Properties

Label 669.2.e
Level $669$
Weight $2$
Character orbit 669.e
Rep. character $\chi_{669}(262,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $74$
Newform subspaces $4$
Sturm bound $149$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 223 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(149\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(669, [\chi])\).

Total New Old
Modular forms 154 74 80
Cusp forms 146 74 72
Eisenstein series 8 0 8

Trace form

\( 74 q - q^{3} + 72 q^{4} - 2 q^{6} - 6 q^{7} - 37 q^{9} - 2 q^{10} + 4 q^{11} - 2 q^{12} + 28 q^{13} - 16 q^{14} + 4 q^{15} + 68 q^{16} - 12 q^{17} + 2 q^{19} + 10 q^{20} + q^{21} - 2 q^{22} - 8 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(669, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
669.2.e.a 669.e 223.c $2$ $5.342$ \(\Q(\sqrt{-3}) \) None 669.2.e.a \(0\) \(1\) \(0\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-2q^{4}+3q^{7}-\zeta_{6}q^{9}+\cdots\)
669.2.e.b 669.e 223.c $4$ $5.342$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 669.2.e.b \(4\) \(2\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(1+\beta _{1})q^{3}-q^{4}+(2\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
669.2.e.c 669.e 223.c $30$ $5.342$ None 669.2.e.c \(-6\) \(15\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{3}]$
669.2.e.d 669.e 223.c $38$ $5.342$ None 669.2.e.d \(2\) \(-19\) \(-1\) \(-4\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(669, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(669, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(223, [\chi])\)\(^{\oplus 2}\)