Properties

Label 669.6.a.d.1.13
Level $669$
Weight $6$
Character 669.1
Self dual yes
Analytic conductor $107.297$
Analytic rank $0$
Dimension $51$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,6,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.296775455\)
Analytic rank: \(0\)
Dimension: \(51\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.68652 q^{2} +9.00000 q^{3} +12.7095 q^{4} -80.2857 q^{5} -60.1787 q^{6} -121.262 q^{7} +128.986 q^{8} +81.0000 q^{9} +536.832 q^{10} +450.028 q^{11} +114.386 q^{12} -784.551 q^{13} +810.818 q^{14} -722.572 q^{15} -1269.17 q^{16} +1613.01 q^{17} -541.608 q^{18} +2806.67 q^{19} -1020.39 q^{20} -1091.36 q^{21} -3009.12 q^{22} -3249.08 q^{23} +1160.88 q^{24} +3320.80 q^{25} +5245.91 q^{26} +729.000 q^{27} -1541.18 q^{28} -3966.14 q^{29} +4831.49 q^{30} -1046.29 q^{31} +4358.79 q^{32} +4050.25 q^{33} -10785.4 q^{34} +9735.58 q^{35} +1029.47 q^{36} -14717.4 q^{37} -18766.9 q^{38} -7060.96 q^{39} -10355.8 q^{40} +8520.30 q^{41} +7297.36 q^{42} -10128.7 q^{43} +5719.64 q^{44} -6503.15 q^{45} +21725.0 q^{46} -28238.9 q^{47} -11422.6 q^{48} -2102.60 q^{49} -22204.6 q^{50} +14517.1 q^{51} -9971.25 q^{52} -15332.0 q^{53} -4874.47 q^{54} -36130.8 q^{55} -15641.1 q^{56} +25260.0 q^{57} +26519.6 q^{58} -3042.30 q^{59} -9183.53 q^{60} +15619.3 q^{61} +6996.06 q^{62} -9822.20 q^{63} +11468.4 q^{64} +62988.2 q^{65} -27082.1 q^{66} +31949.0 q^{67} +20500.6 q^{68} -29241.7 q^{69} -65097.2 q^{70} +36132.8 q^{71} +10447.9 q^{72} -85110.6 q^{73} +98408.5 q^{74} +29887.2 q^{75} +35671.4 q^{76} -54571.2 q^{77} +47213.2 q^{78} +94544.5 q^{79} +101896. q^{80} +6561.00 q^{81} -56971.2 q^{82} -52560.5 q^{83} -13870.6 q^{84} -129502. q^{85} +67726.0 q^{86} -35695.2 q^{87} +58047.4 q^{88} -22746.1 q^{89} +43483.4 q^{90} +95135.9 q^{91} -41294.2 q^{92} -9416.64 q^{93} +188820. q^{94} -225336. q^{95} +39229.1 q^{96} +127494. q^{97} +14059.1 q^{98} +36452.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 51 q + 18 q^{2} + 459 q^{3} + 940 q^{4} + 97 q^{5} + 162 q^{6} + 794 q^{7} + 411 q^{8} + 4131 q^{9} + 1256 q^{10} + 2349 q^{11} + 8460 q^{12} + 2954 q^{13} + 1816 q^{14} + 873 q^{15} + 18580 q^{16} + 1567 q^{17}+ \cdots + 190269 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.68652 −1.18202 −0.591010 0.806664i \(-0.701271\pi\)
−0.591010 + 0.806664i \(0.701271\pi\)
\(3\) 9.00000 0.577350
\(4\) 12.7095 0.397172
\(5\) −80.2857 −1.43620 −0.718098 0.695943i \(-0.754987\pi\)
−0.718098 + 0.695943i \(0.754987\pi\)
\(6\) −60.1787 −0.682440
\(7\) −121.262 −0.935359 −0.467680 0.883898i \(-0.654910\pi\)
−0.467680 + 0.883898i \(0.654910\pi\)
\(8\) 128.986 0.712555
\(9\) 81.0000 0.333333
\(10\) 536.832 1.69761
\(11\) 450.028 1.12139 0.560697 0.828021i \(-0.310533\pi\)
0.560697 + 0.828021i \(0.310533\pi\)
\(12\) 114.386 0.229308
\(13\) −784.551 −1.28755 −0.643773 0.765217i \(-0.722632\pi\)
−0.643773 + 0.765217i \(0.722632\pi\)
\(14\) 810.818 1.10561
\(15\) −722.572 −0.829188
\(16\) −1269.17 −1.23943
\(17\) 1613.01 1.35367 0.676837 0.736132i \(-0.263350\pi\)
0.676837 + 0.736132i \(0.263350\pi\)
\(18\) −541.608 −0.394007
\(19\) 2806.67 1.78364 0.891821 0.452389i \(-0.149428\pi\)
0.891821 + 0.452389i \(0.149428\pi\)
\(20\) −1020.39 −0.570417
\(21\) −1091.36 −0.540030
\(22\) −3009.12 −1.32551
\(23\) −3249.08 −1.28068 −0.640340 0.768091i \(-0.721207\pi\)
−0.640340 + 0.768091i \(0.721207\pi\)
\(24\) 1160.88 0.411394
\(25\) 3320.80 1.06266
\(26\) 5245.91 1.52190
\(27\) 729.000 0.192450
\(28\) −1541.18 −0.371499
\(29\) −3966.14 −0.875735 −0.437867 0.899040i \(-0.644266\pi\)
−0.437867 + 0.899040i \(0.644266\pi\)
\(30\) 4831.49 0.980117
\(31\) −1046.29 −0.195546 −0.0977730 0.995209i \(-0.531172\pi\)
−0.0977730 + 0.995209i \(0.531172\pi\)
\(32\) 4358.79 0.752473
\(33\) 4050.25 0.647437
\(34\) −10785.4 −1.60007
\(35\) 9735.58 1.34336
\(36\) 1029.47 0.132391
\(37\) −14717.4 −1.76737 −0.883687 0.468079i \(-0.844946\pi\)
−0.883687 + 0.468079i \(0.844946\pi\)
\(38\) −18766.9 −2.10830
\(39\) −7060.96 −0.743365
\(40\) −10355.8 −1.02337
\(41\) 8520.30 0.791581 0.395791 0.918341i \(-0.370471\pi\)
0.395791 + 0.918341i \(0.370471\pi\)
\(42\) 7297.36 0.638326
\(43\) −10128.7 −0.835380 −0.417690 0.908590i \(-0.637160\pi\)
−0.417690 + 0.908590i \(0.637160\pi\)
\(44\) 5719.64 0.445386
\(45\) −6503.15 −0.478732
\(46\) 21725.0 1.51379
\(47\) −28238.9 −1.86468 −0.932338 0.361589i \(-0.882234\pi\)
−0.932338 + 0.361589i \(0.882234\pi\)
\(48\) −11422.6 −0.715583
\(49\) −2102.60 −0.125103
\(50\) −22204.6 −1.25608
\(51\) 14517.1 0.781545
\(52\) −9971.25 −0.511377
\(53\) −15332.0 −0.749736 −0.374868 0.927078i \(-0.622312\pi\)
−0.374868 + 0.927078i \(0.622312\pi\)
\(54\) −4874.47 −0.227480
\(55\) −36130.8 −1.61054
\(56\) −15641.1 −0.666495
\(57\) 25260.0 1.02979
\(58\) 26519.6 1.03514
\(59\) −3042.30 −0.113782 −0.0568908 0.998380i \(-0.518119\pi\)
−0.0568908 + 0.998380i \(0.518119\pi\)
\(60\) −9183.53 −0.329330
\(61\) 15619.3 0.537448 0.268724 0.963217i \(-0.413398\pi\)
0.268724 + 0.963217i \(0.413398\pi\)
\(62\) 6996.06 0.231139
\(63\) −9822.20 −0.311786
\(64\) 11468.4 0.349988
\(65\) 62988.2 1.84917
\(66\) −27082.1 −0.765283
\(67\) 31949.0 0.869501 0.434750 0.900551i \(-0.356837\pi\)
0.434750 + 0.900551i \(0.356837\pi\)
\(68\) 20500.6 0.537642
\(69\) −29241.7 −0.739401
\(70\) −65097.2 −1.58788
\(71\) 36132.8 0.850659 0.425330 0.905039i \(-0.360158\pi\)
0.425330 + 0.905039i \(0.360158\pi\)
\(72\) 10447.9 0.237518
\(73\) −85110.6 −1.86929 −0.934645 0.355582i \(-0.884283\pi\)
−0.934645 + 0.355582i \(0.884283\pi\)
\(74\) 98408.5 2.08907
\(75\) 29887.2 0.613525
\(76\) 35671.4 0.708413
\(77\) −54571.2 −1.04891
\(78\) 47213.2 0.878672
\(79\) 94544.5 1.70439 0.852194 0.523226i \(-0.175272\pi\)
0.852194 + 0.523226i \(0.175272\pi\)
\(80\) 101896. 1.78006
\(81\) 6561.00 0.111111
\(82\) −56971.2 −0.935665
\(83\) −52560.5 −0.837461 −0.418730 0.908111i \(-0.637525\pi\)
−0.418730 + 0.908111i \(0.637525\pi\)
\(84\) −13870.6 −0.214485
\(85\) −129502. −1.94414
\(86\) 67726.0 0.987437
\(87\) −35695.2 −0.505606
\(88\) 58047.4 0.799054
\(89\) −22746.1 −0.304391 −0.152196 0.988350i \(-0.548634\pi\)
−0.152196 + 0.988350i \(0.548634\pi\)
\(90\) 43483.4 0.565871
\(91\) 95135.9 1.20432
\(92\) −41294.2 −0.508651
\(93\) −9416.64 −0.112899
\(94\) 188820. 2.20408
\(95\) −225336. −2.56166
\(96\) 39229.1 0.434440
\(97\) 127494. 1.37582 0.687908 0.725798i \(-0.258529\pi\)
0.687908 + 0.725798i \(0.258529\pi\)
\(98\) 14059.1 0.147874
\(99\) 36452.3 0.373798
\(100\) 42205.8 0.422058
\(101\) 2971.48 0.0289848 0.0144924 0.999895i \(-0.495387\pi\)
0.0144924 + 0.999895i \(0.495387\pi\)
\(102\) −97068.7 −0.923802
\(103\) 49608.3 0.460745 0.230373 0.973102i \(-0.426005\pi\)
0.230373 + 0.973102i \(0.426005\pi\)
\(104\) −101196. −0.917447
\(105\) 87620.3 0.775588
\(106\) 102517. 0.886203
\(107\) 47209.4 0.398629 0.199315 0.979936i \(-0.436128\pi\)
0.199315 + 0.979936i \(0.436128\pi\)
\(108\) 9265.23 0.0764358
\(109\) 126133. 1.01686 0.508430 0.861103i \(-0.330226\pi\)
0.508430 + 0.861103i \(0.330226\pi\)
\(110\) 241590. 1.90369
\(111\) −132457. −1.02039
\(112\) 153902. 1.15931
\(113\) −160538. −1.18272 −0.591360 0.806408i \(-0.701409\pi\)
−0.591360 + 0.806408i \(0.701409\pi\)
\(114\) −168902. −1.21723
\(115\) 260855. 1.83931
\(116\) −50407.6 −0.347818
\(117\) −63548.6 −0.429182
\(118\) 20342.4 0.134492
\(119\) −195596. −1.26617
\(120\) −93201.8 −0.590842
\(121\) 41474.4 0.257523
\(122\) −104439. −0.635275
\(123\) 76682.7 0.457020
\(124\) −13297.9 −0.0776655
\(125\) −15720.0 −0.0899864
\(126\) 65676.3 0.368538
\(127\) −25751.3 −0.141674 −0.0708369 0.997488i \(-0.522567\pi\)
−0.0708369 + 0.997488i \(0.522567\pi\)
\(128\) −216165. −1.16617
\(129\) −91158.7 −0.482307
\(130\) −421172. −2.18575
\(131\) −194300. −0.989222 −0.494611 0.869115i \(-0.664689\pi\)
−0.494611 + 0.869115i \(0.664689\pi\)
\(132\) 51476.7 0.257144
\(133\) −340342. −1.66835
\(134\) −213627. −1.02777
\(135\) −58528.3 −0.276396
\(136\) 208056. 0.964567
\(137\) −237560. −1.08137 −0.540683 0.841226i \(-0.681834\pi\)
−0.540683 + 0.841226i \(0.681834\pi\)
\(138\) 195525. 0.873987
\(139\) −374846. −1.64557 −0.822784 0.568354i \(-0.807580\pi\)
−0.822784 + 0.568354i \(0.807580\pi\)
\(140\) 123735. 0.533545
\(141\) −254150. −1.07657
\(142\) −241603. −1.00550
\(143\) −353070. −1.44384
\(144\) −102803. −0.413142
\(145\) 318424. 1.25773
\(146\) 569094. 2.20954
\(147\) −18923.4 −0.0722282
\(148\) −187052. −0.701952
\(149\) −192839. −0.711588 −0.355794 0.934564i \(-0.615790\pi\)
−0.355794 + 0.934564i \(0.615790\pi\)
\(150\) −199841. −0.725199
\(151\) 267986. 0.956467 0.478233 0.878233i \(-0.341277\pi\)
0.478233 + 0.878233i \(0.341277\pi\)
\(152\) 362022. 1.27094
\(153\) 130654. 0.451225
\(154\) 364891. 1.23983
\(155\) 84002.4 0.280842
\(156\) −89741.3 −0.295244
\(157\) 383958. 1.24318 0.621591 0.783342i \(-0.286487\pi\)
0.621591 + 0.783342i \(0.286487\pi\)
\(158\) −632173. −2.01462
\(159\) −137988. −0.432860
\(160\) −349948. −1.08070
\(161\) 393989. 1.19790
\(162\) −43870.2 −0.131336
\(163\) −144259. −0.425279 −0.212639 0.977131i \(-0.568206\pi\)
−0.212639 + 0.977131i \(0.568206\pi\)
\(164\) 108289. 0.314394
\(165\) −325178. −0.929845
\(166\) 351447. 0.989896
\(167\) −483341. −1.34110 −0.670552 0.741863i \(-0.733943\pi\)
−0.670552 + 0.741863i \(0.733943\pi\)
\(168\) −140770. −0.384801
\(169\) 244227. 0.657773
\(170\) 865915. 2.29801
\(171\) 227340. 0.594547
\(172\) −128731. −0.331790
\(173\) 635228. 1.61367 0.806834 0.590778i \(-0.201179\pi\)
0.806834 + 0.590778i \(0.201179\pi\)
\(174\) 238677. 0.597636
\(175\) −402686. −0.993965
\(176\) −571163. −1.38988
\(177\) −27380.7 −0.0656918
\(178\) 152092. 0.359797
\(179\) 199421. 0.465198 0.232599 0.972573i \(-0.425277\pi\)
0.232599 + 0.972573i \(0.425277\pi\)
\(180\) −82651.8 −0.190139
\(181\) −159176. −0.361145 −0.180573 0.983562i \(-0.557795\pi\)
−0.180573 + 0.983562i \(0.557795\pi\)
\(182\) −636128. −1.42353
\(183\) 140574. 0.310296
\(184\) −419086. −0.912555
\(185\) 1.18160e6 2.53829
\(186\) 62964.5 0.133448
\(187\) 725899. 1.51800
\(188\) −358903. −0.740597
\(189\) −88399.8 −0.180010
\(190\) 1.50671e6 3.02793
\(191\) 782991. 1.55301 0.776503 0.630113i \(-0.216991\pi\)
0.776503 + 0.630113i \(0.216991\pi\)
\(192\) 103216. 0.202066
\(193\) 578398. 1.11772 0.558861 0.829261i \(-0.311239\pi\)
0.558861 + 0.829261i \(0.311239\pi\)
\(194\) −852491. −1.62624
\(195\) 566894. 1.06762
\(196\) −26723.1 −0.0496874
\(197\) 177170. 0.325256 0.162628 0.986687i \(-0.448003\pi\)
0.162628 + 0.986687i \(0.448003\pi\)
\(198\) −243739. −0.441837
\(199\) 364773. 0.652965 0.326482 0.945203i \(-0.394137\pi\)
0.326482 + 0.945203i \(0.394137\pi\)
\(200\) 428337. 0.757201
\(201\) 287541. 0.502007
\(202\) −19868.9 −0.0342606
\(203\) 480940. 0.819127
\(204\) 184505. 0.310408
\(205\) −684059. −1.13686
\(206\) −331707. −0.544610
\(207\) −263175. −0.426893
\(208\) 995730. 1.59582
\(209\) 1.26308e6 2.00016
\(210\) −585874. −0.916761
\(211\) −76016.9 −0.117545 −0.0587725 0.998271i \(-0.518719\pi\)
−0.0587725 + 0.998271i \(0.518719\pi\)
\(212\) −194862. −0.297774
\(213\) 325195. 0.491128
\(214\) −315666. −0.471188
\(215\) 813193. 1.19977
\(216\) 94030.9 0.137131
\(217\) 126875. 0.182906
\(218\) −843388. −1.20195
\(219\) −765996. −1.07924
\(220\) −459205. −0.639662
\(221\) −1.26549e6 −1.74292
\(222\) 885676. 1.20613
\(223\) −49729.0 −0.0669650
\(224\) −528554. −0.703832
\(225\) 268985. 0.354219
\(226\) 1.07344e6 1.39800
\(227\) −1.01422e6 −1.30638 −0.653188 0.757196i \(-0.726569\pi\)
−0.653188 + 0.757196i \(0.726569\pi\)
\(228\) 321043. 0.409002
\(229\) 1.14663e6 1.44488 0.722442 0.691431i \(-0.243019\pi\)
0.722442 + 0.691431i \(0.243019\pi\)
\(230\) −1.74421e6 −2.17410
\(231\) −491141. −0.605586
\(232\) −511577. −0.624009
\(233\) 508415. 0.613520 0.306760 0.951787i \(-0.400755\pi\)
0.306760 + 0.951787i \(0.400755\pi\)
\(234\) 424919. 0.507302
\(235\) 2.26718e6 2.67804
\(236\) −38666.2 −0.0451909
\(237\) 850901. 0.984029
\(238\) 1.30786e6 1.49664
\(239\) 743599. 0.842062 0.421031 0.907046i \(-0.361668\pi\)
0.421031 + 0.907046i \(0.361668\pi\)
\(240\) 917068. 1.02772
\(241\) −544832. −0.604255 −0.302127 0.953268i \(-0.597697\pi\)
−0.302127 + 0.953268i \(0.597697\pi\)
\(242\) −277319. −0.304398
\(243\) 59049.0 0.0641500
\(244\) 198513. 0.213459
\(245\) 168809. 0.179672
\(246\) −512740. −0.540207
\(247\) −2.20198e6 −2.29652
\(248\) −134957. −0.139337
\(249\) −473045. −0.483508
\(250\) 105112. 0.106366
\(251\) 1.49465e6 1.49746 0.748729 0.662876i \(-0.230664\pi\)
0.748729 + 0.662876i \(0.230664\pi\)
\(252\) −124835. −0.123833
\(253\) −1.46218e6 −1.43615
\(254\) 172186. 0.167461
\(255\) −1.16551e6 −1.12245
\(256\) 1.07840e6 1.02844
\(257\) −262600. −0.248006 −0.124003 0.992282i \(-0.539573\pi\)
−0.124003 + 0.992282i \(0.539573\pi\)
\(258\) 609534. 0.570097
\(259\) 1.78466e6 1.65313
\(260\) 800550. 0.734438
\(261\) −321257. −0.291912
\(262\) 1.29919e6 1.16928
\(263\) 64630.3 0.0576165 0.0288083 0.999585i \(-0.490829\pi\)
0.0288083 + 0.999585i \(0.490829\pi\)
\(264\) 522427. 0.461334
\(265\) 1.23094e6 1.07677
\(266\) 2.27570e6 1.97202
\(267\) −204715. −0.175740
\(268\) 406056. 0.345342
\(269\) 1.48657e6 1.25258 0.626290 0.779590i \(-0.284572\pi\)
0.626290 + 0.779590i \(0.284572\pi\)
\(270\) 391351. 0.326706
\(271\) 779512. 0.644762 0.322381 0.946610i \(-0.395517\pi\)
0.322381 + 0.946610i \(0.395517\pi\)
\(272\) −2.04719e6 −1.67778
\(273\) 856223. 0.695313
\(274\) 1.58845e6 1.27820
\(275\) 1.49445e6 1.19166
\(276\) −371648. −0.293670
\(277\) 664160. 0.520084 0.260042 0.965597i \(-0.416264\pi\)
0.260042 + 0.965597i \(0.416264\pi\)
\(278\) 2.50641e6 1.94509
\(279\) −84749.7 −0.0651820
\(280\) 1.25576e6 0.957216
\(281\) −2.03513e6 −1.53754 −0.768771 0.639525i \(-0.779131\pi\)
−0.768771 + 0.639525i \(0.779131\pi\)
\(282\) 1.69938e6 1.27253
\(283\) 630045. 0.467633 0.233817 0.972281i \(-0.424878\pi\)
0.233817 + 0.972281i \(0.424878\pi\)
\(284\) 459230. 0.337858
\(285\) −2.02802e6 −1.47897
\(286\) 2.36081e6 1.70665
\(287\) −1.03319e6 −0.740413
\(288\) 353062. 0.250824
\(289\) 1.18194e6 0.832436
\(290\) −2.12915e6 −1.48666
\(291\) 1.14745e6 0.794328
\(292\) −1.08171e6 −0.742430
\(293\) −871514. −0.593069 −0.296535 0.955022i \(-0.595831\pi\)
−0.296535 + 0.955022i \(0.595831\pi\)
\(294\) 126532. 0.0853752
\(295\) 244253. 0.163413
\(296\) −1.89835e6 −1.25935
\(297\) 328071. 0.215812
\(298\) 1.28942e6 0.841112
\(299\) 2.54907e6 1.64893
\(300\) 379852. 0.243675
\(301\) 1.22823e6 0.781381
\(302\) −1.79189e6 −1.13056
\(303\) 26743.4 0.0167344
\(304\) −3.56215e6 −2.21069
\(305\) −1.25401e6 −0.771880
\(306\) −873618. −0.533357
\(307\) −2.85886e6 −1.73120 −0.865600 0.500737i \(-0.833062\pi\)
−0.865600 + 0.500737i \(0.833062\pi\)
\(308\) −693573. −0.416596
\(309\) 446474. 0.266011
\(310\) −561683. −0.331961
\(311\) −1.98143e6 −1.16165 −0.580827 0.814027i \(-0.697271\pi\)
−0.580827 + 0.814027i \(0.697271\pi\)
\(312\) −910766. −0.529688
\(313\) −1.79865e6 −1.03774 −0.518868 0.854854i \(-0.673646\pi\)
−0.518868 + 0.854854i \(0.673646\pi\)
\(314\) −2.56734e6 −1.46947
\(315\) 788582. 0.447786
\(316\) 1.20161e6 0.676936
\(317\) −905450. −0.506077 −0.253038 0.967456i \(-0.581430\pi\)
−0.253038 + 0.967456i \(0.581430\pi\)
\(318\) 922657. 0.511650
\(319\) −1.78487e6 −0.982043
\(320\) −920751. −0.502652
\(321\) 424885. 0.230149
\(322\) −2.63441e6 −1.41594
\(323\) 4.52719e6 2.41447
\(324\) 83387.1 0.0441303
\(325\) −2.60534e6 −1.36822
\(326\) 964589. 0.502688
\(327\) 1.13519e6 0.587084
\(328\) 1.09900e6 0.564045
\(329\) 3.42430e6 1.74414
\(330\) 2.17431e6 1.09910
\(331\) 2.93067e6 1.47027 0.735134 0.677922i \(-0.237119\pi\)
0.735134 + 0.677922i \(0.237119\pi\)
\(332\) −668019. −0.332616
\(333\) −1.19211e6 −0.589124
\(334\) 3.23187e6 1.58521
\(335\) −2.56505e6 −1.24877
\(336\) 1.38512e6 0.669327
\(337\) 1.46579e6 0.703069 0.351535 0.936175i \(-0.385660\pi\)
0.351535 + 0.936175i \(0.385660\pi\)
\(338\) −1.63303e6 −0.777501
\(339\) −1.44484e6 −0.682843
\(340\) −1.64590e6 −0.772159
\(341\) −470861. −0.219284
\(342\) −1.52012e6 −0.702767
\(343\) 2.29301e6 1.05238
\(344\) −1.30647e6 −0.595254
\(345\) 2.34769e6 1.06192
\(346\) −4.24746e6 −1.90739
\(347\) 293204. 0.130721 0.0653606 0.997862i \(-0.479180\pi\)
0.0653606 + 0.997862i \(0.479180\pi\)
\(348\) −453669. −0.200813
\(349\) 2.22309e6 0.976996 0.488498 0.872565i \(-0.337545\pi\)
0.488498 + 0.872565i \(0.337545\pi\)
\(350\) 2.69257e6 1.17489
\(351\) −571937. −0.247788
\(352\) 1.96158e6 0.843818
\(353\) 427242. 0.182489 0.0912446 0.995829i \(-0.470915\pi\)
0.0912446 + 0.995829i \(0.470915\pi\)
\(354\) 183082. 0.0776491
\(355\) −2.90095e6 −1.22171
\(356\) −289092. −0.120896
\(357\) −1.76037e6 −0.731025
\(358\) −1.33343e6 −0.549873
\(359\) −3.09615e6 −1.26790 −0.633951 0.773373i \(-0.718568\pi\)
−0.633951 + 0.773373i \(0.718568\pi\)
\(360\) −838816. −0.341123
\(361\) 5.40131e6 2.18138
\(362\) 1.06433e6 0.426881
\(363\) 373269. 0.148681
\(364\) 1.20913e6 0.478322
\(365\) 6.83317e6 2.68466
\(366\) −939947. −0.366776
\(367\) 525392. 0.203619 0.101809 0.994804i \(-0.467537\pi\)
0.101809 + 0.994804i \(0.467537\pi\)
\(368\) 4.12364e6 1.58731
\(369\) 690145. 0.263860
\(370\) −7.90080e6 −3.00031
\(371\) 1.85918e6 0.701272
\(372\) −119681. −0.0448402
\(373\) 338070. 0.125816 0.0629079 0.998019i \(-0.479963\pi\)
0.0629079 + 0.998019i \(0.479963\pi\)
\(374\) −4.85374e6 −1.79431
\(375\) −141480. −0.0519537
\(376\) −3.64243e6 −1.32868
\(377\) 3.11163e6 1.12755
\(378\) 591087. 0.212775
\(379\) 1.88201e6 0.673015 0.336508 0.941681i \(-0.390754\pi\)
0.336508 + 0.941681i \(0.390754\pi\)
\(380\) −2.86391e6 −1.01742
\(381\) −231762. −0.0817954
\(382\) −5.23548e6 −1.83569
\(383\) 4.40319e6 1.53381 0.766904 0.641762i \(-0.221796\pi\)
0.766904 + 0.641762i \(0.221796\pi\)
\(384\) −1.94548e6 −0.673286
\(385\) 4.38129e6 1.50643
\(386\) −3.86747e6 −1.32117
\(387\) −820428. −0.278460
\(388\) 1.62039e6 0.546436
\(389\) −340593. −0.114120 −0.0570600 0.998371i \(-0.518173\pi\)
−0.0570600 + 0.998371i \(0.518173\pi\)
\(390\) −3.79055e6 −1.26194
\(391\) −5.24079e6 −1.73362
\(392\) −271207. −0.0891426
\(393\) −1.74870e6 −0.571127
\(394\) −1.18465e6 −0.384459
\(395\) −7.59058e6 −2.44783
\(396\) 463291. 0.148462
\(397\) 3.52628e6 1.12290 0.561450 0.827511i \(-0.310244\pi\)
0.561450 + 0.827511i \(0.310244\pi\)
\(398\) −2.43906e6 −0.771818
\(399\) −3.06308e6 −0.963220
\(400\) −4.21467e6 −1.31708
\(401\) 4.48744e6 1.39360 0.696800 0.717266i \(-0.254607\pi\)
0.696800 + 0.717266i \(0.254607\pi\)
\(402\) −1.92265e6 −0.593382
\(403\) 820870. 0.251774
\(404\) 37766.1 0.0115119
\(405\) −526755. −0.159577
\(406\) −3.21582e6 −0.968224
\(407\) −6.62327e6 −1.98192
\(408\) 1.87250e6 0.556893
\(409\) −3.43818e6 −1.01629 −0.508147 0.861270i \(-0.669669\pi\)
−0.508147 + 0.861270i \(0.669669\pi\)
\(410\) 4.57397e6 1.34380
\(411\) −2.13804e6 −0.624327
\(412\) 630497. 0.182995
\(413\) 368914. 0.106427
\(414\) 1.75973e6 0.504597
\(415\) 4.21986e6 1.20276
\(416\) −3.41969e6 −0.968843
\(417\) −3.37361e6 −0.950069
\(418\) −8.44562e6 −2.36423
\(419\) 2.98158e6 0.829681 0.414841 0.909894i \(-0.363837\pi\)
0.414841 + 0.909894i \(0.363837\pi\)
\(420\) 1.11361e6 0.308042
\(421\) −963070. −0.264821 −0.132411 0.991195i \(-0.542272\pi\)
−0.132411 + 0.991195i \(0.542272\pi\)
\(422\) 508288. 0.138941
\(423\) −2.28735e6 −0.621558
\(424\) −1.97761e6 −0.534228
\(425\) 5.35648e6 1.43849
\(426\) −2.17442e6 −0.580524
\(427\) −1.89402e6 −0.502707
\(428\) 600008. 0.158324
\(429\) −3.17763e6 −0.833604
\(430\) −5.43743e6 −1.41815
\(431\) −7.15254e6 −1.85467 −0.927336 0.374229i \(-0.877908\pi\)
−0.927336 + 0.374229i \(0.877908\pi\)
\(432\) −925227. −0.238528
\(433\) −180493. −0.0462637 −0.0231318 0.999732i \(-0.507364\pi\)
−0.0231318 + 0.999732i \(0.507364\pi\)
\(434\) −848353. −0.216198
\(435\) 2.86582e6 0.726148
\(436\) 1.60308e6 0.403869
\(437\) −9.11910e6 −2.28428
\(438\) 5.12184e6 1.27568
\(439\) 2.05955e6 0.510047 0.255023 0.966935i \(-0.417917\pi\)
0.255023 + 0.966935i \(0.417917\pi\)
\(440\) −4.66038e6 −1.14760
\(441\) −170311. −0.0417010
\(442\) 8.46170e6 2.06016
\(443\) 4.25371e6 1.02981 0.514907 0.857246i \(-0.327827\pi\)
0.514907 + 0.857246i \(0.327827\pi\)
\(444\) −1.68346e6 −0.405272
\(445\) 1.82619e6 0.437165
\(446\) 332514. 0.0791539
\(447\) −1.73555e6 −0.410836
\(448\) −1.39068e6 −0.327365
\(449\) 8.12326e6 1.90158 0.950790 0.309837i \(-0.100274\pi\)
0.950790 + 0.309837i \(0.100274\pi\)
\(450\) −1.79857e6 −0.418694
\(451\) 3.83438e6 0.887674
\(452\) −2.04036e6 −0.469743
\(453\) 2.41187e6 0.552216
\(454\) 6.78161e6 1.54416
\(455\) −7.63806e6 −1.72964
\(456\) 3.25820e6 0.733779
\(457\) 6.26372e6 1.40295 0.701474 0.712695i \(-0.252525\pi\)
0.701474 + 0.712695i \(0.252525\pi\)
\(458\) −7.66694e6 −1.70788
\(459\) 1.17588e6 0.260515
\(460\) 3.31534e6 0.730522
\(461\) 3.81500e6 0.836069 0.418035 0.908431i \(-0.362719\pi\)
0.418035 + 0.908431i \(0.362719\pi\)
\(462\) 3.28402e6 0.715815
\(463\) −363787. −0.0788670 −0.0394335 0.999222i \(-0.512555\pi\)
−0.0394335 + 0.999222i \(0.512555\pi\)
\(464\) 5.03371e6 1.08541
\(465\) 756022. 0.162144
\(466\) −3.39953e6 −0.725193
\(467\) −4.80791e6 −1.02015 −0.510075 0.860130i \(-0.670382\pi\)
−0.510075 + 0.860130i \(0.670382\pi\)
\(468\) −807672. −0.170459
\(469\) −3.87419e6 −0.813296
\(470\) −1.51595e7 −3.16549
\(471\) 3.45562e6 0.717751
\(472\) −392415. −0.0810756
\(473\) −4.55822e6 −0.936790
\(474\) −5.68956e6 −1.16314
\(475\) 9.32040e6 1.89540
\(476\) −2.48593e6 −0.502889
\(477\) −1.24189e6 −0.249912
\(478\) −4.97209e6 −0.995335
\(479\) 536768. 0.106893 0.0534463 0.998571i \(-0.482979\pi\)
0.0534463 + 0.998571i \(0.482979\pi\)
\(480\) −3.14954e6 −0.623941
\(481\) 1.15466e7 2.27557
\(482\) 3.64303e6 0.714241
\(483\) 3.54590e6 0.691606
\(484\) 527119. 0.102281
\(485\) −1.02359e7 −1.97594
\(486\) −394832. −0.0758266
\(487\) 7.41794e6 1.41730 0.708648 0.705562i \(-0.249305\pi\)
0.708648 + 0.705562i \(0.249305\pi\)
\(488\) 2.01467e6 0.382961
\(489\) −1.29833e6 −0.245535
\(490\) −1.12875e6 −0.212376
\(491\) −7.95931e6 −1.48995 −0.744975 0.667093i \(-0.767538\pi\)
−0.744975 + 0.667093i \(0.767538\pi\)
\(492\) 974600. 0.181516
\(493\) −6.39741e6 −1.18546
\(494\) 1.47236e7 2.71453
\(495\) −2.92660e6 −0.536847
\(496\) 1.32793e6 0.242365
\(497\) −4.38152e6 −0.795672
\(498\) 3.16302e6 0.571517
\(499\) −3.15169e6 −0.566620 −0.283310 0.959028i \(-0.591433\pi\)
−0.283310 + 0.959028i \(0.591433\pi\)
\(500\) −199793. −0.0357401
\(501\) −4.35007e6 −0.774286
\(502\) −9.99399e6 −1.77003
\(503\) 6.47822e6 1.14166 0.570829 0.821069i \(-0.306622\pi\)
0.570829 + 0.821069i \(0.306622\pi\)
\(504\) −1.26693e6 −0.222165
\(505\) −238568. −0.0416278
\(506\) 9.77687e6 1.69755
\(507\) 2.19804e6 0.379766
\(508\) −327286. −0.0562689
\(509\) −4.09068e6 −0.699843 −0.349922 0.936779i \(-0.613792\pi\)
−0.349922 + 0.936779i \(0.613792\pi\)
\(510\) 7.79323e6 1.32676
\(511\) 1.03207e7 1.74846
\(512\) −293470. −0.0494754
\(513\) 2.04606e6 0.343262
\(514\) 1.75588e6 0.293148
\(515\) −3.98284e6 −0.661720
\(516\) −1.15858e6 −0.191559
\(517\) −1.27083e7 −2.09103
\(518\) −1.19332e7 −1.95403
\(519\) 5.71705e6 0.931651
\(520\) 8.12461e6 1.31763
\(521\) 1.18263e6 0.190878 0.0954391 0.995435i \(-0.469574\pi\)
0.0954391 + 0.995435i \(0.469574\pi\)
\(522\) 2.14809e6 0.345045
\(523\) 8.15650e6 1.30392 0.651958 0.758255i \(-0.273948\pi\)
0.651958 + 0.758255i \(0.273948\pi\)
\(524\) −2.46945e6 −0.392891
\(525\) −3.62417e6 −0.573866
\(526\) −432152. −0.0681039
\(527\) −1.68768e6 −0.264706
\(528\) −5.14047e6 −0.802450
\(529\) 4.12017e6 0.640142
\(530\) −8.23069e6 −1.27276
\(531\) −246426. −0.0379272
\(532\) −4.32558e6 −0.662621
\(533\) −6.68461e6 −1.01920
\(534\) 1.36883e6 0.207729
\(535\) −3.79024e6 −0.572509
\(536\) 4.12098e6 0.619567
\(537\) 1.79479e6 0.268582
\(538\) −9.94000e6 −1.48058
\(539\) −946231. −0.140290
\(540\) −743866. −0.109777
\(541\) 3.54874e6 0.521292 0.260646 0.965435i \(-0.416065\pi\)
0.260646 + 0.965435i \(0.416065\pi\)
\(542\) −5.21222e6 −0.762122
\(543\) −1.43259e6 −0.208507
\(544\) 7.03076e6 1.01860
\(545\) −1.01267e7 −1.46041
\(546\) −5.72515e6 −0.821874
\(547\) 3.11608e6 0.445287 0.222643 0.974900i \(-0.428531\pi\)
0.222643 + 0.974900i \(0.428531\pi\)
\(548\) −3.01928e6 −0.429489
\(549\) 1.26516e6 0.179149
\(550\) −9.99269e6 −1.40856
\(551\) −1.11316e7 −1.56200
\(552\) −3.77178e6 −0.526864
\(553\) −1.14646e7 −1.59422
\(554\) −4.44092e6 −0.614750
\(555\) 1.06344e7 1.46548
\(556\) −4.76411e6 −0.653574
\(557\) 3.90125e6 0.532802 0.266401 0.963862i \(-0.414165\pi\)
0.266401 + 0.963862i \(0.414165\pi\)
\(558\) 566680. 0.0770465
\(559\) 7.94651e6 1.07559
\(560\) −1.23561e7 −1.66499
\(561\) 6.53309e6 0.876419
\(562\) 1.36079e7 1.81740
\(563\) −8.61040e6 −1.14486 −0.572430 0.819954i \(-0.693999\pi\)
−0.572430 + 0.819954i \(0.693999\pi\)
\(564\) −3.23012e6 −0.427584
\(565\) 1.28889e7 1.69862
\(566\) −4.21281e6 −0.552752
\(567\) −795598. −0.103929
\(568\) 4.66063e6 0.606141
\(569\) −1.07489e6 −0.139182 −0.0695909 0.997576i \(-0.522169\pi\)
−0.0695909 + 0.997576i \(0.522169\pi\)
\(570\) 1.35604e7 1.74818
\(571\) −1.28247e7 −1.64610 −0.823049 0.567970i \(-0.807729\pi\)
−0.823049 + 0.567970i \(0.807729\pi\)
\(572\) −4.48735e6 −0.573455
\(573\) 7.04692e6 0.896629
\(574\) 6.90842e6 0.875183
\(575\) −1.07895e7 −1.36092
\(576\) 928942. 0.116663
\(577\) 5.18486e6 0.648332 0.324166 0.946000i \(-0.394916\pi\)
0.324166 + 0.946000i \(0.394916\pi\)
\(578\) −7.90306e6 −0.983956
\(579\) 5.20558e6 0.645317
\(580\) 4.04702e6 0.499534
\(581\) 6.37358e6 0.783327
\(582\) −7.67242e6 −0.938912
\(583\) −6.89982e6 −0.840749
\(584\) −1.09781e7 −1.33197
\(585\) 5.10205e6 0.616389
\(586\) 5.82739e6 0.701020
\(587\) 9.73801e6 1.16647 0.583237 0.812302i \(-0.301786\pi\)
0.583237 + 0.812302i \(0.301786\pi\)
\(588\) −240508. −0.0286870
\(589\) −2.93660e6 −0.348784
\(590\) −1.63320e6 −0.193157
\(591\) 1.59453e6 0.187787
\(592\) 1.86790e7 2.19053
\(593\) 1.14267e7 1.33439 0.667197 0.744881i \(-0.267494\pi\)
0.667197 + 0.744881i \(0.267494\pi\)
\(594\) −2.19365e6 −0.255094
\(595\) 1.57036e7 1.81847
\(596\) −2.45089e6 −0.282623
\(597\) 3.28296e6 0.376989
\(598\) −1.70444e7 −1.94907
\(599\) −1.23941e7 −1.41139 −0.705697 0.708514i \(-0.749366\pi\)
−0.705697 + 0.708514i \(0.749366\pi\)
\(600\) 3.85504e6 0.437170
\(601\) −1.22935e7 −1.38831 −0.694157 0.719823i \(-0.744223\pi\)
−0.694157 + 0.719823i \(0.744223\pi\)
\(602\) −8.21257e6 −0.923608
\(603\) 2.58787e6 0.289834
\(604\) 3.40597e6 0.379882
\(605\) −3.32980e6 −0.369853
\(606\) −178820. −0.0197804
\(607\) 789049. 0.0869225 0.0434613 0.999055i \(-0.486161\pi\)
0.0434613 + 0.999055i \(0.486161\pi\)
\(608\) 1.22337e7 1.34214
\(609\) 4.32846e6 0.472923
\(610\) 8.38493e6 0.912378
\(611\) 2.21548e7 2.40085
\(612\) 1.66054e6 0.179214
\(613\) −1.01565e7 −1.09167 −0.545837 0.837891i \(-0.683788\pi\)
−0.545837 + 0.837891i \(0.683788\pi\)
\(614\) 1.91158e7 2.04631
\(615\) −6.15653e6 −0.656369
\(616\) −7.03893e6 −0.747403
\(617\) −1.50137e6 −0.158772 −0.0793862 0.996844i \(-0.525296\pi\)
−0.0793862 + 0.996844i \(0.525296\pi\)
\(618\) −2.98536e6 −0.314431
\(619\) −1.28761e7 −1.35069 −0.675347 0.737500i \(-0.736006\pi\)
−0.675347 + 0.737500i \(0.736006\pi\)
\(620\) 1.06763e6 0.111543
\(621\) −2.36858e6 −0.246467
\(622\) 1.32488e7 1.37310
\(623\) 2.75823e6 0.284715
\(624\) 8.96157e6 0.921346
\(625\) −9.11541e6 −0.933418
\(626\) 1.20267e7 1.22663
\(627\) 1.13677e7 1.15480
\(628\) 4.87992e6 0.493757
\(629\) −2.37394e7 −2.39245
\(630\) −5.27287e6 −0.529292
\(631\) −1.49984e7 −1.49959 −0.749793 0.661672i \(-0.769847\pi\)
−0.749793 + 0.661672i \(0.769847\pi\)
\(632\) 1.21949e7 1.21447
\(633\) −684152. −0.0678646
\(634\) 6.05431e6 0.598193
\(635\) 2.06746e6 0.203471
\(636\) −1.75376e6 −0.171920
\(637\) 1.64960e6 0.161076
\(638\) 1.19346e7 1.16080
\(639\) 2.92676e6 0.283553
\(640\) 1.73550e7 1.67484
\(641\) 5.01419e6 0.482009 0.241005 0.970524i \(-0.422523\pi\)
0.241005 + 0.970524i \(0.422523\pi\)
\(642\) −2.84100e6 −0.272040
\(643\) −8.12806e6 −0.775282 −0.387641 0.921811i \(-0.626710\pi\)
−0.387641 + 0.921811i \(0.626710\pi\)
\(644\) 5.00741e6 0.475771
\(645\) 7.31874e6 0.692687
\(646\) −3.02711e7 −2.85395
\(647\) −1.99771e7 −1.87617 −0.938083 0.346411i \(-0.887400\pi\)
−0.938083 + 0.346411i \(0.887400\pi\)
\(648\) 846278. 0.0791727
\(649\) −1.36912e6 −0.127594
\(650\) 1.74206e7 1.61726
\(651\) 1.14188e6 0.105601
\(652\) −1.83346e6 −0.168909
\(653\) 1.33861e7 1.22849 0.614245 0.789115i \(-0.289461\pi\)
0.614245 + 0.789115i \(0.289461\pi\)
\(654\) −7.59049e6 −0.693946
\(655\) 1.55995e7 1.42072
\(656\) −1.08137e7 −0.981107
\(657\) −6.89396e6 −0.623097
\(658\) −2.28966e7 −2.06161
\(659\) −206812. −0.0185508 −0.00927539 0.999957i \(-0.502952\pi\)
−0.00927539 + 0.999957i \(0.502952\pi\)
\(660\) −4.13285e6 −0.369309
\(661\) 3.39735e6 0.302438 0.151219 0.988500i \(-0.451680\pi\)
0.151219 + 0.988500i \(0.451680\pi\)
\(662\) −1.95960e7 −1.73789
\(663\) −1.13894e7 −1.00627
\(664\) −6.77958e6 −0.596737
\(665\) 2.73246e7 2.39607
\(666\) 7.97109e6 0.696357
\(667\) 1.28863e7 1.12154
\(668\) −6.14302e6 −0.532649
\(669\) −447561. −0.0386622
\(670\) 1.71512e7 1.47608
\(671\) 7.02912e6 0.602691
\(672\) −4.75698e6 −0.406358
\(673\) 1.34509e7 1.14476 0.572379 0.819989i \(-0.306021\pi\)
0.572379 + 0.819989i \(0.306021\pi\)
\(674\) −9.80106e6 −0.831042
\(675\) 2.42086e6 0.204508
\(676\) 3.10400e6 0.261249
\(677\) 3.65208e6 0.306245 0.153122 0.988207i \(-0.451067\pi\)
0.153122 + 0.988207i \(0.451067\pi\)
\(678\) 9.66096e6 0.807135
\(679\) −1.54601e7 −1.28688
\(680\) −1.67039e7 −1.38531
\(681\) −9.12799e6 −0.754236
\(682\) 3.14842e6 0.259198
\(683\) −3.61457e6 −0.296486 −0.148243 0.988951i \(-0.547362\pi\)
−0.148243 + 0.988951i \(0.547362\pi\)
\(684\) 2.88939e6 0.236138
\(685\) 1.90727e7 1.55305
\(686\) −1.53323e7 −1.24393
\(687\) 1.03196e7 0.834205
\(688\) 1.28551e7 1.03539
\(689\) 1.20287e7 0.965319
\(690\) −1.56979e7 −1.25522
\(691\) 3.28020e6 0.261339 0.130670 0.991426i \(-0.458287\pi\)
0.130670 + 0.991426i \(0.458287\pi\)
\(692\) 8.07343e6 0.640904
\(693\) −4.42027e6 −0.349635
\(694\) −1.96051e6 −0.154515
\(695\) 3.00948e7 2.36336
\(696\) −4.60419e6 −0.360272
\(697\) 1.37433e7 1.07154
\(698\) −1.48647e7 −1.15483
\(699\) 4.57574e6 0.354216
\(700\) −5.11794e6 −0.394775
\(701\) −1.13695e7 −0.873867 −0.436934 0.899494i \(-0.643936\pi\)
−0.436934 + 0.899494i \(0.643936\pi\)
\(702\) 3.82427e6 0.292891
\(703\) −4.13071e7 −3.15236
\(704\) 5.16111e6 0.392475
\(705\) 2.04046e7 1.54617
\(706\) −2.85676e6 −0.215706
\(707\) −360327. −0.0271112
\(708\) −347995. −0.0260910
\(709\) −1.96004e6 −0.146436 −0.0732182 0.997316i \(-0.523327\pi\)
−0.0732182 + 0.997316i \(0.523327\pi\)
\(710\) 1.93972e7 1.44409
\(711\) 7.65810e6 0.568129
\(712\) −2.93393e6 −0.216895
\(713\) 3.39949e6 0.250432
\(714\) 1.17707e7 0.864087
\(715\) 2.83465e7 2.07364
\(716\) 2.53454e6 0.184764
\(717\) 6.69239e6 0.486165
\(718\) 2.07025e7 1.49869
\(719\) −1.01752e7 −0.734041 −0.367021 0.930213i \(-0.619622\pi\)
−0.367021 + 0.930213i \(0.619622\pi\)
\(720\) 8.25361e6 0.593353
\(721\) −6.01558e6 −0.430963
\(722\) −3.61159e7 −2.57843
\(723\) −4.90349e6 −0.348867
\(724\) −2.02305e6 −0.143437
\(725\) −1.31707e7 −0.930605
\(726\) −2.49587e6 −0.175744
\(727\) 2.64867e7 1.85863 0.929313 0.369293i \(-0.120400\pi\)
0.929313 + 0.369293i \(0.120400\pi\)
\(728\) 1.22712e7 0.858142
\(729\) 531441. 0.0370370
\(730\) −4.56901e7 −3.17333
\(731\) −1.63377e7 −1.13083
\(732\) 1.78662e6 0.123241
\(733\) 6.11724e6 0.420529 0.210264 0.977645i \(-0.432567\pi\)
0.210264 + 0.977645i \(0.432567\pi\)
\(734\) −3.51304e6 −0.240682
\(735\) 1.51928e6 0.103734
\(736\) −1.41620e7 −0.963677
\(737\) 1.43779e7 0.975053
\(738\) −4.61466e6 −0.311888
\(739\) 2.08754e7 1.40612 0.703062 0.711128i \(-0.251816\pi\)
0.703062 + 0.711128i \(0.251816\pi\)
\(740\) 1.50176e7 1.00814
\(741\) −1.98178e7 −1.32590
\(742\) −1.24314e7 −0.828918
\(743\) 1.92753e7 1.28094 0.640471 0.767983i \(-0.278739\pi\)
0.640471 + 0.767983i \(0.278739\pi\)
\(744\) −1.21462e6 −0.0804464
\(745\) 1.54822e7 1.02198
\(746\) −2.26051e6 −0.148717
\(747\) −4.25740e6 −0.279154
\(748\) 9.22583e6 0.602908
\(749\) −5.72469e6 −0.372861
\(750\) 946007. 0.0614103
\(751\) 2.30681e6 0.149249 0.0746247 0.997212i \(-0.476224\pi\)
0.0746247 + 0.997212i \(0.476224\pi\)
\(752\) 3.58400e7 2.31113
\(753\) 1.34518e7 0.864558
\(754\) −2.08060e7 −1.33279
\(755\) −2.15155e7 −1.37367
\(756\) −1.12352e6 −0.0714950
\(757\) −614210. −0.0389562 −0.0194781 0.999810i \(-0.506200\pi\)
−0.0194781 + 0.999810i \(0.506200\pi\)
\(758\) −1.25841e7 −0.795518
\(759\) −1.31596e7 −0.829160
\(760\) −2.90652e7 −1.82532
\(761\) 2.50209e6 0.156618 0.0783090 0.996929i \(-0.475048\pi\)
0.0783090 + 0.996929i \(0.475048\pi\)
\(762\) 1.54968e6 0.0966839
\(763\) −1.52951e7 −0.951130
\(764\) 9.95143e6 0.616811
\(765\) −1.04896e7 −0.648047
\(766\) −2.94420e7 −1.81299
\(767\) 2.38684e6 0.146499
\(768\) 9.70561e6 0.593772
\(769\) −2.24026e6 −0.136610 −0.0683052 0.997664i \(-0.521759\pi\)
−0.0683052 + 0.997664i \(0.521759\pi\)
\(770\) −2.92956e7 −1.78063
\(771\) −2.36340e6 −0.143186
\(772\) 7.35116e6 0.443928
\(773\) 2.46858e7 1.48593 0.742966 0.669330i \(-0.233419\pi\)
0.742966 + 0.669330i \(0.233419\pi\)
\(774\) 5.48581e6 0.329146
\(775\) −3.47453e6 −0.207798
\(776\) 1.64450e7 0.980344
\(777\) 1.60620e7 0.954434
\(778\) 2.27738e6 0.134892
\(779\) 2.39137e7 1.41190
\(780\) 7.20495e6 0.424028
\(781\) 1.62608e7 0.953924
\(782\) 3.50427e7 2.04918
\(783\) −2.89131e6 −0.168535
\(784\) 2.66857e6 0.155056
\(785\) −3.08264e7 −1.78545
\(786\) 1.16927e7 0.675084
\(787\) −3.53044e6 −0.203185 −0.101593 0.994826i \(-0.532394\pi\)
−0.101593 + 0.994826i \(0.532394\pi\)
\(788\) 2.25175e6 0.129183
\(789\) 581673. 0.0332649
\(790\) 5.07545e7 2.89339
\(791\) 1.94671e7 1.10627
\(792\) 4.70184e6 0.266351
\(793\) −1.22541e7 −0.691989
\(794\) −2.35786e7 −1.32729
\(795\) 1.10784e7 0.621672
\(796\) 4.63608e6 0.259340
\(797\) 1.87821e7 1.04737 0.523683 0.851913i \(-0.324557\pi\)
0.523683 + 0.851913i \(0.324557\pi\)
\(798\) 2.04813e7 1.13855
\(799\) −4.55496e7 −2.52416
\(800\) 1.44747e7 0.799620
\(801\) −1.84243e6 −0.101464
\(802\) −3.00054e7 −1.64726
\(803\) −3.83022e7 −2.09621
\(804\) 3.65450e6 0.199383
\(805\) −3.16317e7 −1.72041
\(806\) −5.48876e6 −0.297602
\(807\) 1.33792e7 0.723178
\(808\) 383280. 0.0206532
\(809\) −1.94958e7 −1.04730 −0.523649 0.851934i \(-0.675430\pi\)
−0.523649 + 0.851934i \(0.675430\pi\)
\(810\) 3.52215e6 0.188624
\(811\) −2.12098e7 −1.13236 −0.566180 0.824282i \(-0.691579\pi\)
−0.566180 + 0.824282i \(0.691579\pi\)
\(812\) 6.11252e6 0.325334
\(813\) 7.01560e6 0.372253
\(814\) 4.42866e7 2.34267
\(815\) 1.15819e7 0.610783
\(816\) −1.84247e7 −0.968667
\(817\) −2.84281e7 −1.49002
\(818\) 2.29894e7 1.20128
\(819\) 7.70601e6 0.401439
\(820\) −8.69406e6 −0.451531
\(821\) 497764. 0.0257730 0.0128865 0.999917i \(-0.495898\pi\)
0.0128865 + 0.999917i \(0.495898\pi\)
\(822\) 1.42961e7 0.737967
\(823\) 824502. 0.0424319 0.0212159 0.999775i \(-0.493246\pi\)
0.0212159 + 0.999775i \(0.493246\pi\)
\(824\) 6.39878e6 0.328306
\(825\) 1.34501e7 0.688003
\(826\) −2.46675e6 −0.125799
\(827\) 3.01215e6 0.153149 0.0765743 0.997064i \(-0.475602\pi\)
0.0765743 + 0.997064i \(0.475602\pi\)
\(828\) −3.34483e6 −0.169550
\(829\) 7.21018e6 0.364384 0.182192 0.983263i \(-0.441681\pi\)
0.182192 + 0.983263i \(0.441681\pi\)
\(830\) −2.82162e7 −1.42168
\(831\) 5.97744e6 0.300271
\(832\) −8.99756e6 −0.450626
\(833\) −3.39152e6 −0.169349
\(834\) 2.25577e7 1.12300
\(835\) 3.88054e7 1.92609
\(836\) 1.60531e7 0.794410
\(837\) −762748. −0.0376329
\(838\) −1.99364e7 −0.980700
\(839\) 8.61276e6 0.422413 0.211207 0.977441i \(-0.432261\pi\)
0.211207 + 0.977441i \(0.432261\pi\)
\(840\) 1.13018e7 0.552649
\(841\) −4.78092e6 −0.233089
\(842\) 6.43959e6 0.313024
\(843\) −1.83162e7 −0.887700
\(844\) −966138. −0.0466856
\(845\) −1.96079e7 −0.944691
\(846\) 1.52944e7 0.734695
\(847\) −5.02925e6 −0.240877
\(848\) 1.94589e7 0.929242
\(849\) 5.67040e6 0.269988
\(850\) −3.58162e7 −1.70033
\(851\) 4.78182e7 2.26344
\(852\) 4.13307e6 0.195063
\(853\) 3.35348e7 1.57806 0.789029 0.614356i \(-0.210584\pi\)
0.789029 + 0.614356i \(0.210584\pi\)
\(854\) 1.26644e7 0.594210
\(855\) −1.82522e7 −0.853886
\(856\) 6.08936e6 0.284045
\(857\) 2.07569e7 0.965407 0.482703 0.875784i \(-0.339655\pi\)
0.482703 + 0.875784i \(0.339655\pi\)
\(858\) 2.12473e7 0.985337
\(859\) 1.77155e7 0.819165 0.409583 0.912273i \(-0.365674\pi\)
0.409583 + 0.912273i \(0.365674\pi\)
\(860\) 1.03353e7 0.476515
\(861\) −9.29868e6 −0.427478
\(862\) 4.78256e7 2.19226
\(863\) 3.00503e7 1.37348 0.686739 0.726904i \(-0.259042\pi\)
0.686739 + 0.726904i \(0.259042\pi\)
\(864\) 3.17756e6 0.144813
\(865\) −5.09997e7 −2.31754
\(866\) 1.20687e6 0.0546846
\(867\) 1.06375e7 0.480607
\(868\) 1.61252e6 0.0726451
\(869\) 4.25477e7 1.91129
\(870\) −1.91623e7 −0.858322
\(871\) −2.50656e7 −1.11952
\(872\) 1.62694e7 0.724568
\(873\) 1.03270e7 0.458605
\(874\) 6.09750e7 2.70006
\(875\) 1.90623e6 0.0841696
\(876\) −9.73543e6 −0.428642
\(877\) 4.27729e7 1.87789 0.938943 0.344072i \(-0.111806\pi\)
0.938943 + 0.344072i \(0.111806\pi\)
\(878\) −1.37712e7 −0.602886
\(879\) −7.84363e6 −0.342409
\(880\) 4.58563e7 1.99615
\(881\) 1.15515e7 0.501415 0.250708 0.968063i \(-0.419337\pi\)
0.250708 + 0.968063i \(0.419337\pi\)
\(882\) 1.13879e6 0.0492914
\(883\) 1.51036e6 0.0651895 0.0325948 0.999469i \(-0.489623\pi\)
0.0325948 + 0.999469i \(0.489623\pi\)
\(884\) −1.60837e7 −0.692239
\(885\) 2.19828e6 0.0943463
\(886\) −2.84425e7 −1.21726
\(887\) −4.32216e7 −1.84456 −0.922278 0.386527i \(-0.873675\pi\)
−0.922278 + 0.386527i \(0.873675\pi\)
\(888\) −1.70851e7 −0.727086
\(889\) 3.12264e6 0.132516
\(890\) −1.22108e7 −0.516738
\(891\) 2.95263e6 0.124599
\(892\) −632031. −0.0265966
\(893\) −7.92573e7 −3.32591
\(894\) 1.16048e7 0.485616
\(895\) −1.60106e7 −0.668115
\(896\) 2.62125e7 1.09078
\(897\) 2.29416e7 0.952013
\(898\) −5.43163e7 −2.24771
\(899\) 4.14974e6 0.171246
\(900\) 3.41867e6 0.140686
\(901\) −2.47306e7 −1.01490
\(902\) −2.56386e7 −1.04925
\(903\) 1.10541e7 0.451130
\(904\) −2.07072e7 −0.842752
\(905\) 1.27796e7 0.518675
\(906\) −1.61270e7 −0.652731
\(907\) −4.28946e7 −1.73135 −0.865673 0.500609i \(-0.833109\pi\)
−0.865673 + 0.500609i \(0.833109\pi\)
\(908\) −1.28903e7 −0.518856
\(909\) 240690. 0.00966159
\(910\) 5.10720e7 2.04446
\(911\) −2.42343e7 −0.967462 −0.483731 0.875217i \(-0.660719\pi\)
−0.483731 + 0.875217i \(0.660719\pi\)
\(912\) −3.20594e7 −1.27634
\(913\) −2.36537e7 −0.939123
\(914\) −4.18825e7 −1.65831
\(915\) −1.12861e7 −0.445645
\(916\) 1.45731e7 0.573868
\(917\) 2.35611e7 0.925278
\(918\) −7.86256e6 −0.307934
\(919\) 4.11713e6 0.160807 0.0804037 0.996762i \(-0.474379\pi\)
0.0804037 + 0.996762i \(0.474379\pi\)
\(920\) 3.36467e7 1.31061
\(921\) −2.57297e7 −0.999508
\(922\) −2.55091e7 −0.988251
\(923\) −2.83480e7 −1.09526
\(924\) −6.24216e6 −0.240522
\(925\) −4.88737e7 −1.87811
\(926\) 2.43247e6 0.0932224
\(927\) 4.01827e6 0.153582
\(928\) −1.72875e7 −0.658966
\(929\) 4.19272e7 1.59388 0.796942 0.604055i \(-0.206449\pi\)
0.796942 + 0.604055i \(0.206449\pi\)
\(930\) −5.05515e6 −0.191658
\(931\) −5.90132e6 −0.223139
\(932\) 6.46171e6 0.243673
\(933\) −1.78328e7 −0.670681
\(934\) 3.21482e7 1.20584
\(935\) −5.82794e7 −2.18015
\(936\) −8.19689e6 −0.305816
\(937\) 4.60244e7 1.71253 0.856267 0.516533i \(-0.172778\pi\)
0.856267 + 0.516533i \(0.172778\pi\)
\(938\) 2.59048e7 0.961332
\(939\) −1.61879e7 −0.599137
\(940\) 2.88148e7 1.06364
\(941\) −2.11098e7 −0.777158 −0.388579 0.921415i \(-0.627034\pi\)
−0.388579 + 0.921415i \(0.627034\pi\)
\(942\) −2.31061e7 −0.848397
\(943\) −2.76831e7 −1.01376
\(944\) 3.86120e6 0.141024
\(945\) 7.09724e6 0.258529
\(946\) 3.04786e7 1.10730
\(947\) 2.78097e7 1.00768 0.503838 0.863798i \(-0.331921\pi\)
0.503838 + 0.863798i \(0.331921\pi\)
\(948\) 1.08145e7 0.390829
\(949\) 6.67736e7 2.40680
\(950\) −6.23210e7 −2.24040
\(951\) −8.14905e6 −0.292184
\(952\) −2.52292e7 −0.902217
\(953\) 7.10863e6 0.253544 0.126772 0.991932i \(-0.459538\pi\)
0.126772 + 0.991932i \(0.459538\pi\)
\(954\) 8.30392e6 0.295401
\(955\) −6.28630e7 −2.23042
\(956\) 9.45078e6 0.334444
\(957\) −1.60639e7 −0.566983
\(958\) −3.58911e6 −0.126349
\(959\) 2.88070e7 1.01147
\(960\) −8.28676e6 −0.290206
\(961\) −2.75344e7 −0.961762
\(962\) −7.72064e7 −2.68977
\(963\) 3.82396e6 0.132876
\(964\) −6.92455e6 −0.239993
\(965\) −4.64371e7 −1.60527
\(966\) −2.37097e7 −0.817492
\(967\) 4.36683e7 1.50176 0.750880 0.660439i \(-0.229630\pi\)
0.750880 + 0.660439i \(0.229630\pi\)
\(968\) 5.34962e6 0.183499
\(969\) 4.07447e7 1.39400
\(970\) 6.84428e7 2.33560
\(971\) −2.82197e6 −0.0960514 −0.0480257 0.998846i \(-0.515293\pi\)
−0.0480257 + 0.998846i \(0.515293\pi\)
\(972\) 750484. 0.0254786
\(973\) 4.54544e7 1.53920
\(974\) −4.96002e7 −1.67527
\(975\) −2.34480e7 −0.789941
\(976\) −1.98236e7 −0.666127
\(977\) −3.69112e7 −1.23715 −0.618574 0.785727i \(-0.712289\pi\)
−0.618574 + 0.785727i \(0.712289\pi\)
\(978\) 8.68130e6 0.290227
\(979\) −1.02364e7 −0.341342
\(980\) 2.14548e6 0.0713608
\(981\) 1.02167e7 0.338953
\(982\) 5.32200e7 1.76115
\(983\) −4.13069e7 −1.36345 −0.681724 0.731609i \(-0.738770\pi\)
−0.681724 + 0.731609i \(0.738770\pi\)
\(984\) 9.89101e6 0.325651
\(985\) −1.42242e7 −0.467131
\(986\) 4.27764e7 1.40124
\(987\) 3.08187e7 1.00698
\(988\) −2.79860e7 −0.912114
\(989\) 3.29091e7 1.06986
\(990\) 1.95688e7 0.634564
\(991\) 1.18442e7 0.383107 0.191553 0.981482i \(-0.438647\pi\)
0.191553 + 0.981482i \(0.438647\pi\)
\(992\) −4.56057e6 −0.147143
\(993\) 2.63760e7 0.848860
\(994\) 2.92971e7 0.940501
\(995\) −2.92861e7 −0.937785
\(996\) −6.01217e6 −0.192036
\(997\) 1.66243e7 0.529670 0.264835 0.964294i \(-0.414682\pi\)
0.264835 + 0.964294i \(0.414682\pi\)
\(998\) 2.10738e7 0.669757
\(999\) −1.07290e7 −0.340131
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.6.a.d.1.13 51
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.6.a.d.1.13 51 1.1 even 1 trivial