177343
\(187\) 1658.46 0.00346818
\(188\) 501135. 1.03409
\(189\) 105226. 0.214273
\(190\) −147316. −0.296051
\(191\) −829755. −1.64576 −0.822880 0.568215i \(-0.807634\pi\)
−0.822880 + 0.568215i \(0.807634\pi\)
\(192\) 118184. 0.231369
\(193\) 425647. 0.822539 0.411270 0.911514i \(-0.365085\pi\)
0.411270 + 0.911514i \(0.365085\pi\)
\(194\) 293835. 0.560531
\(195\) −566688. −1.06723
\(196\) −89277.7 −0.165998
\(197\) −689790. −1.26634 −0.633171 0.774012i \(-0.718247\pi\)
−0.633171 + 0.774012i \(0.718247\pi\)
\(198\) −2420.62 −0.00438798
\(199\) 844080. 1.51095 0.755477 0.655175i \(-0.227405\pi\)
0.755477 + 0.655175i \(0.227405\pi\)
\(200\) 295527. 0.522422
\(201\) 150739. 0.263169
\(202\) −346369. −0.597257
\(203\) 988837. 1.68416
\(204\) −34718.4 −0.0584096
\(205\) −80730.1 −0.134169
\(206\) −153536. −0.252082
\(207\) −81568.3 −0.132311
\(208\) 159431. 0.255514
\(209\) −6418.12 −0.0101635
\(210\) 284148. 0.444628
\(211\) −231711. −0.358295 −0.179147 0.983822i \(-0.557334\pi\)
−0.179147 + 0.983822i \(0.557334\pi\)
\(212\) 458678. 0.700920
\(213\) 609833. 0.921005
\(214\) −213829. −0.319177
\(215\) −338747. −0.499781
\(216\) 123830. 0.180589
\(217\) 427928. 0.616910
\(218\) −71501.2 −0.101900
\(219\) −136978. −0.192992
\(220\) 14732.5 0.0205220
\(221\) 157112. 0.216386
\(222\) −166155. −0.226272
\(223\) −49729.0 −0.0669650
\(224\) −864533. −1.15123
\(225\) 140923. 0.185578
\(226\) 63563.3 0.0827819
\(227\) −5254.64 −0.00676827 −0.00338414 0.999994i \(-0.501077\pi\)
−0.00338414 + 0.999994i \(0.501077\pi\)
\(228\) 134357. 0.171169
\(229\) 1.12100e6 1.41260 0.706299 0.707914i \(-0.250364\pi\)
0.706299 + 0.707914i \(0.250364\pi\)
\(230\) −220265. −0.274552
\(231\) 12379.5 0.0152642
\(232\) 1.16367e6 1.41941
\(233\) 277717. 0.335129 0.167565 0.985861i \(-0.446410\pi\)
0.167565 + 0.985861i \(0.446410\pi\)
\(234\) −229314. −0.273773
\(235\) 1.57692e6 1.86269
\(236\) 1.06696e6 1.24700
\(237\) 596565. 0.689901
\(238\) −78779.0 −0.0901505
\(239\) 1.48294e6 1.67930 0.839652 0.543125i \(-0.182759\pi\)
0.839652 + 0.543125i \(0.182759\pi\)
\(240\) −110861. −0.124237
\(241\) 1.37457e6 1.52449 0.762246 0.647288i \(-0.224097\pi\)
0.762246 + 0.647288i \(0.224097\pi\)
\(242\) 504771. 0.554059
\(243\) 59049.0 0.0641500
\(244\) 321491. 0.345696
\(245\) −280930. −0.299008
\(246\) −32668.0 −0.0344179
\(247\) −608010. −0.634116
\(248\) 503588. 0.519932
\(249\) −851305. −0.870136
\(250\) −302986. −0.306601
\(251\) 1.37332e6 1.37590 0.687952 0.725756i \(-0.258510\pi\)
0.687952 + 0.725756i \(0.258510\pi\)
\(252\) −259153. −0.257072
\(253\) −9596.26 −0.00942542
\(254\) −673827. −0.655336
\(255\) −109248. −0.105212
\(256\) −892121. −0.850793
\(257\) 161764. 0.152774 0.0763868 0.997078i \(-0.475662\pi\)
0.0763868 + 0.997078i \(0.475662\pi\)
\(258\) −137076. −0.128207
\(259\) 849744. 0.787116
\(260\) 1.39566e6 1.28040
\(261\) 554901. 0.504213
\(262\) −325817. −0.293238
\(263\) −1.27505e6 −1.13668 −0.568340 0.822794i \(-0.692414\pi\)
−0.568340 + 0.822794i \(0.692414\pi\)
\(264\) 14568.2 0.0128646
\(265\) 1.44332e6 1.26255
\(266\) 304868. 0.264185
\(267\) 1.05482e6 0.905529
\(268\) −371244. −0.315735
\(269\) 1.03556e6 0.872556 0.436278 0.899812i \(-0.356296\pi\)
0.436278 + 0.899812i \(0.356296\pi\)
\(270\) 159454. 0.133115
\(271\) −1.33765e6 −1.10642 −0.553211 0.833041i \(-0.686598\pi\)
−0.553211 + 0.833041i \(0.686598\pi\)
\(272\) 30735.7 0.0251896
\(273\) 1.17275e6 0.952356
\(274\) 986179. 0.793559
\(275\) 16579.2 0.0132200
\(276\) 200889. 0.158739
\(277\) −1.10289e6 −0.863636 −0.431818 0.901961i \(-0.642128\pi\)
−0.431818 + 0.901961i \(0.642128\pi\)
\(278\) −376927. −0.292513
\(279\) 240138. 0.184693
\(280\) −1.71012e6 −1.30356
\(281\) 70379.5 0.0531716 0.0265858 0.999647i \(-0.491536\pi\)
0.0265858 + 0.999647i \(0.491536\pi\)
\(282\) 638110. 0.477829
\(283\) 2.56385e6 1.90295 0.951474 0.307729i \(-0.0995689\pi\)
0.951474 + 0.307729i \(0.0995689\pi\)
\(284\) −1.50192e6 −1.10497
\(285\) 422782. 0.308322
\(286\) −26978.1 −0.0195028
\(287\) 167070. 0.119727
\(288\) −485146. −0.344660
\(289\) −1.38957e6 −0.978668
\(290\) 1.49844e6 1.04627
\(291\) −843277. −0.583765
\(292\) 337353. 0.231541
\(293\) 1.62471e6 1.10562 0.552810 0.833307i \(-0.313556\pi\)
0.552810 + 0.833307i \(0.313556\pi\)
\(294\) −113680. −0.0767036
\(295\) 3.35739e6 2.24619
\(296\) 999984. 0.663382
\(297\) 6946.94 0.00456985
\(298\) −1.20209e6 −0.784146
\(299\) −909087. −0.588068
\(300\) −347070. −0.222646
\(301\) 701033. 0.445987
\(302\) −1.01797e6 −0.642269
\(303\) 994045. 0.622013
\(304\) −118945. −0.0738178
\(305\) 1.01163e6 0.622693
\(306\) −44208.0 −0.0269897
\(307\) 326857. 0.197930 0.0989649 0.995091i \(-0.468447\pi\)
0.0989649 + 0.995091i \(0.468447\pi\)
\(308\) −30488.6 −0.0183131
\(309\) 440632. 0.262531
\(310\) 648463. 0.383249
\(311\) 742171. 0.435114 0.217557 0.976048i \(-0.430191\pi\)
0.217557 + 0.976048i \(0.430191\pi\)
\(312\) 1.38010e6 0.802646
\(313\) −3.06504e6 −1.76838 −0.884188 0.467131i \(-0.845288\pi\)
−0.884188 + 0.467131i \(0.845288\pi\)
\(314\) −613525. −0.351162
\(315\) −815477. −0.463058
\(316\) −1.46924e6 −0.827704
\(317\) 384285. 0.214786 0.107393 0.994217i \(-0.465750\pi\)
0.107393 + 0.994217i \(0.465750\pi\)
\(318\) 584049. 0.323878
\(319\) 65282.4 0.0359186
\(320\) −915901. −0.500004
\(321\) 613667. 0.332407
\(322\) 455834. 0.245001
\(323\) −117215. −0.0625137
\(324\) −145428. −0.0769635
\(325\) 1.57060e6 0.824818
\(326\) 367295. 0.191413
\(327\) 205201. 0.106123
\(328\) 196609. 0.100906
\(329\) −3.26341e6 −1.66219
\(330\) 18759.3 0.00948270
\(331\) 2.30112e6 1.15444 0.577218 0.816590i \(-0.304138\pi\)
0.577218 + 0.816590i \(0.304138\pi\)
\(332\) 2.09662e6 1.04394
\(333\) 476847. 0.235650
\(334\) −1.88454e6 −0.924356
\(335\) −1.16819e6 −0.568725
\(336\) 229425. 0.110864
\(337\) 1.41010e6 0.676356 0.338178 0.941082i \(-0.390189\pi\)
0.338178 + 0.941082i \(0.390189\pi\)
\(338\) −1.39135e6 −0.662437
\(339\) −182420. −0.0862131
\(340\) 269060. 0.126227
\(341\) 28251.6 0.0131570
\(342\) 171082. 0.0790930
\(343\) −1.84459e6 −0.846571
\(344\) 824979. 0.375878
\(345\) 632137. 0.285932
\(346\) 286871. 0.128824
\(347\) −1.26110e6 −0.562246 −0.281123 0.959672i \(-0.590707\pi\)
−0.281123 + 0.959672i \(0.590707\pi\)
\(348\) −1.36663e6 −0.604926
\(349\) −1.14627e6 −0.503761 −0.251880 0.967758i \(-0.581049\pi\)
−0.251880 + 0.967758i \(0.581049\pi\)
\(350\) −787532. −0.343636
\(351\) 658107. 0.285121
\(352\) −57075.9 −0.0245525
\(353\) −1.81472e6 −0.775128 −0.387564 0.921843i \(-0.626683\pi\)
−0.387564 + 0.921843i \(0.626683\pi\)
\(354\) 1.35859e6 0.576209
\(355\) −4.72608e6 −1.99035
\(356\) −2.59786e6 −1.08640
\(357\) 226088. 0.0938872
\(358\) 1.04083e6 0.429214
\(359\) 848971. 0.347662 0.173831 0.984776i \(-0.444385\pi\)
0.173831 + 0.984776i \(0.444385\pi\)
\(360\) −959657. −0.390265
\(361\) −2.02249e6 −0.816804
\(362\) 770067. 0.308857
\(363\) −1.44864e6 −0.577025
\(364\) −2.88829e6 −1.14258
\(365\) 1.06155e6 0.417068
\(366\) 409364. 0.159738
\(367\) −664664. −0.257595 −0.128797 0.991671i \(-0.541112\pi\)
−0.128797 + 0.991671i \(0.541112\pi\)
\(368\) −177844. −0.0684573
\(369\) 93753.7 0.0358445
\(370\) 1.28766e6 0.488988
\(371\) −2.98693e6 −1.12665
\(372\) −591421. −0.221584
\(373\) 2.27988e6 0.848475 0.424238 0.905551i \(-0.360542\pi\)
0.424238 + 0.905551i \(0.360542\pi\)
\(374\) −5200.94 −0.00192266
\(375\) 869540. 0.319309
\(376\) −3.84039e6 −1.40090
\(377\) 6.18442e6 2.24102
\(378\) −329988. −0.118787
\(379\) 966148. 0.345498 0.172749 0.984966i \(-0.444735\pi\)
0.172749 + 0.984966i \(0.444735\pi\)
\(380\) −1.04124e6 −0.369907
\(381\) 1.93381e6 0.682500
\(382\) 2.60211e6 0.912363
\(383\) 213363. 0.0743230 0.0371615 0.999309i \(-0.488168\pi\)
0.0371615 + 0.999309i \(0.488168\pi\)
\(384\) 1.35434e6 0.468704
\(385\) −95938.4 −0.0329868
\(386\) −1.33483e6 −0.455993
\(387\) 393395. 0.133522
\(388\) 2.07685e6 0.700367
\(389\) −4.01270e6 −1.34451 −0.672253 0.740322i \(-0.734673\pi\)
−0.672253 + 0.740322i \(0.734673\pi\)
\(390\) 1.77713e6 0.591641
\(391\) −175257. −0.0579742
\(392\) 684171. 0.224879
\(393\) 935062. 0.305393
\(394\) 2.16318e6 0.702024
\(395\) −4.62325e6 −1.49092
\(396\) −17109.1 −0.00548265
\(397\) 4.63362e6 1.47552 0.737758 0.675065i \(-0.235884\pi\)
0.737758 + 0.675065i \(0.235884\pi\)
\(398\) −2.64704e6 −0.837630
\(399\) −874941. −0.275135
\(400\) 307256. 0.0960176
\(401\) −5.76455e6 −1.79021 −0.895106 0.445853i \(-0.852900\pi\)
−0.895106 + 0.445853i \(0.852900\pi\)
\(402\) −472717. −0.145893
\(403\) 2.67637e6 0.820887
\(404\) −2.44817e6 −0.746255
\(405\) −457617. −0.138632
\(406\) −3.10099e6 −0.933654
\(407\) 56099.6 0.0167870
\(408\) 266061. 0.0791282
\(409\) 3.56831e6 1.05476 0.527381 0.849629i \(-0.323174\pi\)
0.527381 + 0.849629i \(0.323174\pi\)
\(410\) 253170. 0.0743793
\(411\) −2.83023e6 −0.826452
\(412\) −1.08520e6 −0.314969
\(413\) −6.94806e6 −2.00442
\(414\) 255798. 0.0733494
\(415\) 6.59743e6 1.88042
\(416\) −5.40700e6 −1.53187
\(417\) 1.08174e6 0.304637
\(418\) 20127.2 0.00563434
\(419\) −2.47704e6 −0.689284 −0.344642 0.938734i \(-0.612000\pi\)
−0.344642 + 0.938734i \(0.612000\pi\)
\(420\) 2.00838e6 0.555550
\(421\) 1.47218e6 0.404813 0.202407 0.979302i \(-0.435124\pi\)
0.202407 + 0.979302i \(0.435124\pi\)
\(422\) 726646. 0.198629
\(423\) −1.83131e6 −0.497635
\(424\) −3.51503e6 −0.949543
\(425\) 302787. 0.0813140
\(426\) −1.91244e6 −0.510580
\(427\) −2.09356e6 −0.555669
\(428\) −1.51136e6 −0.398803
\(429\) 77424.3 0.0203111
\(430\) 1.06231e6 0.277065
\(431\) −4.86714e6 −1.26206 −0.631031 0.775758i \(-0.717368\pi\)
−0.631031 + 0.775758i \(0.717368\pi\)
\(432\) 128745. 0.0331911
\(433\) 7.42681e6 1.90363 0.951815 0.306674i \(-0.0992161\pi\)
0.951815 + 0.306674i \(0.0992161\pi\)
\(434\) −1.34198e6 −0.341998
\(435\) −4.30036e6 −1.08964
\(436\) −505376. −0.127321
\(437\) 678232. 0.169893
\(438\) 429562. 0.106989
\(439\) 1.10468e6 0.273573 0.136787 0.990601i \(-0.456323\pi\)
0.136787 + 0.990601i \(0.456323\pi\)
\(440\) −112901. −0.0278013
\(441\) 326250. 0.0798829
\(442\) −492703. −0.119958
\(443\) −4.24714e6 −1.02822 −0.514112 0.857723i \(-0.671878\pi\)
−0.514112 + 0.857723i \(0.671878\pi\)
\(444\) −1.17439e6 −0.282720
\(445\) −8.17466e6 −1.95691
\(446\) 155950. 0.0371235
\(447\) 3.44988e6 0.816649
\(448\) 1.89544e6 0.446186
\(449\) 2.48857e6 0.582552 0.291276 0.956639i \(-0.405920\pi\)
0.291276 + 0.956639i \(0.405920\pi\)
\(450\) −441935. −0.102879
\(451\) 11029.8 0.00255345
\(452\) 449270. 0.103434
\(453\) 2.92146e6 0.668891
\(454\) 16478.5 0.00375214
\(455\) −9.08857e6 −2.05810
\(456\) −1.02963e6 −0.231884
\(457\) 6.69515e6 1.49958 0.749790 0.661675i \(-0.230154\pi\)
0.749790 + 0.661675i \(0.230154\pi\)
\(458\) −3.51547e6 −0.783104
\(459\) 126873. 0.0281084
\(460\) −1.55685e6 −0.343045
\(461\) −3.77198e6 −0.826642 −0.413321 0.910585i \(-0.635631\pi\)
−0.413321 + 0.910585i \(0.635631\pi\)
\(462\) −38822.1 −0.00846202
\(463\) −1.16882e6 −0.253394 −0.126697 0.991941i \(-0.540438\pi\)
−0.126697 + 0.991941i \(0.540438\pi\)
\(464\) 1.20986e6 0.260879
\(465\) −1.86102e6 −0.399134
\(466\) −870920. −0.185786
\(467\) 283602. 0.0601752 0.0300876 0.999547i \(-0.490421\pi\)
0.0300876 + 0.999547i \(0.490421\pi\)
\(468\) −1.62081e6 −0.342071
\(469\) 2.41756e6 0.507510
\(470\) −4.94522e6 −1.03262
\(471\) 1.76075e6 0.365718
\(472\) −8.17652e6 −1.68933
\(473\) 46281.8 0.00951167
\(474\) −1.87083e6 −0.382462
\(475\) −1.17176e6 −0.238290
\(476\) −556816. −0.112640
\(477\) −1.67616e6 −0.337302
\(478\) −4.65051e6 −0.930959
\(479\) 3.83084e6 0.762878 0.381439 0.924394i \(-0.375429\pi\)
0.381439 + 0.924394i \(0.375429\pi\)
\(480\) 3.75977e6 0.744833
\(481\) 5.31451e6 1.04737
\(482\) −4.31066e6 −0.845135
\(483\) −1.30820e6 −0.255156
\(484\) 3.56776e6 0.692281
\(485\) 6.53522e6 1.26155
\(486\) −185178. −0.0355630
\(487\) −2.52648e6 −0.482719 −0.241359 0.970436i \(-0.577593\pi\)
−0.241359 + 0.970436i \(0.577593\pi\)
\(488\) −2.46371e6 −0.468318
\(489\) −1.05410e6 −0.199347
\(490\) 880996. 0.165762
\(491\) −123430. −0.0231055 −0.0115528 0.999933i \(-0.503677\pi\)
−0.0115528 + 0.999933i \(0.503677\pi\)
\(492\) −230900. −0.0430042
\(493\) 1.19226e6 0.220929
\(494\) 1.90672e6 0.351536
\(495\) −53837.3 −0.00987575
\(496\) 523576. 0.0955599
\(497\) 9.78055e6 1.77612
\(498\) 2.66969e6 0.482379
\(499\) 5.91798e6 1.06395 0.531976 0.846759i \(-0.321450\pi\)
0.531976 + 0.846759i \(0.321450\pi\)
\(500\) −2.14153e6 −0.383089
\(501\) 5.40843e6 0.962669
\(502\) −4.30674e6 −0.762763
\(503\) 7.78155e6 1.37134 0.685672 0.727911i \(-0.259509\pi\)
0.685672 + 0.727911i \(0.259509\pi\)
\(504\) 1.98600e6 0.348259
\(505\) −7.70363e6 −1.34421
\(506\) 30093.9 0.00522519
\(507\) 3.99303e6 0.689895
\(508\) −4.76266e6 −0.818824
\(509\) −5.37066e6 −0.918826 −0.459413 0.888223i \(-0.651940\pi\)
−0.459413 + 0.888223i \(0.651940\pi\)
\(510\) 342603. 0.0583264
\(511\) −2.19686e6 −0.372177
\(512\) −2.01773e6 −0.340163
\(513\) −490986. −0.0823713
\(514\) −507291. −0.0846934
\(515\) −3.41481e6 −0.567346
\(516\) −968866. −0.160192
\(517\) −215448. −0.0354500
\(518\) −2.66480e6 −0.436355
\(519\) −823290. −0.134163
\(520\) −1.06955e7 −1.73457
\(521\) 839164. 0.135442 0.0677209 0.997704i \(-0.478427\pi\)
0.0677209 + 0.997704i \(0.478427\pi\)
\(522\) −1.74017e6 −0.279521
\(523\) −3.46527e6 −0.553966 −0.276983 0.960875i \(-0.589335\pi\)
−0.276983 + 0.960875i \(0.589335\pi\)
\(524\) −2.30290e6 −0.366393
\(525\) 2.26014e6 0.357879
\(526\) 3.99856e6 0.630143
\(527\) 515961. 0.0809264
\(528\) 15146.5 0.00236443
\(529\) −5.42226e6 −0.842445
\(530\) −4.52625e6 −0.699921
\(531\) −3.89901e6 −0.600092
\(532\) 2.15483e6 0.330092
\(533\) 1.04489e6 0.159314
\(534\) −3.30793e6 −0.502000
\(535\) −4.75579e6 −0.718353
\(536\) 2.84499e6 0.427729
\(537\) −2.98709e6 −0.447005
\(538\) −3.24751e6 −0.483721
\(539\) 38382.3 0.00569062
\(540\) 1.12703e6 0.166323
\(541\) 9.68754e6 1.42305 0.711525 0.702661i \(-0.248005\pi\)
0.711525 + 0.702661i \(0.248005\pi\)
\(542\) 4.19488e6 0.613369
\(543\) −2.21001e6 −0.321659
\(544\) −1.04238e6 −0.151018
\(545\) −1.59026e6 −0.229339
\(546\) −3.67775e6 −0.527959
\(547\) 6.78906e6 0.970156 0.485078 0.874471i \(-0.338791\pi\)
0.485078 + 0.874471i \(0.338791\pi\)
\(548\) 6.97039e6 0.991529
\(549\) −1.17483e6 −0.166359
\(550\) −51992.4 −0.00732880
\(551\) −4.61394e6 −0.647430
\(552\) −1.53949e6 −0.215045
\(553\) 9.56774e6 1.33044
\(554\) 3.45865e6 0.478776
\(555\) −3.69546e6 −0.509256
\(556\) −2.66415e6 −0.365486
\(557\) 1.51688e6 0.207164 0.103582 0.994621i \(-0.466970\pi\)
0.103582 + 0.994621i \(0.466970\pi\)
\(558\) −753075. −0.102389
\(559\) 4.38443e6 0.593449
\(560\) −1.77799e6 −0.239585
\(561\) 14926.2 0.00200236
\(562\) −220710. −0.0294769
\(563\) −9.93096e6 −1.32044 −0.660222 0.751070i \(-0.729538\pi\)
−0.660222 + 0.751070i \(0.729538\pi\)
\(564\) 4.51021e6 0.597034
\(565\) 1.41372e6 0.186312
\(566\) −8.04025e6 −1.05494
\(567\) 947032. 0.123711
\(568\) 1.15098e7 1.49691
\(569\) −2.97756e6 −0.385549 −0.192774 0.981243i \(-0.561749\pi\)
−0.192774 + 0.981243i \(0.561749\pi\)
\(570\) −1.32584e6 −0.170925
\(571\) 3.34731e6 0.429640 0.214820 0.976654i \(-0.431083\pi\)
0.214820 + 0.976654i \(0.431083\pi\)
\(572\) −190683. −0.0243681
\(573\) −7.46780e6 −0.950180
\(574\) −523931. −0.0663735
\(575\) −1.75200e6 −0.220986
\(576\) 1.06366e6 0.133581
\(577\) 1.07096e7 1.33916 0.669582 0.742738i \(-0.266473\pi\)
0.669582 + 0.742738i \(0.266473\pi\)
\(578\) 4.35769e6 0.542546
\(579\) 3.83083e6 0.474893
\(580\) 1.05911e7 1.30728
\(581\) −1.36533e7 −1.67802
\(582\) 2.64452e6 0.323623
\(583\) −197195. −0.0240284
\(584\) −2.58527e6 −0.313671
\(585\) −5.10019e6 −0.616164
\(586\) −5.09508e6 −0.612924
\(587\) −7.80689e6 −0.935154 −0.467577 0.883952i \(-0.654873\pi\)
−0.467577 + 0.883952i \(0.654873\pi\)
\(588\) −803499. −0.0958390
\(589\) −1.99673e6 −0.237154
\(590\) −1.05288e7 −1.24522
\(591\) −6.20811e6 −0.731123
\(592\) 1.03967e6 0.121925
\(593\) 8.45179e6 0.986988 0.493494 0.869749i \(-0.335719\pi\)
0.493494 + 0.869749i \(0.335719\pi\)
\(594\) −21785.6 −0.00253340
\(595\) −1.75213e6 −0.202896
\(596\) −8.49648e6 −0.979768
\(597\) 7.59672e6 0.872350
\(598\) 2.85090e6 0.326008
\(599\) 1.39199e7 1.58515 0.792573 0.609777i \(-0.208741\pi\)
0.792573 + 0.609777i \(0.208741\pi\)
\(600\) 2.65974e6 0.301621
\(601\) 1.13558e7 1.28243 0.641213 0.767363i \(-0.278432\pi\)
0.641213 + 0.767363i \(0.278432\pi\)
\(602\) −2.19844e6 −0.247243
\(603\) 1.35665e6 0.151941
\(604\) −7.19508e6 −0.802497
\(605\) 1.12267e7 1.24699
\(606\) −3.11733e6 −0.344826
\(607\) −1.41617e7 −1.56007 −0.780034 0.625737i \(-0.784798\pi\)
−0.780034 + 0.625737i \(0.784798\pi\)
\(608\) 4.03394e6 0.442558
\(609\) 8.89953e6 0.972353
\(610\) −3.17248e6 −0.345203
\(611\) −2.04101e7 −2.21179
\(612\) −312466. −0.0337228
\(613\) 1.07943e7 1.16023 0.580113 0.814536i \(-0.303009\pi\)
0.580113 + 0.814536i \(0.303009\pi\)
\(614\) −1.02502e6 −0.109727
\(615\) −726571. −0.0774623
\(616\) 233647. 0.0248089
\(617\) −5.01677e6 −0.530531 −0.265266 0.964175i \(-0.585460\pi\)
−0.265266 + 0.964175i \(0.585460\pi\)
\(618\) −1.38182e6 −0.145540
\(619\) −411275. −0.0431425 −0.0215712 0.999767i \(-0.506867\pi\)
−0.0215712 + 0.999767i \(0.506867\pi\)
\(620\) 4.58339e6 0.478858
\(621\) −734115. −0.0763897
\(622\) −2.32745e6 −0.241215
\(623\) 1.69173e7 1.74627
\(624\) 1.43488e6 0.147521
\(625\) −1.21756e7 −1.24678
\(626\) 9.61195e6 0.980338
\(627\) −57763.1 −0.00586788
\(628\) −4.33644e6 −0.438767
\(629\) 1.02455e6 0.103254
\(630\) 2.55734e6 0.256706
\(631\) −3.44797e6 −0.344739 −0.172369 0.985032i \(-0.555142\pi\)
−0.172369 + 0.985032i \(0.555142\pi\)
\(632\) 1.12594e7 1.12130
\(633\) −2.08540e6 −0.206862
\(634\) −1.20512e6 −0.119071
\(635\) −1.49866e7 −1.47493
\(636\) 4.12810e6 0.404676
\(637\) 3.63609e6 0.355047
\(638\) −204726. −0.0199123
\(639\) 5.48850e6 0.531743
\(640\) −1.04958e7 −1.01290
\(641\) −1.61676e7 −1.55418 −0.777089 0.629390i \(-0.783305\pi\)
−0.777089 + 0.629390i \(0.783305\pi\)
\(642\) −1.92446e6 −0.184277
\(643\) 4.59621e6 0.438402 0.219201 0.975680i \(-0.429655\pi\)
0.219201 + 0.975680i \(0.429655\pi\)
\(644\) 3.22187e6 0.306121
\(645\) −3.04873e6 −0.288549
\(646\) 367585. 0.0346559
\(647\) 1.67949e7 1.57731 0.788655 0.614836i \(-0.210778\pi\)
0.788655 + 0.614836i \(0.210778\pi\)
\(648\) 1.11447e6 0.104263
\(649\) −458707. −0.0427488
\(650\) −4.92541e6 −0.457256
\(651\) 3.85136e6 0.356173
\(652\) 2.59607e6 0.239165
\(653\) −6.02642e6 −0.553065 −0.276533 0.961005i \(-0.589185\pi\)
−0.276533 + 0.961005i \(0.589185\pi\)
\(654\) −643511. −0.0588317
\(655\) −7.24653e6 −0.659974
\(656\) 204412. 0.0185459
\(657\) −1.23280e6 −0.111424
\(658\) 1.02341e7 0.921474
\(659\) 7.67299e6 0.688258 0.344129 0.938922i \(-0.388174\pi\)
0.344129 + 0.938922i \(0.388174\pi\)
\(660\) 132592. 0.0118484
\(661\) 1.47810e7 1.31583 0.657914 0.753093i \(-0.271439\pi\)
0.657914 + 0.753093i \(0.271439\pi\)
\(662\) −7.21633e6 −0.639987
\(663\) 1.41401e6 0.124930
\(664\) −1.60673e7 −1.41424
\(665\) 6.78061e6 0.594586
\(666\) −1.49539e6 −0.130638
\(667\) −6.89869e6 −0.600416
\(668\) −1.33201e7 −1.15496
\(669\) −447561. −0.0386622
\(670\) 3.66345e6 0.315285
\(671\) −138216. −0.0118509
\(672\) −7.78080e6 −0.664662
\(673\) 1.91371e7 1.62869 0.814343 0.580383i \(-0.197097\pi\)
0.814343 + 0.580383i \(0.197097\pi\)
\(674\) −4.42208e6 −0.374953
\(675\) 1.26831e6 0.107143
\(676\) −9.83417e6 −0.827697
\(677\) 7.29229e6 0.611494 0.305747 0.952113i \(-0.401094\pi\)
0.305747 + 0.952113i \(0.401094\pi\)
\(678\) 572070. 0.0477941
\(679\) −1.35245e7 −1.12577
\(680\) −2.06192e6 −0.171001
\(681\) −47291.7 −0.00390766
\(682\) −88597.0 −0.00729387
\(683\) 1.77201e7 1.45350 0.726748 0.686904i \(-0.241031\pi\)
0.726748 + 0.686904i \(0.241031\pi\)
\(684\) 1.20922e6 0.0988244
\(685\) 2.19337e7 1.78602
\(686\) 5.78462e6 0.469315
\(687\) 1.00890e7 0.815564
\(688\) 857723. 0.0690838
\(689\) −1.86810e7 −1.49917
\(690\) −1.98238e6 −0.158513
\(691\) −8.78404e6 −0.699841 −0.349920 0.936779i \(-0.613791\pi\)
−0.349920 + 0.936779i \(0.613791\pi\)
\(692\) 2.02762e6 0.160962
\(693\) 111415. 0.00881277
\(694\) 3.95482e6 0.311694
\(695\) −8.38326e6 −0.658341
\(696\) 1.04730e7 0.819499
\(697\) 201439. 0.0157059
\(698\) 3.59471e6 0.279271
\(699\) 2.49945e6 0.193487
\(700\) −5.56634e6 −0.429363
\(701\) 1.66519e7 1.27988 0.639938 0.768427i \(-0.278960\pi\)
0.639938 + 0.768427i \(0.278960\pi\)
\(702\) −2.06382e6 −0.158063
\(703\) −3.96493e6 −0.302585
\(704\) 125136. 0.00951592
\(705\) 1.41923e7 1.07542
\(706\) 5.69097e6 0.429709
\(707\) 1.59426e7 1.19952
\(708\) 9.60261e6 0.719956
\(709\) 435549. 0.0325403 0.0162701 0.999868i \(-0.494821\pi\)
0.0162701 + 0.999868i \(0.494821\pi\)
\(710\) 1.48210e7 1.10340
\(711\) 5.36908e6 0.398314
\(712\) 1.99084e7 1.47176
\(713\) −2.98547e6 −0.219932
\(714\) −709011. −0.0520484
\(715\) −600022. −0.0438937
\(716\) 7.35670e6 0.536291
\(717\) 1.33465e7 0.969547
\(718\) −2.66237e6 −0.192734
\(719\) 5.22384e6 0.376849 0.188425 0.982088i \(-0.439662\pi\)
0.188425 + 0.982088i \(0.439662\pi\)
\(720\) −997747. −0.0717281
\(721\) 7.06689e6 0.506279
\(722\) 6.34252e6 0.452813
\(723\) 1.23712e7 0.880166
\(724\) 5.44289e6 0.385908
\(725\) 1.19187e7 0.842137
\(726\) 4.54294e6 0.319886
\(727\) −1.78524e7 −1.25274 −0.626370 0.779526i \(-0.715460\pi\)
−0.626370 + 0.779526i \(0.715460\pi\)
\(728\) 2.21341e7 1.54787
\(729\) 531441. 0.0370370
\(730\) −3.32901e6 −0.231211
\(731\) 845247. 0.0585047
\(732\) 2.89342e6 0.199588
\(733\) −9.53695e6 −0.655616 −0.327808 0.944744i \(-0.606310\pi\)
−0.327808 + 0.944744i \(0.606310\pi\)
\(734\) 2.08439e6 0.142803
\(735\) −2.52837e6 −0.172632
\(736\) 6.03147e6 0.410420
\(737\) 159606. 0.0108238
\(738\) −294012. −0.0198712
\(739\) −2.20032e7 −1.48209 −0.741044 0.671457i \(-0.765669\pi\)
−0.741044 + 0.671457i \(0.765669\pi\)
\(740\) 9.10130e6 0.610976
\(741\) −5.47209e6 −0.366107
\(742\) 9.36701e6 0.624585
\(743\) −2.44524e7 −1.62498 −0.812491 0.582973i \(-0.801889\pi\)
−0.812491 + 0.582973i \(0.801889\pi\)
\(744\) 4.53230e6 0.300183
\(745\) −2.67358e7 −1.76483
\(746\) −7.14970e6 −0.470371
\(747\) −7.66175e6 −0.502373
\(748\) −36760.7 −0.00240231
\(749\) 9.84203e6 0.641033
\(750\) −2.72688e6 −0.177016
\(751\) 9.42910e6 0.610057 0.305028 0.952343i \(-0.401334\pi\)
0.305028 + 0.952343i \(0.401334\pi\)
\(752\) −3.99282e6 −0.257475
\(753\) 1.23599e7 0.794379
\(754\) −1.93944e7 −1.24236
\(755\) −2.26407e7 −1.44552
\(756\) −2.33238e6 −0.148421
\(757\) 8.37001e6 0.530867 0.265434 0.964129i \(-0.414485\pi\)
0.265434 + 0.964129i \(0.414485\pi\)
\(758\) −3.02984e6 −0.191535
\(759\) −86366.4 −0.00544177
\(760\) 7.97945e6 0.501117
\(761\) 1.59273e7 0.996969 0.498485 0.866899i \(-0.333890\pi\)
0.498485 + 0.866899i \(0.333890\pi\)
\(762\) −6.06445e6 −0.378359
\(763\) 3.29103e6 0.204654
\(764\) 1.83919e7 1.13997
\(765\) −983235. −0.0607440
\(766\) −669108. −0.0412026
\(767\) −4.34549e7 −2.66717
\(768\) −8.02909e6 −0.491206
\(769\) 2.97274e6 0.181276 0.0906381 0.995884i \(-0.471109\pi\)
0.0906381 + 0.995884i \(0.471109\pi\)
\(770\) 300863. 0.0182870
\(771\) 1.45587e6 0.0882039
\(772\) −9.43469e6 −0.569750
\(773\) −1.13218e7 −0.681500 −0.340750 0.940154i \(-0.610681\pi\)
−0.340750 + 0.940154i \(0.610681\pi\)
\(774\) −1.23369e6 −0.0740206
\(775\) 5.15792e6 0.308475
\(776\) −1.59157e7 −0.948795
\(777\) 7.64770e6 0.454442
\(778\) 1.25838e7 0.745356
\(779\) −779552. −0.0460258
\(780\) 1.25609e7 0.739239
\(781\) 645706. 0.0378797
\(782\) 549607. 0.0321392
\(783\) 4.99411e6 0.291107
\(784\) 711326. 0.0413313
\(785\) −1.36455e7 −0.790340
\(786\) −2.93236e6 −0.169301
\(787\) −1.66830e7 −0.960149 −0.480074 0.877228i \(-0.659390\pi\)
−0.480074 + 0.877228i \(0.659390\pi\)
\(788\) 1.52895e7 0.877159
\(789\) −1.14755e7 −0.656262
\(790\) 1.44985e7 0.826525
\(791\) −2.92567e6 −0.166258
\(792\) 131114. 0.00742740
\(793\) −1.30936e7 −0.739396
\(794\) −1.45310e7 −0.817985
\(795\) 1.29899e7 0.728932
\(796\) −1.87095e7 −1.04660
\(797\) 1.65718e7 0.924113 0.462056 0.886851i \(-0.347112\pi\)
0.462056 + 0.886851i \(0.347112\pi\)
\(798\) 2.74382e6 0.152527
\(799\) −3.93475e6 −0.218047
\(800\) −1.04204e7 −0.575652
\(801\) 9.49342e6 0.522807
\(802\) 1.80776e7 0.992444
\(803\) −145035. −0.00793751
\(804\) −3.34120e6 −0.182290
\(805\) 1.01382e7 0.551408
\(806\) −8.39309e6 −0.455076
\(807\) 9.32002e6 0.503771
\(808\) 1.87613e7 1.01096
\(809\) −7.20315e6 −0.386947 −0.193473 0.981106i \(-0.561975\pi\)
−0.193473 + 0.981106i \(0.561975\pi\)
\(810\) 1.43509e6 0.0768539
\(811\) −3.68576e7 −1.96777 −0.983886 0.178794i \(-0.942780\pi\)
−0.983886 + 0.178794i \(0.942780\pi\)
\(812\) −2.19181e7 −1.16657
\(813\) −1.20389e7 −0.638793
\(814\) −175928. −0.00930626
\(815\) 8.16905e6 0.430802
\(816\) 276621. 0.0145432
\(817\) −3.27104e6 −0.171447
\(818\) −1.11902e7 −0.584730
\(819\) 1.05548e7 0.549843
\(820\) 1.78942e6 0.0929348
\(821\) −4.26516e6 −0.220840 −0.110420 0.993885i \(-0.535220\pi\)
−0.110420 + 0.993885i \(0.535220\pi\)
\(822\) 8.87561e6 0.458162
\(823\) 5.98989e6 0.308261 0.154131 0.988050i \(-0.450742\pi\)
0.154131 + 0.988050i \(0.450742\pi\)
\(824\) 8.31635e6 0.426692
\(825\) 149213. 0.00763258
\(826\) 2.17891e7 1.11119
\(827\) −3.85955e6 −0.196233 −0.0981167 0.995175i \(-0.531282\pi\)
−0.0981167 + 0.995175i \(0.531282\pi\)
\(828\) 1.80800e6 0.0916480
\(829\) 119831. 0.00605594 0.00302797 0.999995i \(-0.499036\pi\)
0.00302797 + 0.999995i \(0.499036\pi\)
\(830\) −2.06896e7 −1.04245
\(831\) −9.92597e6 −0.498621
\(832\) 1.18546e7 0.593714
\(833\) 700980. 0.0350020
\(834\) −3.39234e6 −0.168882
\(835\) −4.19142e7 −2.08039
\(836\) 142261. 0.00703995
\(837\) 2.16125e6 0.106633
\(838\) 7.76801e6 0.382120
\(839\) 2.93998e7 1.44191 0.720957 0.692979i \(-0.243702\pi\)
0.720957 + 0.692979i \(0.243702\pi\)
\(840\) −1.53910e7 −0.752610
\(841\) 2.64199e7 1.28808
\(842\) −4.61675e6 −0.224417
\(843\) 633415. 0.0306987
\(844\) 5.13599e6 0.248181
\(845\) −3.09451e7 −1.49091
\(846\) 5.74299e6 0.275875
\(847\) −2.32334e7 −1.11277
\(848\) −3.65455e6 −0.174520
\(849\) 2.30747e7 1.09867
\(850\) −949541. −0.0450782
\(851\) −5.92830e6 −0.280612
\(852\) −1.35173e7 −0.637954
\(853\) −4.07050e7 −1.91547 −0.957735 0.287653i \(-0.907125\pi\)
−0.957735 + 0.287653i \(0.907125\pi\)
\(854\) 6.56541e6 0.308047
\(855\) 3.80504e6 0.178010
\(856\) 1.15822e7 0.540263
\(857\) −2.00135e7 −0.930833 −0.465416 0.885092i \(-0.654095\pi\)
−0.465416 + 0.885092i \(0.654095\pi\)
\(858\) −242803. −0.0112599
\(859\) 5.86249e6 0.271081 0.135541 0.990772i \(-0.456723\pi\)
0.135541 + 0.990772i \(0.456723\pi\)
\(860\) 7.50851e6 0.346184
\(861\) 1.50363e6 0.0691246
\(862\) 1.52633e7 0.699651
\(863\) 7.97755e6 0.364622 0.182311 0.983241i \(-0.441642\pi\)
0.182311 + 0.983241i \(0.441642\pi\)
\(864\) −4.36631e6 −0.198990
\(865\) 6.38032e6 0.289936
\(866\) −2.32905e7 −1.05532
\(867\) −1.25061e7 −0.565034
\(868\) −9.48525e6 −0.427316
\(869\) 631657. 0.0283747
\(870\) 1.34859e7 0.604064
\(871\) 1.51200e7 0.675314
\(872\) 3.87290e6 0.172482
\(873\) −7.58949e6 −0.337037
\(874\) −2.12694e6 −0.0941837
\(875\) 1.39457e7 0.615774
\(876\) 3.03618e6 0.133680
\(877\) −1.15892e7 −0.508810 −0.254405 0.967098i \(-0.581880\pi\)
−0.254405 + 0.967098i \(0.581880\pi\)
\(878\) −3.46427e6 −0.151661
\(879\) 1.46224e7 0.638330
\(880\) −117382. −0.00510969
\(881\) 6.39499e6 0.277588 0.138794 0.990321i \(-0.455677\pi\)
0.138794 + 0.990321i \(0.455677\pi\)
\(882\) −1.02312e6 −0.0442849
\(883\) 1.76219e7 0.760590 0.380295 0.924865i \(-0.375822\pi\)
0.380295 + 0.924865i \(0.375822\pi\)
\(884\) −3.48246e6 −0.149884
\(885\) 3.02165e7 1.29684
\(886\) 1.33190e7 0.570018
\(887\) −1.58521e6 −0.0676515 −0.0338258 0.999428i \(-0.510769\pi\)
−0.0338258 + 0.999428i \(0.510769\pi\)
\(888\) 8.99985e6 0.383004
\(889\) 3.10146e7 1.31617
\(890\) 2.56358e7 1.08485
\(891\) 62522.4 0.00263841
\(892\) 1.10227e6 0.0463847
\(893\) 1.52272e7 0.638984
\(894\) −1.08188e7 −0.452727
\(895\) 2.31493e7 0.966006
\(896\) 2.17209e7 0.903875
\(897\) −8.18178e6 −0.339521
\(898\) −7.80417e6 −0.322950
\(899\) 2.03099e7 0.838123
\(900\) −3.12363e6 −0.128545
\(901\) −3.60139e6 −0.147795
\(902\) −34589.6 −0.00141556
\(903\) 6.30929e6 0.257491
\(904\) −3.44294e6 −0.140123
\(905\) 1.71271e7 0.695125
\(906\) −9.16172e6 −0.370814
\(907\) 2.66378e7 1.07518 0.537589 0.843207i \(-0.319335\pi\)
0.537589 + 0.843207i \(0.319335\pi\)
\(908\) 116472. 0.00468819
\(909\) 8.94640e6 0.359119
\(910\) 2.85018e7 1.14095
\(911\) 3.92288e7 1.56606 0.783032 0.621981i \(-0.213672\pi\)
0.783032 + 0.621981i \(0.213672\pi\)
\(912\) −1.07050e6 −0.0426187
\(913\) −901382. −0.0357875
\(914\) −2.09960e7 −0.831326
\(915\) 9.10470e6 0.359512
\(916\) −2.48476e7 −0.978466
\(917\) 1.49966e7 0.588937
\(918\) −397872. −0.0155825
\(919\) 3.90436e7 1.52497 0.762484 0.647007i \(-0.223979\pi\)
0.762484 + 0.647007i \(0.223979\pi\)
\(920\) 1.19307e7 0.464727
\(921\) 2.94171e6 0.114275
\(922\) 1.18289e7 0.458267
\(923\) 6.11699e7 2.36338
\(924\) −274398. −0.0105731
\(925\) 1.02422e7 0.393584
\(926\) 3.66543e6 0.140474
\(927\) 3.96569e6 0.151572
\(928\) −4.10315e7 −1.56404
\(929\) −2.13297e7 −0.810858 −0.405429 0.914127i \(-0.632878\pi\)
−0.405429 + 0.914127i \(0.632878\pi\)
\(930\) 5.83617e6 0.221269
\(931\) −2.71274e6 −0.102573
\(932\) −6.15573e6 −0.232134
\(933\) 6.67954e6 0.251213
\(934\) −889378. −0.0333595
\(935\) −115675. −0.00432722
\(936\) 1.24209e7 0.463408
\(937\) −3.37564e7 −1.25605 −0.628025 0.778193i \(-0.716137\pi\)
−0.628025 + 0.778193i \(0.716137\pi\)
\(938\) −7.58146e6 −0.281349
\(939\) −2.75853e7 −1.02097
\(940\) −3.49532e7 −1.29023
\(941\) 3.35271e6 0.123430 0.0617151 0.998094i \(-0.480343\pi\)
0.0617151 + 0.998094i \(0.480343\pi\)
\(942\) −5.52172e6 −0.202744
\(943\) −1.16557e6 −0.0426835
\(944\) −8.50105e6 −0.310486
\(945\) −7.33929e6 −0.267347
\(946\) −145140. −0.00527300
\(947\) −1.36141e7 −0.493302 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(948\) −1.32232e7 −0.477875
\(949\) −1.37397e7 −0.495234
\(950\) 3.67465e6 0.132101
\(951\) 3.45857e6 0.124007
\(952\) 4.26711e6 0.152595
\(953\) 2.09892e6 0.0748623 0.0374312 0.999299i \(-0.488083\pi\)
0.0374312 + 0.999299i \(0.488083\pi\)
\(954\) 5.25644e6 0.186991
\(955\) 5.78738e7 2.05340
\(956\) −3.28701e7 −1.16321
\(957\) 587542. 0.0207376
\(958\) −1.20135e7 −0.422918
\(959\) −4.53914e7 −1.59378
\(960\) −8.24311e6 −0.288678
\(961\) −1.98399e7 −0.692995
\(962\) −1.66663e7 −0.580633
\(963\) 5.52300e6 0.191915
\(964\) −3.04681e7 −1.05597
\(965\) −2.96881e7 −1.02628
\(966\) 4.10251e6 0.141451
\(967\) 6.82598e6 0.234746 0.117373 0.993088i \(-0.462553\pi\)
0.117373 + 0.993088i \(0.462553\pi\)
\(968\) −2.73412e7 −0.937841
\(969\) −1.05493e6 −0.0360923
\(970\) −2.04944e7 −0.699370
\(971\) 1.19216e7 0.405776 0.202888 0.979202i \(-0.434967\pi\)
0.202888 + 0.979202i \(0.434967\pi\)
\(972\) −1.30885e6 −0.0444349
\(973\) 1.73490e7 0.587480
\(974\) 7.92306e6 0.267606
\(975\) 1.41354e7 0.476209
\(976\) −2.56150e6 −0.0860736
\(977\) 2.42970e7 0.814359 0.407180 0.913348i \(-0.366512\pi\)
0.407180 + 0.913348i \(0.366512\pi\)
\(978\) 3.30566e6 0.110512
\(979\) 1.11687e6 0.0372432
\(980\) 6.22695e6 0.207114
\(981\) 1.84681e6 0.0612703
\(982\) 387076. 0.0128091
\(983\) −382326. −0.0126197 −0.00630987 0.999980i \(-0.502009\pi\)
−0.00630987 + 0.999980i \(0.502009\pi\)
\(984\) 1.76948e6 0.0582582
\(985\) 4.81115e7 1.58000
\(986\) −3.73892e6 −0.122477
\(987\) −2.93707e7 −0.959668
\(988\) 1.34768e7 0.439234
\(989\) −4.89080e6 −0.158997
\(990\) 168834. 0.00547484
\(991\) −1.01407e6 −0.0328008 −0.0164004 0.999866i \(-0.505221\pi\)
−0.0164004 + 0.999866i \(0.505221\pi\)
\(992\) −1.77568e7 −0.572908
\(993\) 2.07101e7 0.666514
\(994\) −3.06718e7 −0.984631
\(995\) −5.88730e7 −1.88520
\(996\) 1.88696e7 0.602718
\(997\) 2.16742e7 0.690566 0.345283 0.938499i \(-0.387783\pi\)
0.345283 + 0.938499i \(0.387783\pi\)
\(998\) −1.85588e7 −0.589825
\(999\) 4.29162e6 0.136053
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.6.a.d.1.19 51
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.6.a.d.1.19 51 1.1 even 1 trivial