Properties

Label 669.2.m
Level $669$
Weight $2$
Character orbit 669.m
Rep. character $\chi_{669}(19,\cdot)$
Character field $\Q(\zeta_{111})$
Dimension $2664$
Newform subspaces $2$
Sturm bound $149$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.m (of order \(111\) and degree \(72\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 223 \)
Character field: \(\Q(\zeta_{111})\)
Newform subspaces: \( 2 \)
Sturm bound: \(149\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(669, [\chi])\).

Total New Old
Modular forms 5544 2664 2880
Cusp forms 5256 2664 2592
Eisenstein series 288 0 288

Trace form

\( 2664 q + q^{3} - 72 q^{4} + 2 q^{6} + 6 q^{7} + 37 q^{9} + 2 q^{10} - 4 q^{11} + 2 q^{12} - 28 q^{13} + 16 q^{14} - 4 q^{15} - 68 q^{16} + 12 q^{17} - 2 q^{19} - 10 q^{20} - q^{21} + 2 q^{22} + 8 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(669, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
669.2.m.a 669.m 223.g $1296$ $5.342$ None 669.2.m.a \(2\) \(-18\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{111}]$
669.2.m.b 669.m 223.g $1368$ $5.342$ None 669.2.m.b \(-2\) \(19\) \(1\) \(4\) $\mathrm{SU}(2)[C_{111}]$

Decomposition of \(S_{2}^{\mathrm{old}}(669, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(669, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(223, [\chi])\)\(^{\oplus 2}\)