Properties

Label 6660.2.f.c.5329.12
Level $6660$
Weight $2$
Character 6660.5329
Analytic conductor $53.180$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6660,2,Mod(5329,6660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6660, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6660.5329"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6660 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6660.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.1803677462\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 26 x^{16} + 283 x^{14} + 1674 x^{12} + 5841 x^{10} + 12196 x^{8} + 14736 x^{6} + 9408 x^{4} + \cdots + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 740)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5329.12
Root \(-2.40934i\) of defining polynomial
Character \(\chi\) \(=\) 6660.5329
Dual form 6660.2.f.c.5329.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.672341 + 2.13259i) q^{5} +3.62709i q^{7} -0.391667 q^{11} -2.13212i q^{13} +2.05913i q^{17} +2.97636 q^{19} -7.43110i q^{23} +(-4.09591 + 2.86766i) q^{25} -9.88431 q^{29} +3.27376 q^{31} +(-7.73512 + 2.43864i) q^{35} -1.00000i q^{37} -6.67260 q^{41} +4.73480i q^{43} +10.5345i q^{47} -6.15580 q^{49} +1.34461i q^{53} +(-0.263334 - 0.835266i) q^{55} -13.7792 q^{59} +3.69839 q^{61} +(4.54694 - 1.43351i) q^{65} +2.89753i q^{67} +7.50571 q^{71} +11.0649i q^{73} -1.42061i q^{77} -16.0380 q^{79} +7.88415i q^{83} +(-4.39129 + 1.38444i) q^{85} +9.88390 q^{89} +7.73338 q^{91} +(2.00113 + 6.34737i) q^{95} -5.75855i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{5} + 4 q^{19} - 2 q^{25} + 4 q^{29} + 8 q^{31} + 2 q^{35} + 4 q^{41} + 6 q^{49} - 6 q^{55} - 8 q^{59} + 12 q^{65} + 24 q^{71} - 24 q^{79} + 36 q^{91} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6660\mathbb{Z}\right)^\times\).

\(n\) \(3331\) \(3701\) \(3961\) \(3997\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.672341 + 2.13259i 0.300680 + 0.953725i
\(6\) 0 0
\(7\) 3.62709i 1.37091i 0.728114 + 0.685456i \(0.240397\pi\)
−0.728114 + 0.685456i \(0.759603\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.391667 −0.118092 −0.0590460 0.998255i \(-0.518806\pi\)
−0.0590460 + 0.998255i \(0.518806\pi\)
\(12\) 0 0
\(13\) 2.13212i 0.591342i −0.955290 0.295671i \(-0.904457\pi\)
0.955290 0.295671i \(-0.0955433\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.05913i 0.499412i 0.968322 + 0.249706i \(0.0803340\pi\)
−0.968322 + 0.249706i \(0.919666\pi\)
\(18\) 0 0
\(19\) 2.97636 0.682824 0.341412 0.939914i \(-0.389095\pi\)
0.341412 + 0.939914i \(0.389095\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.43110i 1.54949i −0.632273 0.774745i \(-0.717878\pi\)
0.632273 0.774745i \(-0.282122\pi\)
\(24\) 0 0
\(25\) −4.09591 + 2.86766i −0.819183 + 0.573532i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.88431 −1.83547 −0.917735 0.397193i \(-0.869984\pi\)
−0.917735 + 0.397193i \(0.869984\pi\)
\(30\) 0 0
\(31\) 3.27376 0.587984 0.293992 0.955808i \(-0.405016\pi\)
0.293992 + 0.955808i \(0.405016\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.73512 + 2.43864i −1.30747 + 0.412206i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.67260 −1.04208 −0.521042 0.853531i \(-0.674457\pi\)
−0.521042 + 0.853531i \(0.674457\pi\)
\(42\) 0 0
\(43\) 4.73480i 0.722050i 0.932556 + 0.361025i \(0.117573\pi\)
−0.932556 + 0.361025i \(0.882427\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.5345i 1.53662i 0.640080 + 0.768308i \(0.278901\pi\)
−0.640080 + 0.768308i \(0.721099\pi\)
\(48\) 0 0
\(49\) −6.15580 −0.879401
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.34461i 0.184697i 0.995727 + 0.0923485i \(0.0294374\pi\)
−0.995727 + 0.0923485i \(0.970563\pi\)
\(54\) 0 0
\(55\) −0.263334 0.835266i −0.0355079 0.112627i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.7792 −1.79390 −0.896952 0.442129i \(-0.854223\pi\)
−0.896952 + 0.442129i \(0.854223\pi\)
\(60\) 0 0
\(61\) 3.69839 0.473530 0.236765 0.971567i \(-0.423913\pi\)
0.236765 + 0.971567i \(0.423913\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.54694 1.43351i 0.563978 0.177805i
\(66\) 0 0
\(67\) 2.89753i 0.353990i 0.984212 + 0.176995i \(0.0566376\pi\)
−0.984212 + 0.176995i \(0.943362\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.50571 0.890763 0.445382 0.895341i \(-0.353068\pi\)
0.445382 + 0.895341i \(0.353068\pi\)
\(72\) 0 0
\(73\) 11.0649i 1.29505i 0.762043 + 0.647526i \(0.224196\pi\)
−0.762043 + 0.647526i \(0.775804\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.42061i 0.161894i
\(78\) 0 0
\(79\) −16.0380 −1.80442 −0.902209 0.431298i \(-0.858056\pi\)
−0.902209 + 0.431298i \(0.858056\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.88415i 0.865398i 0.901539 + 0.432699i \(0.142439\pi\)
−0.901539 + 0.432699i \(0.857561\pi\)
\(84\) 0 0
\(85\) −4.39129 + 1.38444i −0.476302 + 0.150163i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.88390 1.04769 0.523845 0.851813i \(-0.324497\pi\)
0.523845 + 0.851813i \(0.324497\pi\)
\(90\) 0 0
\(91\) 7.73338 0.810679
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00113 + 6.34737i 0.205312 + 0.651226i
\(96\) 0 0
\(97\) 5.75855i 0.584693i −0.956313 0.292346i \(-0.905564\pi\)
0.956313 0.292346i \(-0.0944360\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.24151 0.621053 0.310527 0.950565i \(-0.399495\pi\)
0.310527 + 0.950565i \(0.399495\pi\)
\(102\) 0 0
\(103\) 5.06627i 0.499194i 0.968350 + 0.249597i \(0.0802982\pi\)
−0.968350 + 0.249597i \(0.919702\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.922468i 0.0891783i −0.999005 0.0445892i \(-0.985802\pi\)
0.999005 0.0445892i \(-0.0141979\pi\)
\(108\) 0 0
\(109\) −18.6311 −1.78454 −0.892269 0.451504i \(-0.850888\pi\)
−0.892269 + 0.451504i \(0.850888\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.9336i 1.12262i −0.827607 0.561308i \(-0.810298\pi\)
0.827607 0.561308i \(-0.189702\pi\)
\(114\) 0 0
\(115\) 15.8475 4.99623i 1.47779 0.465901i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.46865 −0.684650
\(120\) 0 0
\(121\) −10.8466 −0.986054
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.86941 6.80688i −0.793304 0.608826i
\(126\) 0 0
\(127\) 18.5885i 1.64946i −0.565523 0.824732i \(-0.691326\pi\)
0.565523 0.824732i \(-0.308674\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.01448 −0.525487 −0.262744 0.964866i \(-0.584627\pi\)
−0.262744 + 0.964866i \(0.584627\pi\)
\(132\) 0 0
\(133\) 10.7955i 0.936092i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 21.8273i 1.86483i 0.361390 + 0.932415i \(0.382302\pi\)
−0.361390 + 0.932415i \(0.617698\pi\)
\(138\) 0 0
\(139\) −6.53555 −0.554338 −0.277169 0.960821i \(-0.589396\pi\)
−0.277169 + 0.960821i \(0.589396\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.835079i 0.0698328i
\(144\) 0 0
\(145\) −6.64563 21.0792i −0.551889 1.75053i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.0837 1.23571 0.617853 0.786294i \(-0.288003\pi\)
0.617853 + 0.786294i \(0.288003\pi\)
\(150\) 0 0
\(151\) −9.67034 −0.786961 −0.393480 0.919333i \(-0.628729\pi\)
−0.393480 + 0.919333i \(0.628729\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.20108 + 6.98159i 0.176795 + 0.560775i
\(156\) 0 0
\(157\) 7.55190i 0.602707i −0.953512 0.301354i \(-0.902562\pi\)
0.953512 0.301354i \(-0.0974384\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 26.9533 2.12422
\(162\) 0 0
\(163\) 14.5651i 1.14083i −0.821358 0.570413i \(-0.806783\pi\)
0.821358 0.570413i \(-0.193217\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.4979i 1.66356i −0.555107 0.831779i \(-0.687323\pi\)
0.555107 0.831779i \(-0.312677\pi\)
\(168\) 0 0
\(169\) 8.45408 0.650314
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.52812i 0.420295i −0.977670 0.210148i \(-0.932606\pi\)
0.977670 0.210148i \(-0.0673945\pi\)
\(174\) 0 0
\(175\) −10.4013 14.8563i −0.786263 1.12303i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −19.6456 −1.46838 −0.734190 0.678944i \(-0.762438\pi\)
−0.734190 + 0.678944i \(0.762438\pi\)
\(180\) 0 0
\(181\) −15.1017 −1.12250 −0.561250 0.827646i \(-0.689679\pi\)
−0.561250 + 0.827646i \(0.689679\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.13259 0.672341i 0.156791 0.0494315i
\(186\) 0 0
\(187\) 0.806493i 0.0589766i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.66075 −0.192525 −0.0962625 0.995356i \(-0.530689\pi\)
−0.0962625 + 0.995356i \(0.530689\pi\)
\(192\) 0 0
\(193\) 5.69658i 0.410049i 0.978757 + 0.205024i \(0.0657274\pi\)
−0.978757 + 0.205024i \(0.934273\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.03316i 0.501092i 0.968105 + 0.250546i \(0.0806101\pi\)
−0.968105 + 0.250546i \(0.919390\pi\)
\(198\) 0 0
\(199\) −14.2740 −1.01186 −0.505930 0.862575i \(-0.668850\pi\)
−0.505930 + 0.862575i \(0.668850\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 35.8513i 2.51627i
\(204\) 0 0
\(205\) −4.48626 14.2299i −0.313334 0.993862i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.16574 −0.0806360
\(210\) 0 0
\(211\) −18.6345 −1.28285 −0.641426 0.767185i \(-0.721657\pi\)
−0.641426 + 0.767185i \(0.721657\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.0974 + 3.18340i −0.688637 + 0.217106i
\(216\) 0 0
\(217\) 11.8742i 0.806075i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.39030 0.295324
\(222\) 0 0
\(223\) 1.71850i 0.115079i 0.998343 + 0.0575395i \(0.0183255\pi\)
−0.998343 + 0.0575395i \(0.981674\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.80424i 0.252497i 0.991999 + 0.126248i \(0.0402936\pi\)
−0.991999 + 0.126248i \(0.959706\pi\)
\(228\) 0 0
\(229\) 13.2332 0.874475 0.437238 0.899346i \(-0.355957\pi\)
0.437238 + 0.899346i \(0.355957\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.07618i 0.267040i 0.991046 + 0.133520i \(0.0426280\pi\)
−0.991046 + 0.133520i \(0.957372\pi\)
\(234\) 0 0
\(235\) −22.4658 + 7.08278i −1.46551 + 0.462030i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.20603 −0.336750 −0.168375 0.985723i \(-0.553852\pi\)
−0.168375 + 0.985723i \(0.553852\pi\)
\(240\) 0 0
\(241\) 14.7128 0.947732 0.473866 0.880597i \(-0.342858\pi\)
0.473866 + 0.880597i \(0.342858\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.13880 13.1278i −0.264418 0.838706i
\(246\) 0 0
\(247\) 6.34594i 0.403783i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.25931 0.142607 0.0713033 0.997455i \(-0.477284\pi\)
0.0713033 + 0.997455i \(0.477284\pi\)
\(252\) 0 0
\(253\) 2.91051i 0.182982i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.71354i 0.356401i 0.983994 + 0.178200i \(0.0570275\pi\)
−0.983994 + 0.178200i \(0.942973\pi\)
\(258\) 0 0
\(259\) 3.62709 0.225377
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.44181i 0.335556i −0.985825 0.167778i \(-0.946341\pi\)
0.985825 0.167778i \(-0.0536592\pi\)
\(264\) 0 0
\(265\) −2.86752 + 0.904039i −0.176150 + 0.0555347i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.7881 0.779703 0.389852 0.920878i \(-0.372526\pi\)
0.389852 + 0.920878i \(0.372526\pi\)
\(270\) 0 0
\(271\) 11.8653 0.720766 0.360383 0.932805i \(-0.382646\pi\)
0.360383 + 0.932805i \(0.382646\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.60423 1.12317i 0.0967390 0.0677296i
\(276\) 0 0
\(277\) 3.92006i 0.235534i 0.993041 + 0.117767i \(0.0375736\pi\)
−0.993041 + 0.117767i \(0.962426\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.34526 −0.0802513 −0.0401257 0.999195i \(-0.512776\pi\)
−0.0401257 + 0.999195i \(0.512776\pi\)
\(282\) 0 0
\(283\) 4.26021i 0.253243i −0.991951 0.126621i \(-0.959587\pi\)
0.991951 0.126621i \(-0.0404133\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.2021i 1.42861i
\(288\) 0 0
\(289\) 12.7600 0.750587
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.2397i 0.656631i −0.944568 0.328315i \(-0.893519\pi\)
0.944568 0.328315i \(-0.106481\pi\)
\(294\) 0 0
\(295\) −9.26434 29.3855i −0.539391 1.71089i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.8440 −0.916280
\(300\) 0 0
\(301\) −17.1735 −0.989867
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.48658 + 7.88716i 0.142381 + 0.451618i
\(306\) 0 0
\(307\) 5.44256i 0.310623i −0.987866 0.155312i \(-0.950362\pi\)
0.987866 0.155312i \(-0.0496381\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.7705 0.780856 0.390428 0.920633i \(-0.372327\pi\)
0.390428 + 0.920633i \(0.372327\pi\)
\(312\) 0 0
\(313\) 30.9562i 1.74975i −0.484352 0.874873i \(-0.660944\pi\)
0.484352 0.874873i \(-0.339056\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.4057i 1.42693i 0.700692 + 0.713464i \(0.252875\pi\)
−0.700692 + 0.713464i \(0.747125\pi\)
\(318\) 0 0
\(319\) 3.87136 0.216754
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.12871i 0.341011i
\(324\) 0 0
\(325\) 6.11419 + 8.73296i 0.339154 + 0.484418i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −38.2096 −2.10657
\(330\) 0 0
\(331\) 5.42478 0.298173 0.149086 0.988824i \(-0.452367\pi\)
0.149086 + 0.988824i \(0.452367\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.17926 + 1.94813i −0.337609 + 0.106438i
\(336\) 0 0
\(337\) 24.1817i 1.31726i −0.752466 0.658631i \(-0.771136\pi\)
0.752466 0.658631i \(-0.228864\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.28222 −0.0694362
\(342\) 0 0
\(343\) 3.06198i 0.165331i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.7883i 0.632831i −0.948621 0.316416i \(-0.897521\pi\)
0.948621 0.316416i \(-0.102479\pi\)
\(348\) 0 0
\(349\) 19.9490 1.06784 0.533922 0.845533i \(-0.320717\pi\)
0.533922 + 0.845533i \(0.320717\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.5123i 1.30466i −0.757936 0.652329i \(-0.773792\pi\)
0.757936 0.652329i \(-0.226208\pi\)
\(354\) 0 0
\(355\) 5.04639 + 16.0066i 0.267835 + 0.849543i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.9812 1.42401 0.712007 0.702172i \(-0.247786\pi\)
0.712007 + 0.702172i \(0.247786\pi\)
\(360\) 0 0
\(361\) −10.1413 −0.533751
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −23.5970 + 7.43941i −1.23512 + 0.389396i
\(366\) 0 0
\(367\) 0.444307i 0.0231927i 0.999933 + 0.0115963i \(0.00369131\pi\)
−0.999933 + 0.0115963i \(0.996309\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.87704 −0.253203
\(372\) 0 0
\(373\) 25.5341i 1.32211i 0.750339 + 0.661053i \(0.229890\pi\)
−0.750339 + 0.661053i \(0.770110\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.0745i 1.08539i
\(378\) 0 0
\(379\) 12.3552 0.634644 0.317322 0.948318i \(-0.397216\pi\)
0.317322 + 0.948318i \(0.397216\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.3246i 1.34512i 0.740041 + 0.672562i \(0.234806\pi\)
−0.740041 + 0.672562i \(0.765194\pi\)
\(384\) 0 0
\(385\) 3.02959 0.955136i 0.154402 0.0486782i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.6564 0.743111 0.371555 0.928411i \(-0.378825\pi\)
0.371555 + 0.928411i \(0.378825\pi\)
\(390\) 0 0
\(391\) 15.3016 0.773835
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.7830 34.2026i −0.542553 1.72092i
\(396\) 0 0
\(397\) 30.0764i 1.50949i 0.656019 + 0.754745i \(0.272239\pi\)
−0.656019 + 0.754745i \(0.727761\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.66736 −0.233077 −0.116538 0.993186i \(-0.537180\pi\)
−0.116538 + 0.993186i \(0.537180\pi\)
\(402\) 0 0
\(403\) 6.98003i 0.347700i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.391667i 0.0194142i
\(408\) 0 0
\(409\) 1.86403 0.0921701 0.0460851 0.998938i \(-0.485325\pi\)
0.0460851 + 0.998938i \(0.485325\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 49.9786i 2.45928i
\(414\) 0 0
\(415\) −16.8137 + 5.30084i −0.825351 + 0.260208i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.75283 0.134485 0.0672424 0.997737i \(-0.478580\pi\)
0.0672424 + 0.997737i \(0.478580\pi\)
\(420\) 0 0
\(421\) 7.33398 0.357436 0.178718 0.983900i \(-0.442805\pi\)
0.178718 + 0.983900i \(0.442805\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.90489 8.43402i −0.286429 0.409110i
\(426\) 0 0
\(427\) 13.4144i 0.649168i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.803161 −0.0386869 −0.0193434 0.999813i \(-0.506158\pi\)
−0.0193434 + 0.999813i \(0.506158\pi\)
\(432\) 0 0
\(433\) 25.9277i 1.24601i 0.782220 + 0.623003i \(0.214087\pi\)
−0.782220 + 0.623003i \(0.785913\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.1176i 1.05803i
\(438\) 0 0
\(439\) −34.5941 −1.65109 −0.825544 0.564337i \(-0.809132\pi\)
−0.825544 + 0.564337i \(0.809132\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.06316i 0.0505123i −0.999681 0.0252562i \(-0.991960\pi\)
0.999681 0.0252562i \(-0.00804014\pi\)
\(444\) 0 0
\(445\) 6.64535 + 21.0783i 0.315020 + 0.999209i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.4830 −1.43858 −0.719291 0.694709i \(-0.755533\pi\)
−0.719291 + 0.694709i \(0.755533\pi\)
\(450\) 0 0
\(451\) 2.61344 0.123062
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.19947 + 16.4922i 0.243755 + 0.773164i
\(456\) 0 0
\(457\) 21.4264i 1.00228i −0.865365 0.501141i \(-0.832914\pi\)
0.865365 0.501141i \(-0.167086\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.9224 −0.741582 −0.370791 0.928716i \(-0.620913\pi\)
−0.370791 + 0.928716i \(0.620913\pi\)
\(462\) 0 0
\(463\) 20.5439i 0.954754i 0.878698 + 0.477377i \(0.158412\pi\)
−0.878698 + 0.477377i \(0.841588\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.66273i 0.262040i 0.991380 + 0.131020i \(0.0418252\pi\)
−0.991380 + 0.131020i \(0.958175\pi\)
\(468\) 0 0
\(469\) −10.5096 −0.485289
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.85446i 0.0852683i
\(474\) 0 0
\(475\) −12.1909 + 8.53520i −0.559358 + 0.391622i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0062 −0.548579 −0.274290 0.961647i \(-0.588443\pi\)
−0.274290 + 0.961647i \(0.588443\pi\)
\(480\) 0 0
\(481\) −2.13212 −0.0972161
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.2807 3.87171i 0.557636 0.175805i
\(486\) 0 0
\(487\) 22.3755i 1.01393i 0.861966 + 0.506966i \(0.169233\pi\)
−0.861966 + 0.506966i \(0.830767\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −37.0235 −1.67085 −0.835424 0.549606i \(-0.814778\pi\)
−0.835424 + 0.549606i \(0.814778\pi\)
\(492\) 0 0
\(493\) 20.3531i 0.916656i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 27.2239i 1.22116i
\(498\) 0 0
\(499\) −18.3283 −0.820487 −0.410243 0.911976i \(-0.634556\pi\)
−0.410243 + 0.911976i \(0.634556\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.0672i 1.25146i 0.780041 + 0.625728i \(0.215198\pi\)
−0.780041 + 0.625728i \(0.784802\pi\)
\(504\) 0 0
\(505\) 4.19642 + 13.3106i 0.186738 + 0.592314i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.0600 1.68698 0.843489 0.537146i \(-0.180498\pi\)
0.843489 + 0.537146i \(0.180498\pi\)
\(510\) 0 0
\(511\) −40.1335 −1.77540
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.8043 + 3.40626i −0.476094 + 0.150098i
\(516\) 0 0
\(517\) 4.12602i 0.181462i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.0268 0.570715 0.285358 0.958421i \(-0.407888\pi\)
0.285358 + 0.958421i \(0.407888\pi\)
\(522\) 0 0
\(523\) 30.0313i 1.31318i −0.754250 0.656588i \(-0.771999\pi\)
0.754250 0.656588i \(-0.228001\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.74109i 0.293646i
\(528\) 0 0
\(529\) −32.2212 −1.40092
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.2267i 0.616229i
\(534\) 0 0
\(535\) 1.96725 0.620213i 0.0850516 0.0268142i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.41102 0.103850
\(540\) 0 0
\(541\) −0.0480448 −0.00206561 −0.00103280 0.999999i \(-0.500329\pi\)
−0.00103280 + 0.999999i \(0.500329\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.5265 39.7326i −0.536575 1.70196i
\(546\) 0 0
\(547\) 17.3072i 0.740004i 0.929031 + 0.370002i \(0.120643\pi\)
−0.929031 + 0.370002i \(0.879357\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −29.4193 −1.25330
\(552\) 0 0
\(553\) 58.1714i 2.47370i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.0098i 1.61053i 0.592917 + 0.805264i \(0.297976\pi\)
−0.592917 + 0.805264i \(0.702024\pi\)
\(558\) 0 0
\(559\) 10.0951 0.426979
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.50462i 0.231992i −0.993250 0.115996i \(-0.962994\pi\)
0.993250 0.115996i \(-0.0370060\pi\)
\(564\) 0 0
\(565\) 25.4495 8.02343i 1.07067 0.337548i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.97732 −0.292504 −0.146252 0.989247i \(-0.546721\pi\)
−0.146252 + 0.989247i \(0.546721\pi\)
\(570\) 0 0
\(571\) −33.9520 −1.42085 −0.710424 0.703774i \(-0.751497\pi\)
−0.710424 + 0.703774i \(0.751497\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 21.3099 + 30.4371i 0.888683 + 1.26932i
\(576\) 0 0
\(577\) 29.4116i 1.22442i 0.790695 + 0.612211i \(0.209720\pi\)
−0.790695 + 0.612211i \(0.790280\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −28.5965 −1.18638
\(582\) 0 0
\(583\) 0.526641i 0.0218112i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.1028i 0.458261i 0.973396 + 0.229131i \(0.0735883\pi\)
−0.973396 + 0.229131i \(0.926412\pi\)
\(588\) 0 0
\(589\) 9.74388 0.401490
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.65107i 0.273127i −0.990631 0.136563i \(-0.956394\pi\)
0.990631 0.136563i \(-0.0436058\pi\)
\(594\) 0 0
\(595\) −5.02148 15.9276i −0.205861 0.652968i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 17.7417 0.724906 0.362453 0.932002i \(-0.381939\pi\)
0.362453 + 0.932002i \(0.381939\pi\)
\(600\) 0 0
\(601\) 27.7545 1.13213 0.566064 0.824361i \(-0.308466\pi\)
0.566064 + 0.824361i \(0.308466\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.29261 23.1314i −0.296487 0.940425i
\(606\) 0 0
\(607\) 23.0209i 0.934390i 0.884154 + 0.467195i \(0.154735\pi\)
−0.884154 + 0.467195i \(0.845265\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.4608 0.908666
\(612\) 0 0
\(613\) 17.5217i 0.707696i 0.935303 + 0.353848i \(0.115127\pi\)
−0.935303 + 0.353848i \(0.884873\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.1871i 0.732187i −0.930578 0.366093i \(-0.880695\pi\)
0.930578 0.366093i \(-0.119305\pi\)
\(618\) 0 0
\(619\) −30.1269 −1.21090 −0.605451 0.795883i \(-0.707007\pi\)
−0.605451 + 0.795883i \(0.707007\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 35.8498i 1.43629i
\(624\) 0 0
\(625\) 8.55303 23.4914i 0.342121 0.939656i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.05913 0.0821029
\(630\) 0 0
\(631\) −41.4773 −1.65119 −0.825593 0.564266i \(-0.809159\pi\)
−0.825593 + 0.564266i \(0.809159\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 39.6418 12.4978i 1.57314 0.495961i
\(636\) 0 0
\(637\) 13.1249i 0.520027i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 26.1370 1.03235 0.516175 0.856483i \(-0.327356\pi\)
0.516175 + 0.856483i \(0.327356\pi\)
\(642\) 0 0
\(643\) 37.1020i 1.46316i 0.681755 + 0.731580i \(0.261217\pi\)
−0.681755 + 0.731580i \(0.738783\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.70071i 0.184804i 0.995722 + 0.0924020i \(0.0294545\pi\)
−0.995722 + 0.0924020i \(0.970546\pi\)
\(648\) 0 0
\(649\) 5.39687 0.211846
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 39.6121i 1.55014i 0.631874 + 0.775071i \(0.282286\pi\)
−0.631874 + 0.775071i \(0.717714\pi\)
\(654\) 0 0
\(655\) −4.04378 12.8264i −0.158004 0.501171i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.14782 −0.317394 −0.158697 0.987327i \(-0.550729\pi\)
−0.158697 + 0.987327i \(0.550729\pi\)
\(660\) 0 0
\(661\) 19.5663 0.761039 0.380520 0.924773i \(-0.375745\pi\)
0.380520 + 0.924773i \(0.375745\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −23.0225 + 7.25828i −0.892774 + 0.281464i
\(666\) 0 0
\(667\) 73.4513i 2.84404i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.44854 −0.0559201
\(672\) 0 0
\(673\) 25.8110i 0.994939i −0.867481 0.497470i \(-0.834263\pi\)
0.867481 0.497470i \(-0.165737\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.5145i 0.596273i 0.954523 + 0.298136i \(0.0963650\pi\)
−0.954523 + 0.298136i \(0.903635\pi\)
\(678\) 0 0
\(679\) 20.8868 0.801562
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 49.9137i 1.90990i 0.296773 + 0.954948i \(0.404090\pi\)
−0.296773 + 0.954948i \(0.595910\pi\)
\(684\) 0 0
\(685\) −46.5487 + 14.6754i −1.77853 + 0.560717i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.86687 0.109219
\(690\) 0 0
\(691\) −17.7800 −0.676384 −0.338192 0.941077i \(-0.609815\pi\)
−0.338192 + 0.941077i \(0.609815\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.39412 13.9377i −0.166678 0.528686i
\(696\) 0 0
\(697\) 13.7397i 0.520430i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.6823 −1.30993 −0.654965 0.755659i \(-0.727317\pi\)
−0.654965 + 0.755659i \(0.727317\pi\)
\(702\) 0 0
\(703\) 2.97636i 0.112256i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.6385i 0.851409i
\(708\) 0 0
\(709\) 30.0916 1.13011 0.565057 0.825052i \(-0.308854\pi\)
0.565057 + 0.825052i \(0.308854\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24.3276i 0.911076i
\(714\) 0 0
\(715\) −1.78088 + 0.561458i −0.0666013 + 0.0209973i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.5123 0.914155 0.457078 0.889427i \(-0.348896\pi\)
0.457078 + 0.889427i \(0.348896\pi\)
\(720\) 0 0
\(721\) −18.3758 −0.684351
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 40.4853 28.3449i 1.50359 1.05270i
\(726\) 0 0
\(727\) 16.7349i 0.620661i −0.950629 0.310331i \(-0.899560\pi\)
0.950629 0.310331i \(-0.100440\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.74956 −0.360600
\(732\) 0 0
\(733\) 46.6910i 1.72457i −0.506422 0.862286i \(-0.669032\pi\)
0.506422 0.862286i \(-0.330968\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.13487i 0.0418033i
\(738\) 0 0
\(739\) −19.1792 −0.705519 −0.352760 0.935714i \(-0.614757\pi\)
−0.352760 + 0.935714i \(0.614757\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.2735i 1.62424i −0.583493 0.812119i \(-0.698314\pi\)
0.583493 0.812119i \(-0.301686\pi\)
\(744\) 0 0
\(745\) 10.1414 + 32.1674i 0.371552 + 1.17852i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.34588 0.122256
\(750\) 0 0
\(751\) −11.0139 −0.401901 −0.200951 0.979601i \(-0.564403\pi\)
−0.200951 + 0.979601i \(0.564403\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.50177 20.6229i −0.236623 0.750544i
\(756\) 0 0
\(757\) 33.2491i 1.20846i −0.796811 0.604229i \(-0.793481\pi\)
0.796811 0.604229i \(-0.206519\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 32.7798 1.18827 0.594133 0.804367i \(-0.297495\pi\)
0.594133 + 0.804367i \(0.297495\pi\)
\(762\) 0 0
\(763\) 67.5768i 2.44645i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29.3789i 1.06081i
\(768\) 0 0
\(769\) −32.8054 −1.18299 −0.591496 0.806308i \(-0.701463\pi\)
−0.591496 + 0.806308i \(0.701463\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.6815i 1.31934i 0.751554 + 0.659672i \(0.229305\pi\)
−0.751554 + 0.659672i \(0.770695\pi\)
\(774\) 0 0
\(775\) −13.4090 + 9.38803i −0.481667 + 0.337228i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −19.8601 −0.711560
\(780\) 0 0
\(781\) −2.93974 −0.105192
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.1051 5.07745i 0.574817 0.181222i
\(786\) 0 0
\(787\) 2.99903i 0.106904i 0.998570 + 0.0534519i \(0.0170224\pi\)
−0.998570 + 0.0534519i \(0.982978\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 43.2842 1.53901
\(792\) 0 0
\(793\) 7.88539i 0.280018i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 44.1996i 1.56563i 0.622255 + 0.782815i \(0.286217\pi\)
−0.622255 + 0.782815i \(0.713783\pi\)
\(798\) 0 0
\(799\) −21.6919 −0.767405
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.33377i 0.152935i
\(804\) 0 0
\(805\) 18.1218 + 57.4804i 0.638710 + 2.02592i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −14.2774 −0.501966 −0.250983 0.967992i \(-0.580754\pi\)
−0.250983 + 0.967992i \(0.580754\pi\)
\(810\) 0 0
\(811\) 40.2885 1.41472 0.707359 0.706854i \(-0.249886\pi\)
0.707359 + 0.706854i \(0.249886\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 31.0614 9.79270i 1.08803 0.343023i
\(816\) 0 0
\(817\) 14.0925i 0.493033i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.5173 −1.06506 −0.532531 0.846411i \(-0.678759\pi\)
−0.532531 + 0.846411i \(0.678759\pi\)
\(822\) 0 0
\(823\) 21.8216i 0.760654i −0.924852 0.380327i \(-0.875811\pi\)
0.924852 0.380327i \(-0.124189\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.0668i 1.60190i −0.598732 0.800949i \(-0.704329\pi\)
0.598732 0.800949i \(-0.295671\pi\)
\(828\) 0 0
\(829\) 28.4791 0.989119 0.494560 0.869144i \(-0.335329\pi\)
0.494560 + 0.869144i \(0.335329\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.6756i 0.439183i
\(834\) 0 0
\(835\) 45.8463 14.4539i 1.58658 0.500199i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.01118 −0.0349098 −0.0174549 0.999848i \(-0.505556\pi\)
−0.0174549 + 0.999848i \(0.505556\pi\)
\(840\) 0 0
\(841\) 68.6995 2.36895
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.68403 + 18.0291i 0.195537 + 0.620221i
\(846\) 0 0
\(847\) 39.3416i 1.35179i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.43110 −0.254735
\(852\) 0 0
\(853\) 4.06708i 0.139254i 0.997573 + 0.0696271i \(0.0221809\pi\)
−0.997573 + 0.0696271i \(0.977819\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38.5658i 1.31738i −0.752413 0.658691i \(-0.771110\pi\)
0.752413 0.658691i \(-0.228890\pi\)
\(858\) 0 0
\(859\) −3.74753 −0.127864 −0.0639320 0.997954i \(-0.520364\pi\)
−0.0639320 + 0.997954i \(0.520364\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.91226i 0.0991344i −0.998771 0.0495672i \(-0.984216\pi\)
0.998771 0.0495672i \(-0.0157842\pi\)
\(864\) 0 0
\(865\) 11.7892 3.71678i 0.400846 0.126374i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.28156 0.213087
\(870\) 0 0
\(871\) 6.17787 0.209329
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 24.6892 32.1702i 0.834646 1.08755i
\(876\) 0 0
\(877\) 9.49885i 0.320753i 0.987056 + 0.160377i \(0.0512709\pi\)
−0.987056 + 0.160377i \(0.948729\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 24.9892 0.841907 0.420954 0.907082i \(-0.361696\pi\)
0.420954 + 0.907082i \(0.361696\pi\)
\(882\) 0 0
\(883\) 45.0505i 1.51607i −0.652213 0.758036i \(-0.726159\pi\)
0.652213 0.758036i \(-0.273841\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 54.1959i 1.81972i 0.414915 + 0.909860i \(0.363811\pi\)
−0.414915 + 0.909860i \(0.636189\pi\)
\(888\) 0 0
\(889\) 67.4223 2.26127
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 31.3545i 1.04924i
\(894\) 0 0
\(895\) −13.2085 41.8961i −0.441513 1.40043i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −32.3588 −1.07923
\(900\) 0 0
\(901\) −2.76873 −0.0922399
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.1535 32.2058i −0.337513 1.07056i
\(906\) 0 0
\(907\) 4.36042i 0.144785i 0.997376 + 0.0723927i \(0.0230635\pi\)
−0.997376 + 0.0723927i \(0.976937\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.3187 0.507531 0.253766 0.967266i \(-0.418331\pi\)
0.253766 + 0.967266i \(0.418331\pi\)
\(912\) 0 0
\(913\) 3.08796i 0.102197i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.8151i 0.720397i
\(918\) 0 0
\(919\) −19.8290 −0.654097 −0.327049 0.945007i \(-0.606054\pi\)
−0.327049 + 0.945007i \(0.606054\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.0030i 0.526746i
\(924\) 0 0
\(925\) 2.86766 + 4.09591i 0.0942881 + 0.134673i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 41.6818 1.36754 0.683768 0.729699i \(-0.260340\pi\)
0.683768 + 0.729699i \(0.260340\pi\)
\(930\) 0 0
\(931\) −18.3219 −0.600476
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.71992 0.542238i 0.0562474 0.0177331i
\(936\) 0 0
\(937\) 24.0501i 0.785682i 0.919607 + 0.392841i \(0.128508\pi\)
−0.919607 + 0.392841i \(0.871492\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −43.5451 −1.41953 −0.709764 0.704439i \(-0.751199\pi\)
−0.709764 + 0.704439i \(0.751199\pi\)
\(942\) 0 0
\(943\) 49.5847i 1.61470i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 51.9175i 1.68709i −0.537056 0.843546i \(-0.680464\pi\)
0.537056 0.843546i \(-0.319536\pi\)
\(948\) 0 0
\(949\) 23.5917 0.765819
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.2220i 0.784628i −0.919831 0.392314i \(-0.871675\pi\)
0.919831 0.392314i \(-0.128325\pi\)
\(954\) 0 0
\(955\) −1.78893 5.67430i −0.0578884 0.183616i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −79.1696 −2.55652
\(960\) 0 0
\(961\) −20.2825 −0.654275
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.1485 + 3.83005i −0.391074 + 0.123294i
\(966\) 0 0
\(967\) 41.1738i 1.32406i 0.749477 + 0.662031i \(0.230305\pi\)
−0.749477 + 0.662031i \(0.769695\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.7115 0.375839 0.187919 0.982184i \(-0.439826\pi\)
0.187919 + 0.982184i \(0.439826\pi\)
\(972\) 0 0
\(973\) 23.7050i 0.759949i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 46.1536i 1.47658i 0.674482 + 0.738292i \(0.264367\pi\)
−0.674482 + 0.738292i \(0.735633\pi\)
\(978\) 0 0
\(979\) −3.87119 −0.123724
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.18675i 0.0378513i 0.999821 + 0.0189257i \(0.00602458\pi\)
−0.999821 + 0.0189257i \(0.993975\pi\)
\(984\) 0 0
\(985\) −14.9989 + 4.72868i −0.477904 + 0.150668i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 35.1847 1.11881
\(990\) 0 0
\(991\) −44.7223 −1.42065 −0.710325 0.703874i \(-0.751452\pi\)
−0.710325 + 0.703874i \(0.751452\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.59702 30.4407i −0.304246 0.965036i
\(996\) 0 0
\(997\) 48.4016i 1.53289i −0.642308 0.766446i \(-0.722023\pi\)
0.642308 0.766446i \(-0.277977\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6660.2.f.c.5329.12 18
3.2 odd 2 740.2.d.a.149.11 yes 18
5.4 even 2 inner 6660.2.f.c.5329.11 18
15.2 even 4 3700.2.a.p.1.6 9
15.8 even 4 3700.2.a.o.1.4 9
15.14 odd 2 740.2.d.a.149.8 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.d.a.149.8 18 15.14 odd 2
740.2.d.a.149.11 yes 18 3.2 odd 2
3700.2.a.o.1.4 9 15.8 even 4
3700.2.a.p.1.6 9 15.2 even 4
6660.2.f.c.5329.11 18 5.4 even 2 inner
6660.2.f.c.5329.12 18 1.1 even 1 trivial