Properties

Label 6660.2.f.c.5329.14
Level $6660$
Weight $2$
Character 6660.5329
Analytic conductor $53.180$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6660,2,Mod(5329,6660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6660, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6660.5329"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6660 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6660.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.1803677462\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 26 x^{16} + 283 x^{14} + 1674 x^{12} + 5841 x^{10} + 12196 x^{8} + 14736 x^{6} + 9408 x^{4} + \cdots + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 740)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5329.14
Root \(1.45428i\) of defining polynomial
Character \(\chi\) \(=\) 6660.5329
Dual form 6660.2.f.c.5329.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07541 + 1.96049i) q^{5} -2.78997i q^{7} +4.91898 q^{11} +0.675823i q^{13} +0.868398i q^{17} -3.32168 q^{19} +0.927380i q^{23} +(-2.68701 + 4.21663i) q^{25} +3.82597 q^{29} -0.988046 q^{31} +(5.46970 - 3.00035i) q^{35} +1.00000i q^{37} +4.10171 q^{41} -6.26649i q^{43} +0.511352i q^{47} -0.783946 q^{49} +12.7869i q^{53} +(5.28990 + 9.64360i) q^{55} +6.90064 q^{59} +3.39134 q^{61} +(-1.32494 + 0.726784i) q^{65} -1.78220i q^{67} +3.84596 q^{71} -1.62628i q^{73} -13.7238i q^{77} +12.2262 q^{79} +13.1605i q^{83} +(-1.70248 + 0.933880i) q^{85} -1.89884 q^{89} +1.88553 q^{91} +(-3.57215 - 6.51210i) q^{95} +18.3123i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{5} + 4 q^{19} - 2 q^{25} + 4 q^{29} + 8 q^{31} + 2 q^{35} + 4 q^{41} + 6 q^{49} - 6 q^{55} - 8 q^{59} + 12 q^{65} + 24 q^{71} - 24 q^{79} + 36 q^{91} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6660\mathbb{Z}\right)^\times\).

\(n\) \(3331\) \(3701\) \(3961\) \(3997\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.07541 + 1.96049i 0.480936 + 0.876756i
\(6\) 0 0
\(7\) 2.78997i 1.05451i −0.849707 0.527255i \(-0.823221\pi\)
0.849707 0.527255i \(-0.176779\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.91898 1.48313 0.741565 0.670881i \(-0.234084\pi\)
0.741565 + 0.670881i \(0.234084\pi\)
\(12\) 0 0
\(13\) 0.675823i 0.187440i 0.995599 + 0.0937198i \(0.0298758\pi\)
−0.995599 + 0.0937198i \(0.970124\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.868398i 0.210618i 0.994440 + 0.105309i \(0.0335831\pi\)
−0.994440 + 0.105309i \(0.966417\pi\)
\(18\) 0 0
\(19\) −3.32168 −0.762045 −0.381022 0.924566i \(-0.624428\pi\)
−0.381022 + 0.924566i \(0.624428\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.927380i 0.193372i 0.995315 + 0.0966861i \(0.0308243\pi\)
−0.995315 + 0.0966861i \(0.969176\pi\)
\(24\) 0 0
\(25\) −2.68701 + 4.21663i −0.537401 + 0.843327i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.82597 0.710466 0.355233 0.934778i \(-0.384402\pi\)
0.355233 + 0.934778i \(0.384402\pi\)
\(30\) 0 0
\(31\) −0.988046 −0.177458 −0.0887292 0.996056i \(-0.528281\pi\)
−0.0887292 + 0.996056i \(0.528281\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.46970 3.00035i 0.924548 0.507152i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.10171 0.640580 0.320290 0.947320i \(-0.396220\pi\)
0.320290 + 0.947320i \(0.396220\pi\)
\(42\) 0 0
\(43\) 6.26649i 0.955631i −0.878460 0.477816i \(-0.841429\pi\)
0.878460 0.477816i \(-0.158571\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.511352i 0.0745883i 0.999304 + 0.0372942i \(0.0118739\pi\)
−0.999304 + 0.0372942i \(0.988126\pi\)
\(48\) 0 0
\(49\) −0.783946 −0.111992
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.7869i 1.75642i 0.478279 + 0.878208i \(0.341261\pi\)
−0.478279 + 0.878208i \(0.658739\pi\)
\(54\) 0 0
\(55\) 5.28990 + 9.64360i 0.713290 + 1.30034i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.90064 0.898386 0.449193 0.893435i \(-0.351711\pi\)
0.449193 + 0.893435i \(0.351711\pi\)
\(60\) 0 0
\(61\) 3.39134 0.434217 0.217109 0.976147i \(-0.430337\pi\)
0.217109 + 0.976147i \(0.430337\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.32494 + 0.726784i −0.164339 + 0.0901464i
\(66\) 0 0
\(67\) 1.78220i 0.217731i −0.994057 0.108865i \(-0.965278\pi\)
0.994057 0.108865i \(-0.0347217\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.84596 0.456431 0.228216 0.973611i \(-0.426711\pi\)
0.228216 + 0.973611i \(0.426711\pi\)
\(72\) 0 0
\(73\) 1.62628i 0.190341i −0.995461 0.0951706i \(-0.969660\pi\)
0.995461 0.0951706i \(-0.0303397\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.7238i 1.56398i
\(78\) 0 0
\(79\) 12.2262 1.37555 0.687775 0.725924i \(-0.258588\pi\)
0.687775 + 0.725924i \(0.258588\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.1605i 1.44455i 0.691606 + 0.722275i \(0.256904\pi\)
−0.691606 + 0.722275i \(0.743096\pi\)
\(84\) 0 0
\(85\) −1.70248 + 0.933880i −0.184660 + 0.101294i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.89884 −0.201277 −0.100638 0.994923i \(-0.532089\pi\)
−0.100638 + 0.994923i \(0.532089\pi\)
\(90\) 0 0
\(91\) 1.88553 0.197657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.57215 6.51210i −0.366495 0.668127i
\(96\) 0 0
\(97\) 18.3123i 1.85934i 0.368399 + 0.929668i \(0.379906\pi\)
−0.368399 + 0.929668i \(0.620094\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.3130 −1.02618 −0.513090 0.858335i \(-0.671499\pi\)
−0.513090 + 0.858335i \(0.671499\pi\)
\(102\) 0 0
\(103\) 1.89570i 0.186789i −0.995629 0.0933945i \(-0.970228\pi\)
0.995629 0.0933945i \(-0.0297718\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.1682i 0.982997i −0.870879 0.491498i \(-0.836449\pi\)
0.870879 0.491498i \(-0.163551\pi\)
\(108\) 0 0
\(109\) 4.60538 0.441116 0.220558 0.975374i \(-0.429212\pi\)
0.220558 + 0.975374i \(0.429212\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.4343i 0.981576i 0.871279 + 0.490788i \(0.163291\pi\)
−0.871279 + 0.490788i \(0.836709\pi\)
\(114\) 0 0
\(115\) −1.81812 + 0.997310i −0.169540 + 0.0929996i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.42281 0.222098
\(120\) 0 0
\(121\) 13.1964 1.19967
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1563 0.733247i −0.997847 0.0655836i
\(126\) 0 0
\(127\) 19.7053i 1.74856i −0.485419 0.874282i \(-0.661333\pi\)
0.485419 0.874282i \(-0.338667\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.6435 1.36678 0.683388 0.730055i \(-0.260506\pi\)
0.683388 + 0.730055i \(0.260506\pi\)
\(132\) 0 0
\(133\) 9.26738i 0.803584i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.48900i 0.554393i −0.960813 0.277197i \(-0.910595\pi\)
0.960813 0.277197i \(-0.0894053\pi\)
\(138\) 0 0
\(139\) −9.82436 −0.833291 −0.416646 0.909069i \(-0.636794\pi\)
−0.416646 + 0.909069i \(0.636794\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.32436i 0.277997i
\(144\) 0 0
\(145\) 4.11447 + 7.50077i 0.341688 + 0.622905i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.5182 −1.02553 −0.512767 0.858528i \(-0.671380\pi\)
−0.512767 + 0.858528i \(0.671380\pi\)
\(150\) 0 0
\(151\) 4.32437 0.351912 0.175956 0.984398i \(-0.443698\pi\)
0.175956 + 0.984398i \(0.443698\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.06255 1.93705i −0.0853461 0.155588i
\(156\) 0 0
\(157\) 11.1777i 0.892078i −0.895013 0.446039i \(-0.852834\pi\)
0.895013 0.446039i \(-0.147166\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.58737 0.203913
\(162\) 0 0
\(163\) 1.72565i 0.135163i −0.997714 0.0675817i \(-0.978472\pi\)
0.997714 0.0675817i \(-0.0215283\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.70763i 0.596434i −0.954498 0.298217i \(-0.903608\pi\)
0.954498 0.298217i \(-0.0963920\pi\)
\(168\) 0 0
\(169\) 12.5433 0.964866
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.0830i 0.994683i −0.867555 0.497341i \(-0.834310\pi\)
0.867555 0.497341i \(-0.165690\pi\)
\(174\) 0 0
\(175\) 11.7643 + 7.49667i 0.889297 + 0.566695i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.2412 −1.13918 −0.569591 0.821928i \(-0.692898\pi\)
−0.569591 + 0.821928i \(0.692898\pi\)
\(180\) 0 0
\(181\) 23.7209 1.76316 0.881580 0.472034i \(-0.156480\pi\)
0.881580 + 0.472034i \(0.156480\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.96049 + 1.07541i −0.144138 + 0.0790654i
\(186\) 0 0
\(187\) 4.27164i 0.312373i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.9125 −0.934313 −0.467156 0.884175i \(-0.654721\pi\)
−0.467156 + 0.884175i \(0.654721\pi\)
\(192\) 0 0
\(193\) 21.1198i 1.52023i −0.649787 0.760117i \(-0.725142\pi\)
0.649787 0.760117i \(-0.274858\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.77563i 0.625238i −0.949879 0.312619i \(-0.898794\pi\)
0.949879 0.312619i \(-0.101206\pi\)
\(198\) 0 0
\(199\) 11.7954 0.836152 0.418076 0.908412i \(-0.362704\pi\)
0.418076 + 0.908412i \(0.362704\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.6744i 0.749193i
\(204\) 0 0
\(205\) 4.41100 + 8.04135i 0.308078 + 0.561632i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −16.3393 −1.13021
\(210\) 0 0
\(211\) −6.44067 −0.443394 −0.221697 0.975116i \(-0.571160\pi\)
−0.221697 + 0.975116i \(0.571160\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.2854 6.73902i 0.837855 0.459598i
\(216\) 0 0
\(217\) 2.75662i 0.187132i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.586883 −0.0394781
\(222\) 0 0
\(223\) 14.0754i 0.942559i 0.881984 + 0.471280i \(0.156208\pi\)
−0.881984 + 0.471280i \(0.843792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.8099i 0.916593i 0.888799 + 0.458297i \(0.151540\pi\)
−0.888799 + 0.458297i \(0.848460\pi\)
\(228\) 0 0
\(229\) 3.58722 0.237050 0.118525 0.992951i \(-0.462183\pi\)
0.118525 + 0.992951i \(0.462183\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.1433i 0.795536i 0.917486 + 0.397768i \(0.130215\pi\)
−0.917486 + 0.397768i \(0.869785\pi\)
\(234\) 0 0
\(235\) −1.00250 + 0.549911i −0.0653958 + 0.0358722i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.7427 0.824258 0.412129 0.911126i \(-0.364785\pi\)
0.412129 + 0.911126i \(0.364785\pi\)
\(240\) 0 0
\(241\) −3.23919 −0.208654 −0.104327 0.994543i \(-0.533269\pi\)
−0.104327 + 0.994543i \(0.533269\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.843060 1.53691i −0.0538611 0.0981899i
\(246\) 0 0
\(247\) 2.24486i 0.142837i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.0744 1.07773 0.538865 0.842392i \(-0.318853\pi\)
0.538865 + 0.842392i \(0.318853\pi\)
\(252\) 0 0
\(253\) 4.56177i 0.286796i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.7859i 0.735182i 0.929988 + 0.367591i \(0.119817\pi\)
−0.929988 + 0.367591i \(0.880183\pi\)
\(258\) 0 0
\(259\) 2.78997 0.173360
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.8428i 1.40855i 0.709927 + 0.704275i \(0.248728\pi\)
−0.709927 + 0.704275i \(0.751272\pi\)
\(264\) 0 0
\(265\) −25.0685 + 13.7511i −1.53995 + 0.844723i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.99679 0.609515 0.304758 0.952430i \(-0.401425\pi\)
0.304758 + 0.952430i \(0.401425\pi\)
\(270\) 0 0
\(271\) 19.3145 1.17327 0.586637 0.809850i \(-0.300452\pi\)
0.586637 + 0.809850i \(0.300452\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.2173 + 20.7416i −0.797036 + 1.25076i
\(276\) 0 0
\(277\) 24.9065i 1.49649i 0.663423 + 0.748244i \(0.269103\pi\)
−0.663423 + 0.748244i \(0.730897\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.6321 1.52908 0.764542 0.644574i \(-0.222965\pi\)
0.764542 + 0.644574i \(0.222965\pi\)
\(282\) 0 0
\(283\) 9.83221i 0.584464i 0.956347 + 0.292232i \(0.0943980\pi\)
−0.956347 + 0.292232i \(0.905602\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.4437i 0.675498i
\(288\) 0 0
\(289\) 16.2459 0.955640
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 30.8182i 1.80042i 0.435456 + 0.900210i \(0.356587\pi\)
−0.435456 + 0.900210i \(0.643413\pi\)
\(294\) 0 0
\(295\) 7.42098 + 13.5286i 0.432066 + 0.787665i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.626745 −0.0362456
\(300\) 0 0
\(301\) −17.4833 −1.00772
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.64707 + 6.64868i 0.208831 + 0.380702i
\(306\) 0 0
\(307\) 13.9375i 0.795453i −0.917504 0.397726i \(-0.869799\pi\)
0.917504 0.397726i \(-0.130201\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.6100 1.16869 0.584343 0.811507i \(-0.301352\pi\)
0.584343 + 0.811507i \(0.301352\pi\)
\(312\) 0 0
\(313\) 13.4418i 0.759778i −0.925032 0.379889i \(-0.875962\pi\)
0.925032 0.379889i \(-0.124038\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.62447i 0.259736i −0.991531 0.129868i \(-0.958545\pi\)
0.991531 0.129868i \(-0.0414553\pi\)
\(318\) 0 0
\(319\) 18.8199 1.05371
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.88454i 0.160500i
\(324\) 0 0
\(325\) −2.84970 1.81594i −0.158073 0.100730i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.42666 0.0786542
\(330\) 0 0
\(331\) 25.4286 1.39768 0.698842 0.715276i \(-0.253699\pi\)
0.698842 + 0.715276i \(0.253699\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.49398 1.91659i 0.190897 0.104715i
\(336\) 0 0
\(337\) 4.62875i 0.252144i −0.992021 0.126072i \(-0.959763\pi\)
0.992021 0.126072i \(-0.0402370\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.86018 −0.263194
\(342\) 0 0
\(343\) 17.3426i 0.936413i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.7317i 1.27398i −0.770871 0.636992i \(-0.780178\pi\)
0.770871 0.636992i \(-0.219822\pi\)
\(348\) 0 0
\(349\) −33.4558 −1.79085 −0.895424 0.445214i \(-0.853128\pi\)
−0.895424 + 0.445214i \(0.853128\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 27.9064i 1.48531i 0.669676 + 0.742653i \(0.266433\pi\)
−0.669676 + 0.742653i \(0.733567\pi\)
\(354\) 0 0
\(355\) 4.13596 + 7.53995i 0.219514 + 0.400179i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.671752 0.0354537 0.0177269 0.999843i \(-0.494357\pi\)
0.0177269 + 0.999843i \(0.494357\pi\)
\(360\) 0 0
\(361\) −7.96647 −0.419288
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.18829 1.74891i 0.166883 0.0915419i
\(366\) 0 0
\(367\) 10.2877i 0.537015i −0.963278 0.268507i \(-0.913470\pi\)
0.963278 0.268507i \(-0.0865304\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 35.6751 1.85216
\(372\) 0 0
\(373\) 7.79225i 0.403468i 0.979440 + 0.201734i \(0.0646576\pi\)
−0.979440 + 0.201734i \(0.935342\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.58568i 0.133169i
\(378\) 0 0
\(379\) 5.02261 0.257994 0.128997 0.991645i \(-0.458824\pi\)
0.128997 + 0.991645i \(0.458824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.41421i 0.327751i −0.986481 0.163875i \(-0.947600\pi\)
0.986481 0.163875i \(-0.0523995\pi\)
\(384\) 0 0
\(385\) 26.9054 14.7587i 1.37122 0.752172i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.26890 0.0643360 0.0321680 0.999482i \(-0.489759\pi\)
0.0321680 + 0.999482i \(0.489759\pi\)
\(390\) 0 0
\(391\) −0.805336 −0.0407276
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.1481 + 23.9692i 0.661551 + 1.20602i
\(396\) 0 0
\(397\) 22.9803i 1.15335i 0.816974 + 0.576675i \(0.195650\pi\)
−0.816974 + 0.576675i \(0.804350\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.1103 0.654696 0.327348 0.944904i \(-0.393845\pi\)
0.327348 + 0.944904i \(0.393845\pi\)
\(402\) 0 0
\(403\) 0.667744i 0.0332627i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.91898i 0.243825i
\(408\) 0 0
\(409\) −0.384530 −0.0190138 −0.00950689 0.999955i \(-0.503026\pi\)
−0.00950689 + 0.999955i \(0.503026\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 19.2526i 0.947358i
\(414\) 0 0
\(415\) −25.8009 + 14.1529i −1.26652 + 0.694736i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 29.1304 1.42312 0.711558 0.702628i \(-0.247990\pi\)
0.711558 + 0.702628i \(0.247990\pi\)
\(420\) 0 0
\(421\) −35.4562 −1.72803 −0.864015 0.503466i \(-0.832058\pi\)
−0.864015 + 0.503466i \(0.832058\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.66172 2.33339i −0.177619 0.113186i
\(426\) 0 0
\(427\) 9.46176i 0.457886i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.7142 −1.04594 −0.522969 0.852352i \(-0.675176\pi\)
−0.522969 + 0.852352i \(0.675176\pi\)
\(432\) 0 0
\(433\) 0.987472i 0.0474549i −0.999718 0.0237274i \(-0.992447\pi\)
0.999718 0.0237274i \(-0.00755339\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.08046i 0.147358i
\(438\) 0 0
\(439\) −14.7974 −0.706243 −0.353121 0.935578i \(-0.614880\pi\)
−0.353121 + 0.935578i \(0.614880\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.7175i 1.74450i 0.489057 + 0.872252i \(0.337341\pi\)
−0.489057 + 0.872252i \(0.662659\pi\)
\(444\) 0 0
\(445\) −2.04202 3.72265i −0.0968012 0.176471i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.1035 −0.571200 −0.285600 0.958349i \(-0.592193\pi\)
−0.285600 + 0.958349i \(0.592193\pi\)
\(450\) 0 0
\(451\) 20.1763 0.950063
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.02771 + 3.69655i 0.0950603 + 0.173297i
\(456\) 0 0
\(457\) 9.06950i 0.424253i −0.977242 0.212127i \(-0.931961\pi\)
0.977242 0.212127i \(-0.0680389\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −29.5187 −1.37482 −0.687411 0.726268i \(-0.741253\pi\)
−0.687411 + 0.726268i \(0.741253\pi\)
\(462\) 0 0
\(463\) 34.5147i 1.60403i 0.597301 + 0.802017i \(0.296240\pi\)
−0.597301 + 0.802017i \(0.703760\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 39.0409i 1.80660i 0.429014 + 0.903298i \(0.358861\pi\)
−0.429014 + 0.903298i \(0.641139\pi\)
\(468\) 0 0
\(469\) −4.97230 −0.229599
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.8248i 1.41733i
\(474\) 0 0
\(475\) 8.92536 14.0063i 0.409524 0.642653i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.22321 0.284346 0.142173 0.989842i \(-0.454591\pi\)
0.142173 + 0.989842i \(0.454591\pi\)
\(480\) 0 0
\(481\) −0.675823 −0.0308149
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −35.9011 + 19.6932i −1.63018 + 0.894221i
\(486\) 0 0
\(487\) 33.2302i 1.50580i 0.658133 + 0.752902i \(0.271346\pi\)
−0.658133 + 0.752902i \(0.728654\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −28.5311 −1.28759 −0.643795 0.765198i \(-0.722641\pi\)
−0.643795 + 0.765198i \(0.722641\pi\)
\(492\) 0 0
\(493\) 3.32247i 0.149636i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.7301i 0.481312i
\(498\) 0 0
\(499\) −7.23410 −0.323843 −0.161921 0.986804i \(-0.551769\pi\)
−0.161921 + 0.986804i \(0.551769\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.0994i 1.43124i −0.698488 0.715621i \(-0.746144\pi\)
0.698488 0.715621i \(-0.253856\pi\)
\(504\) 0 0
\(505\) −11.0906 20.2184i −0.493526 0.899708i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.9450 1.10567 0.552835 0.833291i \(-0.313546\pi\)
0.552835 + 0.833291i \(0.313546\pi\)
\(510\) 0 0
\(511\) −4.53727 −0.200717
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.71650 2.03865i 0.163768 0.0898336i
\(516\) 0 0
\(517\) 2.51533i 0.110624i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11.5767 −0.507186 −0.253593 0.967311i \(-0.581612\pi\)
−0.253593 + 0.967311i \(0.581612\pi\)
\(522\) 0 0
\(523\) 33.4820i 1.46407i 0.681268 + 0.732034i \(0.261429\pi\)
−0.681268 + 0.732034i \(0.738571\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.858017i 0.0373758i
\(528\) 0 0
\(529\) 22.1400 0.962607
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.77203i 0.120070i
\(534\) 0 0
\(535\) 19.9346 10.9349i 0.861848 0.472758i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.85622 −0.166099
\(540\) 0 0
\(541\) 3.43850 0.147833 0.0739163 0.997264i \(-0.476450\pi\)
0.0739163 + 0.997264i \(0.476450\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.95265 + 9.02879i 0.212148 + 0.386751i
\(546\) 0 0
\(547\) 2.34563i 0.100292i 0.998742 + 0.0501459i \(0.0159686\pi\)
−0.998742 + 0.0501459i \(0.984031\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.7086 −0.541406
\(552\) 0 0
\(553\) 34.1106i 1.45053i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.33175i 0.141171i 0.997506 + 0.0705853i \(0.0224867\pi\)
−0.997506 + 0.0705853i \(0.977513\pi\)
\(558\) 0 0
\(559\) 4.23504 0.179123
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 44.2561i 1.86517i −0.360945 0.932587i \(-0.617546\pi\)
0.360945 0.932587i \(-0.382454\pi\)
\(564\) 0 0
\(565\) −20.4563 + 11.2211i −0.860602 + 0.472075i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.4028 1.44224 0.721121 0.692809i \(-0.243627\pi\)
0.721121 + 0.692809i \(0.243627\pi\)
\(570\) 0 0
\(571\) 13.5998 0.569132 0.284566 0.958656i \(-0.408151\pi\)
0.284566 + 0.958656i \(0.408151\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.91042 2.49188i −0.163076 0.103918i
\(576\) 0 0
\(577\) 23.3215i 0.970886i 0.874268 + 0.485443i \(0.161342\pi\)
−0.874268 + 0.485443i \(0.838658\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 36.7174 1.52329
\(582\) 0 0
\(583\) 62.8986i 2.60499i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.6458i 0.480675i 0.970689 + 0.240337i \(0.0772581\pi\)
−0.970689 + 0.240337i \(0.922742\pi\)
\(588\) 0 0
\(589\) 3.28197 0.135231
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.5494i 1.00812i −0.863667 0.504062i \(-0.831838\pi\)
0.863667 0.504062i \(-0.168162\pi\)
\(594\) 0 0
\(595\) 2.60550 + 4.74988i 0.106815 + 0.194726i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.7917 −0.522654 −0.261327 0.965250i \(-0.584160\pi\)
−0.261327 + 0.965250i \(0.584160\pi\)
\(600\) 0 0
\(601\) −24.3206 −0.992057 −0.496029 0.868306i \(-0.665209\pi\)
−0.496029 + 0.868306i \(0.665209\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.1915 + 25.8714i 0.576966 + 1.05182i
\(606\) 0 0
\(607\) 33.2276i 1.34867i −0.738427 0.674333i \(-0.764431\pi\)
0.738427 0.674333i \(-0.235569\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.345583 −0.0139808
\(612\) 0 0
\(613\) 41.8241i 1.68926i −0.535352 0.844629i \(-0.679821\pi\)
0.535352 0.844629i \(-0.320179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.4110i 1.14378i −0.820330 0.571891i \(-0.806210\pi\)
0.820330 0.571891i \(-0.193790\pi\)
\(618\) 0 0
\(619\) −32.1759 −1.29326 −0.646629 0.762805i \(-0.723822\pi\)
−0.646629 + 0.762805i \(0.723822\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.29771i 0.212248i
\(624\) 0 0
\(625\) −10.5600 22.6602i −0.422400 0.906410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.868398 −0.0346253
\(630\) 0 0
\(631\) 25.7684 1.02583 0.512913 0.858441i \(-0.328567\pi\)
0.512913 + 0.858441i \(0.328567\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 38.6320 21.1912i 1.53306 0.840947i
\(636\) 0 0
\(637\) 0.529809i 0.0209918i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28.3807 −1.12097 −0.560486 0.828164i \(-0.689386\pi\)
−0.560486 + 0.828164i \(0.689386\pi\)
\(642\) 0 0
\(643\) 39.1936i 1.54565i 0.634621 + 0.772823i \(0.281156\pi\)
−0.634621 + 0.772823i \(0.718844\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 43.4658i 1.70882i −0.519603 0.854408i \(-0.673920\pi\)
0.519603 0.854408i \(-0.326080\pi\)
\(648\) 0 0
\(649\) 33.9441 1.33242
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.37315i 0.210268i −0.994458 0.105134i \(-0.966473\pi\)
0.994458 0.105134i \(-0.0335271\pi\)
\(654\) 0 0
\(655\) 16.8231 + 30.6688i 0.657332 + 1.19833i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.6633 −0.999700 −0.499850 0.866112i \(-0.666611\pi\)
−0.499850 + 0.866112i \(0.666611\pi\)
\(660\) 0 0
\(661\) 4.62652 0.179951 0.0899754 0.995944i \(-0.471321\pi\)
0.0899754 + 0.995944i \(0.471321\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.1686 + 9.96619i −0.704547 + 0.386472i
\(666\) 0 0
\(667\) 3.54813i 0.137384i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.6820 0.644000
\(672\) 0 0
\(673\) 15.4924i 0.597187i −0.954380 0.298593i \(-0.903483\pi\)
0.954380 0.298593i \(-0.0965174\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.46888i 0.248619i −0.992243 0.124310i \(-0.960328\pi\)
0.992243 0.124310i \(-0.0396716\pi\)
\(678\) 0 0
\(679\) 51.0909 1.96069
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18.2745i 0.699255i −0.936889 0.349627i \(-0.886308\pi\)
0.936889 0.349627i \(-0.113692\pi\)
\(684\) 0 0
\(685\) 12.7216 6.97831i 0.486067 0.266628i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.64168 −0.329222
\(690\) 0 0
\(691\) 31.5509 1.20025 0.600126 0.799906i \(-0.295117\pi\)
0.600126 + 0.799906i \(0.295117\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.5652 19.2605i −0.400760 0.730593i
\(696\) 0 0
\(697\) 3.56192i 0.134917i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −46.0106 −1.73780 −0.868899 0.494989i \(-0.835172\pi\)
−0.868899 + 0.494989i \(0.835172\pi\)
\(702\) 0 0
\(703\) 3.32168i 0.125279i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 28.7729i 1.08212i
\(708\) 0 0
\(709\) −44.7147 −1.67930 −0.839649 0.543130i \(-0.817239\pi\)
−0.839649 + 0.543130i \(0.817239\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.916295i 0.0343155i
\(714\) 0 0
\(715\) −6.51736 + 3.57504i −0.243736 + 0.133699i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −50.7140 −1.89131 −0.945657 0.325165i \(-0.894580\pi\)
−0.945657 + 0.325165i \(0.894580\pi\)
\(720\) 0 0
\(721\) −5.28896 −0.196971
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.2804 + 16.1327i −0.381805 + 0.599155i
\(726\) 0 0
\(727\) 10.5836i 0.392524i 0.980551 + 0.196262i \(0.0628803\pi\)
−0.980551 + 0.196262i \(0.937120\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.44181 0.201273
\(732\) 0 0
\(733\) 26.3914i 0.974790i 0.873182 + 0.487395i \(0.162053\pi\)
−0.873182 + 0.487395i \(0.837947\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.76663i 0.322923i
\(738\) 0 0
\(739\) 36.3461 1.33701 0.668507 0.743706i \(-0.266934\pi\)
0.668507 + 0.743706i \(0.266934\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.4625i 0.897444i 0.893671 + 0.448722i \(0.148121\pi\)
−0.893671 + 0.448722i \(0.851879\pi\)
\(744\) 0 0
\(745\) −13.4622 24.5418i −0.493216 0.899143i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −28.3690 −1.03658
\(750\) 0 0
\(751\) 41.7141 1.52217 0.761084 0.648653i \(-0.224667\pi\)
0.761084 + 0.648653i \(0.224667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.65045 + 8.47787i 0.169247 + 0.308541i
\(756\) 0 0
\(757\) 42.0026i 1.52661i −0.646039 0.763305i \(-0.723576\pi\)
0.646039 0.763305i \(-0.276424\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.3022 1.27970 0.639852 0.768498i \(-0.278995\pi\)
0.639852 + 0.768498i \(0.278995\pi\)
\(762\) 0 0
\(763\) 12.8489i 0.465161i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.66361i 0.168393i
\(768\) 0 0
\(769\) 6.93348 0.250028 0.125014 0.992155i \(-0.460102\pi\)
0.125014 + 0.992155i \(0.460102\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.53154i 0.306858i 0.988160 + 0.153429i \(0.0490317\pi\)
−0.988160 + 0.153429i \(0.950968\pi\)
\(774\) 0 0
\(775\) 2.65489 4.16623i 0.0953663 0.149655i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13.6246 −0.488151
\(780\) 0 0
\(781\) 18.9182 0.676947
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 21.9137 12.0206i 0.782135 0.429032i
\(786\) 0 0
\(787\) 23.1035i 0.823550i −0.911286 0.411775i \(-0.864909\pi\)
0.911286 0.411775i \(-0.135091\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 29.1114 1.03508
\(792\) 0 0
\(793\) 2.29195i 0.0813895i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.9895i 1.02686i −0.858131 0.513430i \(-0.828374\pi\)
0.858131 0.513430i \(-0.171626\pi\)
\(798\) 0 0
\(799\) −0.444057 −0.0157096
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.99963i 0.282301i
\(804\) 0 0
\(805\) 2.78247 + 5.07249i 0.0980691 + 0.178782i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 26.1018 0.917692 0.458846 0.888516i \(-0.348263\pi\)
0.458846 + 0.888516i \(0.348263\pi\)
\(810\) 0 0
\(811\) −49.3488 −1.73287 −0.866436 0.499288i \(-0.833595\pi\)
−0.866436 + 0.499288i \(0.833595\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.38311 1.85577i 0.118505 0.0650049i
\(816\) 0 0
\(817\) 20.8153i 0.728234i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16.4815 −0.575209 −0.287604 0.957749i \(-0.592859\pi\)
−0.287604 + 0.957749i \(0.592859\pi\)
\(822\) 0 0
\(823\) 1.21506i 0.0423544i 0.999776 + 0.0211772i \(0.00674142\pi\)
−0.999776 + 0.0211772i \(0.993259\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.80215i 0.166987i 0.996508 + 0.0834936i \(0.0266078\pi\)
−0.996508 + 0.0834936i \(0.973392\pi\)
\(828\) 0 0
\(829\) 27.8739 0.968100 0.484050 0.875040i \(-0.339165\pi\)
0.484050 + 0.875040i \(0.339165\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.680777i 0.0235875i
\(834\) 0 0
\(835\) 15.1107 8.28883i 0.522927 0.286847i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 27.4872 0.948962 0.474481 0.880266i \(-0.342636\pi\)
0.474481 + 0.880266i \(0.342636\pi\)
\(840\) 0 0
\(841\) −14.3619 −0.495239
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.4891 + 24.5909i 0.464039 + 0.845952i
\(846\) 0 0
\(847\) 36.8176i 1.26507i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.927380 −0.0317902
\(852\) 0 0
\(853\) 55.1393i 1.88793i −0.330040 0.943967i \(-0.607062\pi\)
0.330040 0.943967i \(-0.392938\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.8754i 1.70371i −0.523778 0.851855i \(-0.675478\pi\)
0.523778 0.851855i \(-0.324522\pi\)
\(858\) 0 0
\(859\) 15.5687 0.531196 0.265598 0.964084i \(-0.414431\pi\)
0.265598 + 0.964084i \(0.414431\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.2265i 0.926802i −0.886149 0.463401i \(-0.846629\pi\)
0.886149 0.463401i \(-0.153371\pi\)
\(864\) 0 0
\(865\) 25.6490 14.0695i 0.872094 0.478379i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 60.1403 2.04012
\(870\) 0 0
\(871\) 1.20445 0.0408113
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.04574 + 31.1257i −0.0691586 + 1.05224i
\(876\) 0 0
\(877\) 25.4262i 0.858580i 0.903167 + 0.429290i \(0.141236\pi\)
−0.903167 + 0.429290i \(0.858764\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.12728 −0.105361 −0.0526804 0.998611i \(-0.516776\pi\)
−0.0526804 + 0.998611i \(0.516776\pi\)
\(882\) 0 0
\(883\) 16.3438i 0.550012i 0.961442 + 0.275006i \(0.0886799\pi\)
−0.961442 + 0.275006i \(0.911320\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 31.4746i 1.05681i 0.848991 + 0.528407i \(0.177211\pi\)
−0.848991 + 0.528407i \(0.822789\pi\)
\(888\) 0 0
\(889\) −54.9773 −1.84388
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.69855i 0.0568396i
\(894\) 0 0
\(895\) −16.3905 29.8802i −0.547873 0.998784i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.78024 −0.126078
\(900\) 0 0
\(901\) −11.1041 −0.369932
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 25.5096 + 46.5045i 0.847967 + 1.54586i
\(906\) 0 0
\(907\) 41.0365i 1.36259i 0.732007 + 0.681297i \(0.238584\pi\)
−0.732007 + 0.681297i \(0.761416\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.4822 0.512949 0.256474 0.966551i \(-0.417439\pi\)
0.256474 + 0.966551i \(0.417439\pi\)
\(912\) 0 0
\(913\) 64.7362i 2.14246i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 43.6448i 1.44128i
\(918\) 0 0
\(919\) 27.1760 0.896455 0.448227 0.893920i \(-0.352055\pi\)
0.448227 + 0.893920i \(0.352055\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.59919i 0.0855533i
\(924\) 0 0
\(925\) −4.21663 2.68701i −0.138642 0.0883482i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −11.3917 −0.373749 −0.186874 0.982384i \(-0.559836\pi\)
−0.186874 + 0.982384i \(0.559836\pi\)
\(930\) 0 0
\(931\) 2.60401 0.0853431
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.37448 + 4.59374i −0.273875 + 0.150231i
\(936\) 0 0
\(937\) 42.7886i 1.39784i −0.715199 0.698921i \(-0.753664\pi\)
0.715199 0.698921i \(-0.246336\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.24333 −0.236126 −0.118063 0.993006i \(-0.537668\pi\)
−0.118063 + 0.993006i \(0.537668\pi\)
\(942\) 0 0
\(943\) 3.80385i 0.123870i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.38167i 0.142385i 0.997463 + 0.0711925i \(0.0226805\pi\)
−0.997463 + 0.0711925i \(0.977320\pi\)
\(948\) 0 0
\(949\) 1.09907 0.0356775
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 44.9223i 1.45518i −0.686014 0.727589i \(-0.740641\pi\)
0.686014 0.727589i \(-0.259359\pi\)
\(954\) 0 0
\(955\) −13.8861 25.3147i −0.449345 0.819164i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18.1041 −0.584613
\(960\) 0 0
\(961\) −30.0238 −0.968509
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41.4050 22.7123i 1.33287 0.731135i
\(966\) 0 0
\(967\) 0.112424i 0.00361532i −0.999998 0.00180766i \(-0.999425\pi\)
0.999998 0.00180766i \(-0.000575396\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −42.1108 −1.35140 −0.675700 0.737177i \(-0.736159\pi\)
−0.675700 + 0.737177i \(0.736159\pi\)
\(972\) 0 0
\(973\) 27.4097i 0.878714i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.0879i 1.60245i −0.598360 0.801227i \(-0.704181\pi\)
0.598360 0.801227i \(-0.295819\pi\)
\(978\) 0 0
\(979\) −9.34037 −0.298520
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.2414i 0.390440i 0.980759 + 0.195220i \(0.0625421\pi\)
−0.980759 + 0.195220i \(0.937458\pi\)
\(984\) 0 0
\(985\) 17.2045 9.43736i 0.548181 0.300699i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.81142 0.184793
\(990\) 0 0
\(991\) −26.7437 −0.849541 −0.424770 0.905301i \(-0.639645\pi\)
−0.424770 + 0.905301i \(0.639645\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.6848 + 23.1247i 0.402136 + 0.733101i
\(996\) 0 0
\(997\) 44.9308i 1.42297i −0.702701 0.711486i \(-0.748023\pi\)
0.702701 0.711486i \(-0.251977\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6660.2.f.c.5329.14 18
3.2 odd 2 740.2.d.a.149.9 18
5.4 even 2 inner 6660.2.f.c.5329.13 18
15.2 even 4 3700.2.a.o.1.5 9
15.8 even 4 3700.2.a.p.1.5 9
15.14 odd 2 740.2.d.a.149.10 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.d.a.149.9 18 3.2 odd 2
740.2.d.a.149.10 yes 18 15.14 odd 2
3700.2.a.o.1.5 9 15.2 even 4
3700.2.a.p.1.5 9 15.8 even 4
6660.2.f.c.5329.13 18 5.4 even 2 inner
6660.2.f.c.5329.14 18 1.1 even 1 trivial