Defining parameters
Level: | \( N \) | \(=\) | \( 669 = 3 \cdot 223 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 669.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 223 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(149\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(669, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 154 | 74 | 80 |
Cusp forms | 146 | 74 | 72 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(669, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
669.2.e.a | $2$ | $5.342$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(0\) | \(6\) | \(q+(1-\zeta_{6})q^{3}-2q^{4}+3q^{7}-\zeta_{6}q^{9}+\cdots\) |
669.2.e.b | $4$ | $5.342$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | None | \(4\) | \(2\) | \(-3\) | \(-2\) | \(q+q^{2}+(1+\beta _{1})q^{3}-q^{4}+(2\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
669.2.e.c | $30$ | $5.342$ | None | \(-6\) | \(15\) | \(4\) | \(-6\) | ||
669.2.e.d | $38$ | $5.342$ | None | \(2\) | \(-19\) | \(-1\) | \(-4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(669, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(669, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(223, [\chi])\)\(^{\oplus 2}\)