Properties

Label 6660.2.a.v.1.3
Level $6660$
Weight $2$
Character 6660.1
Self dual yes
Analytic conductor $53.180$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6660,2,Mod(1,6660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6660.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6660, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6660 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6660.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,5,0,0,0,0,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.1803677462\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.10501488.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 17x^{3} - 13x^{2} + 19x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.45735\) of defining polynomial
Character \(\chi\) \(=\) 6660.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +0.923694 q^{7} -3.45735 q^{11} +0.823530 q^{13} +3.65972 q^{17} +2.92736 q^{19} +8.13193 q^{23} +1.00000 q^{25} +0.0875050 q^{29} -1.54485 q^{31} +0.923694 q^{35} +1.00000 q^{37} +4.51895 q^{41} -11.9422 q^{43} +8.23209 q^{47} -6.14679 q^{49} +2.73236 q^{53} -3.45735 q^{55} -10.4128 q^{59} +6.48487 q^{61} +0.823530 q^{65} +4.38104 q^{67} -9.83101 q^{71} -1.86209 q^{73} -3.19353 q^{77} -1.55751 q^{79} +8.27884 q^{83} +3.65972 q^{85} -2.49591 q^{89} +0.760690 q^{91} +2.92736 q^{95} -3.56322 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{5} - 4 q^{11} - 4 q^{13} + 10 q^{17} - 4 q^{19} - 4 q^{23} + 5 q^{25} - 4 q^{29} + 10 q^{31} + 5 q^{37} + 8 q^{41} - 18 q^{43} + 37 q^{49} + 24 q^{53} - 4 q^{55} + 14 q^{59} + 4 q^{61} - 4 q^{65}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.923694 0.349124 0.174562 0.984646i \(-0.444149\pi\)
0.174562 + 0.984646i \(0.444149\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.45735 −1.04243 −0.521215 0.853426i \(-0.674521\pi\)
−0.521215 + 0.853426i \(0.674521\pi\)
\(12\) 0 0
\(13\) 0.823530 0.228406 0.114203 0.993457i \(-0.463569\pi\)
0.114203 + 0.993457i \(0.463569\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.65972 0.887612 0.443806 0.896123i \(-0.353628\pi\)
0.443806 + 0.896123i \(0.353628\pi\)
\(18\) 0 0
\(19\) 2.92736 0.671582 0.335791 0.941937i \(-0.390996\pi\)
0.335791 + 0.941937i \(0.390996\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.13193 1.69562 0.847812 0.530297i \(-0.177919\pi\)
0.847812 + 0.530297i \(0.177919\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.0875050 0.0162493 0.00812464 0.999967i \(-0.497414\pi\)
0.00812464 + 0.999967i \(0.497414\pi\)
\(30\) 0 0
\(31\) −1.54485 −0.277464 −0.138732 0.990330i \(-0.544303\pi\)
−0.138732 + 0.990330i \(0.544303\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.923694 0.156133
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.51895 0.705742 0.352871 0.935672i \(-0.385205\pi\)
0.352871 + 0.935672i \(0.385205\pi\)
\(42\) 0 0
\(43\) −11.9422 −1.82117 −0.910585 0.413321i \(-0.864369\pi\)
−0.910585 + 0.413321i \(0.864369\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.23209 1.20077 0.600387 0.799710i \(-0.295013\pi\)
0.600387 + 0.799710i \(0.295013\pi\)
\(48\) 0 0
\(49\) −6.14679 −0.878113
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.73236 0.375319 0.187659 0.982234i \(-0.439910\pi\)
0.187659 + 0.982234i \(0.439910\pi\)
\(54\) 0 0
\(55\) −3.45735 −0.466189
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.4128 −1.35563 −0.677816 0.735232i \(-0.737073\pi\)
−0.677816 + 0.735232i \(0.737073\pi\)
\(60\) 0 0
\(61\) 6.48487 0.830302 0.415151 0.909752i \(-0.363729\pi\)
0.415151 + 0.909752i \(0.363729\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.823530 0.102146
\(66\) 0 0
\(67\) 4.38104 0.535230 0.267615 0.963526i \(-0.413765\pi\)
0.267615 + 0.963526i \(0.413765\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.83101 −1.16673 −0.583363 0.812211i \(-0.698264\pi\)
−0.583363 + 0.812211i \(0.698264\pi\)
\(72\) 0 0
\(73\) −1.86209 −0.217941 −0.108971 0.994045i \(-0.534755\pi\)
−0.108971 + 0.994045i \(0.534755\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.19353 −0.363937
\(78\) 0 0
\(79\) −1.55751 −0.175234 −0.0876169 0.996154i \(-0.527925\pi\)
−0.0876169 + 0.996154i \(0.527925\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.27884 0.908720 0.454360 0.890818i \(-0.349868\pi\)
0.454360 + 0.890818i \(0.349868\pi\)
\(84\) 0 0
\(85\) 3.65972 0.396952
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.49591 −0.264566 −0.132283 0.991212i \(-0.542231\pi\)
−0.132283 + 0.991212i \(0.542231\pi\)
\(90\) 0 0
\(91\) 0.760690 0.0797419
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.92736 0.300340
\(96\) 0 0
\(97\) −3.56322 −0.361790 −0.180895 0.983502i \(-0.557899\pi\)
−0.180895 + 0.983502i \(0.557899\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.38104 0.833945 0.416972 0.908919i \(-0.363091\pi\)
0.416972 + 0.908919i \(0.363091\pi\)
\(102\) 0 0
\(103\) 15.7679 1.55366 0.776831 0.629709i \(-0.216826\pi\)
0.776831 + 0.629709i \(0.216826\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.68056 0.452487 0.226244 0.974071i \(-0.427355\pi\)
0.226244 + 0.974071i \(0.427355\pi\)
\(108\) 0 0
\(109\) 8.90204 0.852660 0.426330 0.904568i \(-0.359806\pi\)
0.426330 + 0.904568i \(0.359806\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.18217 0.299354 0.149677 0.988735i \(-0.452177\pi\)
0.149677 + 0.988735i \(0.452177\pi\)
\(114\) 0 0
\(115\) 8.13193 0.758306
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.38046 0.309886
\(120\) 0 0
\(121\) 0.953256 0.0866597
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −16.2268 −1.43989 −0.719946 0.694030i \(-0.755833\pi\)
−0.719946 + 0.694030i \(0.755833\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.6782 1.63193 0.815963 0.578104i \(-0.196207\pi\)
0.815963 + 0.578104i \(0.196207\pi\)
\(132\) 0 0
\(133\) 2.70398 0.234465
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.2506 −0.961205 −0.480602 0.876939i \(-0.659582\pi\)
−0.480602 + 0.876939i \(0.659582\pi\)
\(138\) 0 0
\(139\) 2.78643 0.236342 0.118171 0.992993i \(-0.462297\pi\)
0.118171 + 0.992993i \(0.462297\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.84723 −0.238097
\(144\) 0 0
\(145\) 0.0875050 0.00726690
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.33576 0.764815 0.382408 0.923994i \(-0.375095\pi\)
0.382408 + 0.923994i \(0.375095\pi\)
\(150\) 0 0
\(151\) −19.1468 −1.55814 −0.779072 0.626935i \(-0.784309\pi\)
−0.779072 + 0.626935i \(0.784309\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.54485 −0.124086
\(156\) 0 0
\(157\) 18.6005 1.48448 0.742240 0.670134i \(-0.233764\pi\)
0.742240 + 0.670134i \(0.233764\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.51142 0.591982
\(162\) 0 0
\(163\) 6.05180 0.474014 0.237007 0.971508i \(-0.423834\pi\)
0.237007 + 0.971508i \(0.423834\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.0762 1.70831 0.854153 0.520021i \(-0.174076\pi\)
0.854153 + 0.520021i \(0.174076\pi\)
\(168\) 0 0
\(169\) −12.3218 −0.947831
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.6523 1.49414 0.747070 0.664745i \(-0.231460\pi\)
0.747070 + 0.664745i \(0.231460\pi\)
\(174\) 0 0
\(175\) 0.923694 0.0698247
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.87533 0.214912 0.107456 0.994210i \(-0.465729\pi\)
0.107456 + 0.994210i \(0.465729\pi\)
\(180\) 0 0
\(181\) 24.0147 1.78500 0.892501 0.451046i \(-0.148949\pi\)
0.892501 + 0.451046i \(0.148949\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) −12.6529 −0.925273
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.44265 0.249101 0.124551 0.992213i \(-0.460251\pi\)
0.124551 + 0.992213i \(0.460251\pi\)
\(192\) 0 0
\(193\) 14.9517 1.07625 0.538125 0.842865i \(-0.319133\pi\)
0.538125 + 0.842865i \(0.319133\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.4662 −0.745688 −0.372844 0.927894i \(-0.621617\pi\)
−0.372844 + 0.927894i \(0.621617\pi\)
\(198\) 0 0
\(199\) 16.6419 1.17971 0.589856 0.807509i \(-0.299185\pi\)
0.589856 + 0.807509i \(0.299185\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.0808279 0.00567301
\(204\) 0 0
\(205\) 4.51895 0.315617
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.1209 −0.700077
\(210\) 0 0
\(211\) 2.36004 0.162472 0.0812359 0.996695i \(-0.474113\pi\)
0.0812359 + 0.996695i \(0.474113\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.9422 −0.814452
\(216\) 0 0
\(217\) −1.42697 −0.0968692
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.01389 0.202736
\(222\) 0 0
\(223\) −23.0643 −1.54450 −0.772251 0.635317i \(-0.780869\pi\)
−0.772251 + 0.635317i \(0.780869\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.1741 1.00714 0.503572 0.863953i \(-0.332019\pi\)
0.503572 + 0.863953i \(0.332019\pi\)
\(228\) 0 0
\(229\) 13.5953 0.898400 0.449200 0.893431i \(-0.351709\pi\)
0.449200 + 0.893431i \(0.351709\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0391 1.57485 0.787426 0.616409i \(-0.211413\pi\)
0.787426 + 0.616409i \(0.211413\pi\)
\(234\) 0 0
\(235\) 8.23209 0.537003
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.9674 −1.48564 −0.742819 0.669492i \(-0.766512\pi\)
−0.742819 + 0.669492i \(0.766512\pi\)
\(240\) 0 0
\(241\) −28.0331 −1.80577 −0.902885 0.429881i \(-0.858555\pi\)
−0.902885 + 0.429881i \(0.858555\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.14679 −0.392704
\(246\) 0 0
\(247\) 2.41076 0.153393
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.0654 −1.01404 −0.507020 0.861934i \(-0.669253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(252\) 0 0
\(253\) −28.1149 −1.76757
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.8494 0.739144 0.369572 0.929202i \(-0.379504\pi\)
0.369572 + 0.929202i \(0.379504\pi\)
\(258\) 0 0
\(259\) 0.923694 0.0573956
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.08379 −0.375142 −0.187571 0.982251i \(-0.560062\pi\)
−0.187571 + 0.982251i \(0.560062\pi\)
\(264\) 0 0
\(265\) 2.73236 0.167848
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.1320 1.83718 0.918589 0.395214i \(-0.129329\pi\)
0.918589 + 0.395214i \(0.129329\pi\)
\(270\) 0 0
\(271\) −24.4168 −1.48321 −0.741607 0.670834i \(-0.765936\pi\)
−0.741607 + 0.670834i \(0.765936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.45735 −0.208486
\(276\) 0 0
\(277\) 23.0259 1.38349 0.691747 0.722140i \(-0.256841\pi\)
0.691747 + 0.722140i \(0.256841\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.1466 1.55978 0.779889 0.625918i \(-0.215276\pi\)
0.779889 + 0.625918i \(0.215276\pi\)
\(282\) 0 0
\(283\) −16.5975 −0.986617 −0.493308 0.869855i \(-0.664213\pi\)
−0.493308 + 0.869855i \(0.664213\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.17413 0.246391
\(288\) 0 0
\(289\) −3.60646 −0.212145
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.3209 −0.719797 −0.359898 0.932991i \(-0.617189\pi\)
−0.359898 + 0.932991i \(0.617189\pi\)
\(294\) 0 0
\(295\) −10.4128 −0.606257
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.69688 0.387291
\(300\) 0 0
\(301\) −11.0310 −0.635814
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.48487 0.371323
\(306\) 0 0
\(307\) −13.3920 −0.764320 −0.382160 0.924096i \(-0.624820\pi\)
−0.382160 + 0.924096i \(0.624820\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.3565 1.09761 0.548803 0.835952i \(-0.315084\pi\)
0.548803 + 0.835952i \(0.315084\pi\)
\(312\) 0 0
\(313\) −11.2025 −0.633204 −0.316602 0.948558i \(-0.602542\pi\)
−0.316602 + 0.948558i \(0.602542\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.4051 0.809069 0.404534 0.914523i \(-0.367434\pi\)
0.404534 + 0.914523i \(0.367434\pi\)
\(318\) 0 0
\(319\) −0.302535 −0.0169387
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.7133 0.596104
\(324\) 0 0
\(325\) 0.823530 0.0456812
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.60394 0.419219
\(330\) 0 0
\(331\) −10.9274 −0.600622 −0.300311 0.953841i \(-0.597090\pi\)
−0.300311 + 0.953841i \(0.597090\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.38104 0.239362
\(336\) 0 0
\(337\) −11.8413 −0.645037 −0.322519 0.946563i \(-0.604530\pi\)
−0.322519 + 0.946563i \(0.604530\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.34110 0.289237
\(342\) 0 0
\(343\) −12.1436 −0.655693
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.67238 −0.197144 −0.0985718 0.995130i \(-0.531427\pi\)
−0.0985718 + 0.995130i \(0.531427\pi\)
\(348\) 0 0
\(349\) −14.5150 −0.776971 −0.388485 0.921455i \(-0.627002\pi\)
−0.388485 + 0.921455i \(0.627002\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.39957 −0.287390 −0.143695 0.989622i \(-0.545898\pi\)
−0.143695 + 0.989622i \(0.545898\pi\)
\(354\) 0 0
\(355\) −9.83101 −0.521776
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.4001 0.865567 0.432783 0.901498i \(-0.357532\pi\)
0.432783 + 0.901498i \(0.357532\pi\)
\(360\) 0 0
\(361\) −10.4306 −0.548978
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.86209 −0.0974662
\(366\) 0 0
\(367\) 33.7970 1.76419 0.882094 0.471074i \(-0.156134\pi\)
0.882094 + 0.471074i \(0.156134\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.52387 0.131033
\(372\) 0 0
\(373\) −20.7902 −1.07648 −0.538238 0.842793i \(-0.680910\pi\)
−0.538238 + 0.842793i \(0.680910\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.0720630 0.00371143
\(378\) 0 0
\(379\) 21.8080 1.12020 0.560100 0.828425i \(-0.310763\pi\)
0.560100 + 0.828425i \(0.310763\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −38.3834 −1.96130 −0.980651 0.195763i \(-0.937282\pi\)
−0.980651 + 0.195763i \(0.937282\pi\)
\(384\) 0 0
\(385\) −3.19353 −0.162757
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.96620 0.201094 0.100547 0.994932i \(-0.467941\pi\)
0.100547 + 0.994932i \(0.467941\pi\)
\(390\) 0 0
\(391\) 29.7606 1.50506
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.55751 −0.0783670
\(396\) 0 0
\(397\) 0.960739 0.0482181 0.0241091 0.999709i \(-0.492325\pi\)
0.0241091 + 0.999709i \(0.492325\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.42025 0.270674 0.135337 0.990800i \(-0.456788\pi\)
0.135337 + 0.990800i \(0.456788\pi\)
\(402\) 0 0
\(403\) −1.27223 −0.0633744
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.45735 −0.171374
\(408\) 0 0
\(409\) −4.42913 −0.219006 −0.109503 0.993986i \(-0.534926\pi\)
−0.109503 + 0.993986i \(0.534926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.61825 −0.473283
\(414\) 0 0
\(415\) 8.27884 0.406392
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.7286 1.06151 0.530755 0.847525i \(-0.321908\pi\)
0.530755 + 0.847525i \(0.321908\pi\)
\(420\) 0 0
\(421\) 28.2135 1.37504 0.687520 0.726166i \(-0.258699\pi\)
0.687520 + 0.726166i \(0.258699\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.65972 0.177522
\(426\) 0 0
\(427\) 5.99004 0.289878
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.4573 −0.551878 −0.275939 0.961175i \(-0.588989\pi\)
−0.275939 + 0.961175i \(0.588989\pi\)
\(432\) 0 0
\(433\) 11.4516 0.550328 0.275164 0.961397i \(-0.411268\pi\)
0.275164 + 0.961397i \(0.411268\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.8050 1.13875
\(438\) 0 0
\(439\) 35.7950 1.70840 0.854202 0.519942i \(-0.174046\pi\)
0.854202 + 0.519942i \(0.174046\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.5894 −0.598142 −0.299071 0.954231i \(-0.596677\pi\)
−0.299071 + 0.954231i \(0.596677\pi\)
\(444\) 0 0
\(445\) −2.49591 −0.118317
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.1016 0.476722 0.238361 0.971177i \(-0.423390\pi\)
0.238361 + 0.971177i \(0.423390\pi\)
\(450\) 0 0
\(451\) −15.6236 −0.735686
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.760690 0.0356617
\(456\) 0 0
\(457\) −16.8894 −0.790052 −0.395026 0.918670i \(-0.629264\pi\)
−0.395026 + 0.918670i \(0.629264\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.60801 0.354340 0.177170 0.984180i \(-0.443306\pi\)
0.177170 + 0.984180i \(0.443306\pi\)
\(462\) 0 0
\(463\) −13.0673 −0.607289 −0.303645 0.952785i \(-0.598204\pi\)
−0.303645 + 0.952785i \(0.598204\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.9887 −0.647321 −0.323661 0.946173i \(-0.604914\pi\)
−0.323661 + 0.946173i \(0.604914\pi\)
\(468\) 0 0
\(469\) 4.04674 0.186861
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 41.2884 1.89844
\(474\) 0 0
\(475\) 2.92736 0.134316
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.0947 0.598313 0.299156 0.954204i \(-0.403295\pi\)
0.299156 + 0.954204i \(0.403295\pi\)
\(480\) 0 0
\(481\) 0.823530 0.0375497
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.56322 −0.161797
\(486\) 0 0
\(487\) −6.48993 −0.294087 −0.147043 0.989130i \(-0.546976\pi\)
−0.147043 + 0.989130i \(0.546976\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.4181 0.560423 0.280211 0.959938i \(-0.409595\pi\)
0.280211 + 0.959938i \(0.409595\pi\)
\(492\) 0 0
\(493\) 0.320244 0.0144231
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.08085 −0.407332
\(498\) 0 0
\(499\) 24.5618 1.09954 0.549768 0.835318i \(-0.314716\pi\)
0.549768 + 0.835318i \(0.314716\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.19709 −0.0979633 −0.0489817 0.998800i \(-0.515598\pi\)
−0.0489817 + 0.998800i \(0.515598\pi\)
\(504\) 0 0
\(505\) 8.38104 0.372951
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.9624 0.751846 0.375923 0.926651i \(-0.377326\pi\)
0.375923 + 0.926651i \(0.377326\pi\)
\(510\) 0 0
\(511\) −1.72000 −0.0760884
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.7679 0.694819
\(516\) 0 0
\(517\) −28.4612 −1.25172
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.2031 −0.797493 −0.398746 0.917061i \(-0.630555\pi\)
−0.398746 + 0.917061i \(0.630555\pi\)
\(522\) 0 0
\(523\) 15.9547 0.697648 0.348824 0.937188i \(-0.386581\pi\)
0.348824 + 0.937188i \(0.386581\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.65373 −0.246280
\(528\) 0 0
\(529\) 43.1283 1.87514
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.72149 0.161196
\(534\) 0 0
\(535\) 4.68056 0.202358
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21.2516 0.915371
\(540\) 0 0
\(541\) 0.179326 0.00770982 0.00385491 0.999993i \(-0.498773\pi\)
0.00385491 + 0.999993i \(0.498773\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.90204 0.381321
\(546\) 0 0
\(547\) 28.0414 1.19897 0.599483 0.800388i \(-0.295373\pi\)
0.599483 + 0.800388i \(0.295373\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.256158 0.0109127
\(552\) 0 0
\(553\) −1.43867 −0.0611783
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.8096 −0.585133 −0.292567 0.956245i \(-0.594509\pi\)
−0.292567 + 0.956245i \(0.594509\pi\)
\(558\) 0 0
\(559\) −9.83477 −0.415966
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.7832 −0.538749 −0.269374 0.963036i \(-0.586817\pi\)
−0.269374 + 0.963036i \(0.586817\pi\)
\(564\) 0 0
\(565\) 3.18217 0.133875
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.0193 0.503877 0.251938 0.967743i \(-0.418932\pi\)
0.251938 + 0.967743i \(0.418932\pi\)
\(570\) 0 0
\(571\) −13.1097 −0.548626 −0.274313 0.961641i \(-0.588450\pi\)
−0.274313 + 0.961641i \(0.588450\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.13193 0.339125
\(576\) 0 0
\(577\) 1.09129 0.0454308 0.0227154 0.999742i \(-0.492769\pi\)
0.0227154 + 0.999742i \(0.492769\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.64711 0.317256
\(582\) 0 0
\(583\) −9.44673 −0.391244
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.4252 1.00814 0.504068 0.863664i \(-0.331836\pi\)
0.504068 + 0.863664i \(0.331836\pi\)
\(588\) 0 0
\(589\) −4.52234 −0.186340
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.9077 0.899642 0.449821 0.893119i \(-0.351488\pi\)
0.449821 + 0.893119i \(0.351488\pi\)
\(594\) 0 0
\(595\) 3.38046 0.138585
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.0565 −1.06464 −0.532319 0.846544i \(-0.678679\pi\)
−0.532319 + 0.846544i \(0.678679\pi\)
\(600\) 0 0
\(601\) −31.7852 −1.29655 −0.648273 0.761408i \(-0.724509\pi\)
−0.648273 + 0.761408i \(0.724509\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.953256 0.0387554
\(606\) 0 0
\(607\) 36.8353 1.49510 0.747548 0.664207i \(-0.231231\pi\)
0.747548 + 0.664207i \(0.231231\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.77937 0.274264
\(612\) 0 0
\(613\) −13.4797 −0.544440 −0.272220 0.962235i \(-0.587758\pi\)
−0.272220 + 0.962235i \(0.587758\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.1224 −0.528290 −0.264145 0.964483i \(-0.585090\pi\)
−0.264145 + 0.964483i \(0.585090\pi\)
\(618\) 0 0
\(619\) −38.0592 −1.52973 −0.764864 0.644191i \(-0.777194\pi\)
−0.764864 + 0.644191i \(0.777194\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.30546 −0.0923661
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.65972 0.145923
\(630\) 0 0
\(631\) 21.0119 0.836470 0.418235 0.908339i \(-0.362649\pi\)
0.418235 + 0.908339i \(0.362649\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.2268 −0.643939
\(636\) 0 0
\(637\) −5.06206 −0.200566
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.7799 1.21573 0.607866 0.794039i \(-0.292026\pi\)
0.607866 + 0.794039i \(0.292026\pi\)
\(642\) 0 0
\(643\) 7.70284 0.303770 0.151885 0.988398i \(-0.451466\pi\)
0.151885 + 0.988398i \(0.451466\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.2642 −0.953923 −0.476962 0.878924i \(-0.658262\pi\)
−0.476962 + 0.878924i \(0.658262\pi\)
\(648\) 0 0
\(649\) 36.0007 1.41315
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.3568 1.30535 0.652676 0.757637i \(-0.273646\pi\)
0.652676 + 0.757637i \(0.273646\pi\)
\(654\) 0 0
\(655\) 18.6782 0.729819
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.9913 −0.622933 −0.311467 0.950257i \(-0.600820\pi\)
−0.311467 + 0.950257i \(0.600820\pi\)
\(660\) 0 0
\(661\) −4.53064 −0.176221 −0.0881107 0.996111i \(-0.528083\pi\)
−0.0881107 + 0.996111i \(0.528083\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.70398 0.104856
\(666\) 0 0
\(667\) 0.711585 0.0275527
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.4204 −0.865532
\(672\) 0 0
\(673\) −24.4449 −0.942281 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.4851 −1.05634 −0.528169 0.849140i \(-0.677121\pi\)
−0.528169 + 0.849140i \(0.677121\pi\)
\(678\) 0 0
\(679\) −3.29132 −0.126309
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.12351 0.119518 0.0597589 0.998213i \(-0.480967\pi\)
0.0597589 + 0.998213i \(0.480967\pi\)
\(684\) 0 0
\(685\) −11.2506 −0.429864
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.25018 0.0857251
\(690\) 0 0
\(691\) 41.3469 1.57291 0.786455 0.617648i \(-0.211914\pi\)
0.786455 + 0.617648i \(0.211914\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.78643 0.105695
\(696\) 0 0
\(697\) 16.5381 0.626425
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −31.2898 −1.18180 −0.590900 0.806745i \(-0.701227\pi\)
−0.590900 + 0.806745i \(0.701227\pi\)
\(702\) 0 0
\(703\) 2.92736 0.110407
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.74152 0.291150
\(708\) 0 0
\(709\) 16.4866 0.619167 0.309583 0.950872i \(-0.399810\pi\)
0.309583 + 0.950872i \(0.399810\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.5626 −0.470474
\(714\) 0 0
\(715\) −2.84723 −0.106480
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.5673 0.431387 0.215694 0.976461i \(-0.430799\pi\)
0.215694 + 0.976461i \(0.430799\pi\)
\(720\) 0 0
\(721\) 14.5648 0.542420
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.0875050 0.00324986
\(726\) 0 0
\(727\) −32.3590 −1.20013 −0.600065 0.799952i \(-0.704858\pi\)
−0.600065 + 0.799952i \(0.704858\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −43.7052 −1.61649
\(732\) 0 0
\(733\) −6.41490 −0.236940 −0.118470 0.992958i \(-0.537799\pi\)
−0.118470 + 0.992958i \(0.537799\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.1468 −0.557939
\(738\) 0 0
\(739\) −12.6411 −0.465012 −0.232506 0.972595i \(-0.574693\pi\)
−0.232506 + 0.972595i \(0.574693\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.7659 0.578393 0.289197 0.957270i \(-0.406612\pi\)
0.289197 + 0.957270i \(0.406612\pi\)
\(744\) 0 0
\(745\) 9.33576 0.342036
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.32341 0.157974
\(750\) 0 0
\(751\) −36.4672 −1.33071 −0.665354 0.746528i \(-0.731719\pi\)
−0.665354 + 0.746528i \(0.731719\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −19.1468 −0.696823
\(756\) 0 0
\(757\) −35.9379 −1.30619 −0.653093 0.757278i \(-0.726529\pi\)
−0.653093 + 0.757278i \(0.726529\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −46.3794 −1.68125 −0.840627 0.541615i \(-0.817813\pi\)
−0.840627 + 0.541615i \(0.817813\pi\)
\(762\) 0 0
\(763\) 8.22276 0.297684
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.57525 −0.309634
\(768\) 0 0
\(769\) 32.0497 1.15574 0.577871 0.816128i \(-0.303884\pi\)
0.577871 + 0.816128i \(0.303884\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.7858 0.387937 0.193969 0.981008i \(-0.437864\pi\)
0.193969 + 0.981008i \(0.437864\pi\)
\(774\) 0 0
\(775\) −1.54485 −0.0554928
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.2286 0.473963
\(780\) 0 0
\(781\) 33.9892 1.21623
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 18.6005 0.663879
\(786\) 0 0
\(787\) −10.2712 −0.366130 −0.183065 0.983101i \(-0.558602\pi\)
−0.183065 + 0.983101i \(0.558602\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.93936 0.104511
\(792\) 0 0
\(793\) 5.34048 0.189646
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.4822 0.973471 0.486736 0.873549i \(-0.338188\pi\)
0.486736 + 0.873549i \(0.338188\pi\)
\(798\) 0 0
\(799\) 30.1271 1.06582
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.43789 0.227188
\(804\) 0 0
\(805\) 7.51142 0.264743
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.6653 −0.374970 −0.187485 0.982267i \(-0.560034\pi\)
−0.187485 + 0.982267i \(0.560034\pi\)
\(810\) 0 0
\(811\) −51.1571 −1.79637 −0.898185 0.439618i \(-0.855114\pi\)
−0.898185 + 0.439618i \(0.855114\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.05180 0.211985
\(816\) 0 0
\(817\) −34.9591 −1.22306
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 43.4963 1.51803 0.759016 0.651072i \(-0.225680\pi\)
0.759016 + 0.651072i \(0.225680\pi\)
\(822\) 0 0
\(823\) −9.14151 −0.318653 −0.159326 0.987226i \(-0.550932\pi\)
−0.159326 + 0.987226i \(0.550932\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.49176 −0.330061 −0.165030 0.986288i \(-0.552772\pi\)
−0.165030 + 0.986288i \(0.552772\pi\)
\(828\) 0 0
\(829\) 56.1495 1.95015 0.975076 0.221873i \(-0.0712171\pi\)
0.975076 + 0.221873i \(0.0712171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −22.4955 −0.779424
\(834\) 0 0
\(835\) 22.0762 0.763978
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.0864 −0.762509 −0.381254 0.924470i \(-0.624508\pi\)
−0.381254 + 0.924470i \(0.624508\pi\)
\(840\) 0 0
\(841\) −28.9923 −0.999736
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.3218 −0.423883
\(846\) 0 0
\(847\) 0.880517 0.0302549
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.13193 0.278759
\(852\) 0 0
\(853\) −45.0263 −1.54167 −0.770835 0.637035i \(-0.780161\pi\)
−0.770835 + 0.637035i \(0.780161\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.9896 −0.409556 −0.204778 0.978808i \(-0.565647\pi\)
−0.204778 + 0.978808i \(0.565647\pi\)
\(858\) 0 0
\(859\) 30.0104 1.02394 0.511971 0.859002i \(-0.328915\pi\)
0.511971 + 0.859002i \(0.328915\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −50.7888 −1.72887 −0.864435 0.502744i \(-0.832324\pi\)
−0.864435 + 0.502744i \(0.832324\pi\)
\(864\) 0 0
\(865\) 19.6523 0.668200
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.38486 0.182669
\(870\) 0 0
\(871\) 3.60792 0.122250
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.923694 0.0312266
\(876\) 0 0
\(877\) −41.6117 −1.40513 −0.702563 0.711621i \(-0.747961\pi\)
−0.702563 + 0.711621i \(0.747961\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −20.3810 −0.686655 −0.343327 0.939216i \(-0.611554\pi\)
−0.343327 + 0.939216i \(0.611554\pi\)
\(882\) 0 0
\(883\) −18.0761 −0.608309 −0.304154 0.952623i \(-0.598374\pi\)
−0.304154 + 0.952623i \(0.598374\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.2666 1.38560 0.692799 0.721131i \(-0.256377\pi\)
0.692799 + 0.721131i \(0.256377\pi\)
\(888\) 0 0
\(889\) −14.9886 −0.502700
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 24.0983 0.806418
\(894\) 0 0
\(895\) 2.87533 0.0961117
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.135182 −0.00450859
\(900\) 0 0
\(901\) 9.99968 0.333138
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.0147 0.798277
\(906\) 0 0
\(907\) −38.7872 −1.28791 −0.643953 0.765065i \(-0.722707\pi\)
−0.643953 + 0.765065i \(0.722707\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −47.4805 −1.57310 −0.786549 0.617528i \(-0.788134\pi\)
−0.786549 + 0.617528i \(0.788134\pi\)
\(912\) 0 0
\(913\) −28.6228 −0.947277
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 17.2530 0.569744
\(918\) 0 0
\(919\) 27.9927 0.923393 0.461697 0.887038i \(-0.347241\pi\)
0.461697 + 0.887038i \(0.347241\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.09613 −0.266487
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.5280 0.476647 0.238323 0.971186i \(-0.423402\pi\)
0.238323 + 0.971186i \(0.423402\pi\)
\(930\) 0 0
\(931\) −17.9938 −0.589724
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.6529 −0.413795
\(936\) 0 0
\(937\) 60.9338 1.99062 0.995311 0.0967285i \(-0.0308379\pi\)
0.995311 + 0.0967285i \(0.0308379\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.7754 1.00325 0.501624 0.865086i \(-0.332736\pi\)
0.501624 + 0.865086i \(0.332736\pi\)
\(942\) 0 0
\(943\) 36.7478 1.19667
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −50.6092 −1.64458 −0.822290 0.569069i \(-0.807304\pi\)
−0.822290 + 0.569069i \(0.807304\pi\)
\(948\) 0 0
\(949\) −1.53349 −0.0497791
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15.7362 −0.509746 −0.254873 0.966974i \(-0.582034\pi\)
−0.254873 + 0.966974i \(0.582034\pi\)
\(954\) 0 0
\(955\) 3.44265 0.111401
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.3921 −0.335579
\(960\) 0 0
\(961\) −28.6134 −0.923014
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.9517 0.481314
\(966\) 0 0
\(967\) 11.4163 0.367125 0.183562 0.983008i \(-0.441237\pi\)
0.183562 + 0.983008i \(0.441237\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −46.2916 −1.48557 −0.742784 0.669531i \(-0.766495\pi\)
−0.742784 + 0.669531i \(0.766495\pi\)
\(972\) 0 0
\(973\) 2.57381 0.0825125
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0661 1.34581 0.672906 0.739728i \(-0.265046\pi\)
0.672906 + 0.739728i \(0.265046\pi\)
\(978\) 0 0
\(979\) 8.62922 0.275791
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.45387 0.0463711 0.0231855 0.999731i \(-0.492619\pi\)
0.0231855 + 0.999731i \(0.492619\pi\)
\(984\) 0 0
\(985\) −10.4662 −0.333482
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −97.1132 −3.08802
\(990\) 0 0
\(991\) −20.2131 −0.642090 −0.321045 0.947064i \(-0.604034\pi\)
−0.321045 + 0.947064i \(0.604034\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.6419 0.527583
\(996\) 0 0
\(997\) 5.22390 0.165443 0.0827213 0.996573i \(-0.473639\pi\)
0.0827213 + 0.996573i \(0.473639\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6660.2.a.v.1.3 yes 5
3.2 odd 2 6660.2.a.t.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6660.2.a.t.1.3 5 3.2 odd 2
6660.2.a.v.1.3 yes 5 1.1 even 1 trivial