Properties

Label 6660.2.a.u.1.5
Level $6660$
Weight $2$
Character 6660.1
Self dual yes
Analytic conductor $53.180$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6660,2,Mod(1,6660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6660, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6660.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6660 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6660.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-5,0,0,0,0,0,4,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.1803677462\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2240944.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 11x^{3} + 17x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.85539\) of defining polynomial
Character \(\chi\) \(=\) 6660.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +2.46535 q^{7} +3.32875 q^{11} +6.26208 q^{13} +5.40669 q^{17} -2.30409 q^{19} +4.01665 q^{23} +1.00000 q^{25} +7.59393 q^{29} +0.640850 q^{31} -2.46535 q^{35} -1.00000 q^{37} +6.34803 q^{41} -7.47662 q^{43} -2.88269 q^{47} -0.922059 q^{49} +12.3436 q^{53} -3.32875 q^{55} -3.57418 q^{59} +4.62483 q^{61} -6.26208 q^{65} -9.89539 q^{67} +3.79410 q^{71} -12.9222 q^{73} +8.20653 q^{77} +6.14883 q^{79} -7.49686 q^{83} -5.40669 q^{85} -3.75519 q^{89} +15.4382 q^{91} +2.30409 q^{95} -13.3187 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{5} + 4 q^{11} - q^{13} + 8 q^{17} - 4 q^{19} + 2 q^{23} + 5 q^{25} + 13 q^{29} - 4 q^{31} - 5 q^{37} + 6 q^{41} + q^{43} - q^{47} - 11 q^{49} + 15 q^{53} - 4 q^{55} + 9 q^{59} - 10 q^{61}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.46535 0.931814 0.465907 0.884834i \(-0.345728\pi\)
0.465907 + 0.884834i \(0.345728\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.32875 1.00366 0.501828 0.864967i \(-0.332661\pi\)
0.501828 + 0.864967i \(0.332661\pi\)
\(12\) 0 0
\(13\) 6.26208 1.73679 0.868394 0.495874i \(-0.165152\pi\)
0.868394 + 0.495874i \(0.165152\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.40669 1.31132 0.655658 0.755058i \(-0.272392\pi\)
0.655658 + 0.755058i \(0.272392\pi\)
\(18\) 0 0
\(19\) −2.30409 −0.528594 −0.264297 0.964441i \(-0.585140\pi\)
−0.264297 + 0.964441i \(0.585140\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.01665 0.837529 0.418765 0.908095i \(-0.362463\pi\)
0.418765 + 0.908095i \(0.362463\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.59393 1.41016 0.705079 0.709129i \(-0.250911\pi\)
0.705079 + 0.709129i \(0.250911\pi\)
\(30\) 0 0
\(31\) 0.640850 0.115100 0.0575500 0.998343i \(-0.481671\pi\)
0.0575500 + 0.998343i \(0.481671\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.46535 −0.416720
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.34803 0.991396 0.495698 0.868495i \(-0.334912\pi\)
0.495698 + 0.868495i \(0.334912\pi\)
\(42\) 0 0
\(43\) −7.47662 −1.14017 −0.570087 0.821584i \(-0.693090\pi\)
−0.570087 + 0.821584i \(0.693090\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.88269 −0.420483 −0.210241 0.977649i \(-0.567425\pi\)
−0.210241 + 0.977649i \(0.567425\pi\)
\(48\) 0 0
\(49\) −0.922059 −0.131723
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.3436 1.69553 0.847763 0.530375i \(-0.177949\pi\)
0.847763 + 0.530375i \(0.177949\pi\)
\(54\) 0 0
\(55\) −3.32875 −0.448849
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.57418 −0.465319 −0.232659 0.972558i \(-0.574743\pi\)
−0.232659 + 0.972558i \(0.574743\pi\)
\(60\) 0 0
\(61\) 4.62483 0.592148 0.296074 0.955165i \(-0.404322\pi\)
0.296074 + 0.955165i \(0.404322\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.26208 −0.776715
\(66\) 0 0
\(67\) −9.89539 −1.20891 −0.604457 0.796638i \(-0.706610\pi\)
−0.604457 + 0.796638i \(0.706610\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.79410 0.450277 0.225138 0.974327i \(-0.427717\pi\)
0.225138 + 0.974327i \(0.427717\pi\)
\(72\) 0 0
\(73\) −12.9222 −1.51243 −0.756215 0.654323i \(-0.772954\pi\)
−0.756215 + 0.654323i \(0.772954\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.20653 0.935221
\(78\) 0 0
\(79\) 6.14883 0.691797 0.345899 0.938272i \(-0.387574\pi\)
0.345899 + 0.938272i \(0.387574\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.49686 −0.822888 −0.411444 0.911435i \(-0.634975\pi\)
−0.411444 + 0.911435i \(0.634975\pi\)
\(84\) 0 0
\(85\) −5.40669 −0.586438
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.75519 −0.398050 −0.199025 0.979994i \(-0.563777\pi\)
−0.199025 + 0.979994i \(0.563777\pi\)
\(90\) 0 0
\(91\) 15.4382 1.61836
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.30409 0.236394
\(96\) 0 0
\(97\) −13.3187 −1.35231 −0.676156 0.736759i \(-0.736355\pi\)
−0.676156 + 0.736759i \(0.736355\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.70752 0.468416 0.234208 0.972187i \(-0.424750\pi\)
0.234208 + 0.972187i \(0.424750\pi\)
\(102\) 0 0
\(103\) −1.98888 −0.195971 −0.0979853 0.995188i \(-0.531240\pi\)
−0.0979853 + 0.995188i \(0.531240\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.68085 0.742536 0.371268 0.928526i \(-0.378923\pi\)
0.371268 + 0.928526i \(0.378923\pi\)
\(108\) 0 0
\(109\) −3.10020 −0.296945 −0.148472 0.988917i \(-0.547436\pi\)
−0.148472 + 0.988917i \(0.547436\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.40732 −0.508677 −0.254339 0.967115i \(-0.581858\pi\)
−0.254339 + 0.967115i \(0.581858\pi\)
\(114\) 0 0
\(115\) −4.01665 −0.374554
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.3294 1.22190
\(120\) 0 0
\(121\) 0.0805750 0.00732500
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 14.1261 1.25349 0.626745 0.779225i \(-0.284387\pi\)
0.626745 + 0.779225i \(0.284387\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −21.4191 −1.87139 −0.935697 0.352805i \(-0.885228\pi\)
−0.935697 + 0.352805i \(0.885228\pi\)
\(132\) 0 0
\(133\) −5.68038 −0.492551
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.1297 −1.12175 −0.560873 0.827902i \(-0.689534\pi\)
−0.560873 + 0.827902i \(0.689534\pi\)
\(138\) 0 0
\(139\) 1.88005 0.159464 0.0797319 0.996816i \(-0.474594\pi\)
0.0797319 + 0.996816i \(0.474594\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 20.8449 1.74314
\(144\) 0 0
\(145\) −7.59393 −0.630642
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.36933 0.194103 0.0970514 0.995279i \(-0.469059\pi\)
0.0970514 + 0.995279i \(0.469059\pi\)
\(150\) 0 0
\(151\) 1.99150 0.162066 0.0810328 0.996711i \(-0.474178\pi\)
0.0810328 + 0.996711i \(0.474178\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.640850 −0.0514743
\(156\) 0 0
\(157\) −15.3405 −1.22431 −0.612153 0.790739i \(-0.709696\pi\)
−0.612153 + 0.790739i \(0.709696\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.90244 0.780422
\(162\) 0 0
\(163\) −1.20916 −0.0947088 −0.0473544 0.998878i \(-0.515079\pi\)
−0.0473544 + 0.998878i \(0.515079\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.10370 −0.627083 −0.313541 0.949575i \(-0.601515\pi\)
−0.313541 + 0.949575i \(0.601515\pi\)
\(168\) 0 0
\(169\) 26.2136 2.01643
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.60291 0.578038 0.289019 0.957323i \(-0.406671\pi\)
0.289019 + 0.957323i \(0.406671\pi\)
\(174\) 0 0
\(175\) 2.46535 0.186363
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.25358 0.542158 0.271079 0.962557i \(-0.412620\pi\)
0.271079 + 0.962557i \(0.412620\pi\)
\(180\) 0 0
\(181\) 4.13709 0.307507 0.153754 0.988109i \(-0.450864\pi\)
0.153754 + 0.988109i \(0.450864\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 17.9975 1.31611
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.04049 −0.292360 −0.146180 0.989258i \(-0.546698\pi\)
−0.146180 + 0.989258i \(0.546698\pi\)
\(192\) 0 0
\(193\) 2.98384 0.214782 0.107391 0.994217i \(-0.465750\pi\)
0.107391 + 0.994217i \(0.465750\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.0792 −1.14559 −0.572797 0.819697i \(-0.694142\pi\)
−0.572797 + 0.819697i \(0.694142\pi\)
\(198\) 0 0
\(199\) −27.1205 −1.92252 −0.961261 0.275641i \(-0.911110\pi\)
−0.961261 + 0.275641i \(0.911110\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.7217 1.31401
\(204\) 0 0
\(205\) −6.34803 −0.443366
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.66973 −0.530526
\(210\) 0 0
\(211\) 27.2005 1.87256 0.936278 0.351259i \(-0.114246\pi\)
0.936278 + 0.351259i \(0.114246\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.47662 0.509901
\(216\) 0 0
\(217\) 1.57992 0.107252
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 33.8571 2.27748
\(222\) 0 0
\(223\) 17.4506 1.16858 0.584291 0.811545i \(-0.301373\pi\)
0.584291 + 0.811545i \(0.301373\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.26568 −0.216750 −0.108375 0.994110i \(-0.534565\pi\)
−0.108375 + 0.994110i \(0.534565\pi\)
\(228\) 0 0
\(229\) −18.4449 −1.21887 −0.609437 0.792835i \(-0.708604\pi\)
−0.609437 + 0.792835i \(0.708604\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.5070 0.688338 0.344169 0.938908i \(-0.388161\pi\)
0.344169 + 0.938908i \(0.388161\pi\)
\(234\) 0 0
\(235\) 2.88269 0.188046
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.0594 −0.974114 −0.487057 0.873370i \(-0.661930\pi\)
−0.487057 + 0.873370i \(0.661930\pi\)
\(240\) 0 0
\(241\) 11.6903 0.753040 0.376520 0.926408i \(-0.377121\pi\)
0.376520 + 0.926408i \(0.377121\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.922059 0.0589082
\(246\) 0 0
\(247\) −14.4284 −0.918056
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.55311 0.287390 0.143695 0.989622i \(-0.454102\pi\)
0.143695 + 0.989622i \(0.454102\pi\)
\(252\) 0 0
\(253\) 13.3704 0.840591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.0482 1.25057 0.625285 0.780396i \(-0.284983\pi\)
0.625285 + 0.780396i \(0.284983\pi\)
\(258\) 0 0
\(259\) −2.46535 −0.153189
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.5277 −0.649168 −0.324584 0.945857i \(-0.605224\pi\)
−0.324584 + 0.945857i \(0.605224\pi\)
\(264\) 0 0
\(265\) −12.3436 −0.758262
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.21695 −0.318083 −0.159041 0.987272i \(-0.550840\pi\)
−0.159041 + 0.987272i \(0.550840\pi\)
\(270\) 0 0
\(271\) −26.2488 −1.59450 −0.797252 0.603647i \(-0.793714\pi\)
−0.797252 + 0.603647i \(0.793714\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.32875 0.200731
\(276\) 0 0
\(277\) 9.00850 0.541269 0.270634 0.962682i \(-0.412767\pi\)
0.270634 + 0.962682i \(0.412767\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.5331 1.28456 0.642280 0.766470i \(-0.277989\pi\)
0.642280 + 0.766470i \(0.277989\pi\)
\(282\) 0 0
\(283\) 4.40489 0.261843 0.130922 0.991393i \(-0.458206\pi\)
0.130922 + 0.991393i \(0.458206\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.6501 0.923797
\(288\) 0 0
\(289\) 12.2323 0.719547
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.34395 0.370617 0.185309 0.982680i \(-0.440672\pi\)
0.185309 + 0.982680i \(0.440672\pi\)
\(294\) 0 0
\(295\) 3.57418 0.208097
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 25.1526 1.45461
\(300\) 0 0
\(301\) −18.4325 −1.06243
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.62483 −0.264817
\(306\) 0 0
\(307\) 19.1121 1.09078 0.545392 0.838181i \(-0.316381\pi\)
0.545392 + 0.838181i \(0.316381\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.23251 0.240004 0.120002 0.992774i \(-0.461710\pi\)
0.120002 + 0.992774i \(0.461710\pi\)
\(312\) 0 0
\(313\) 31.8396 1.79968 0.899841 0.436218i \(-0.143682\pi\)
0.899841 + 0.436218i \(0.143682\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.7740 0.998288 0.499144 0.866519i \(-0.333648\pi\)
0.499144 + 0.866519i \(0.333648\pi\)
\(318\) 0 0
\(319\) 25.2783 1.41531
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.4575 −0.693153
\(324\) 0 0
\(325\) 6.26208 0.347358
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.10682 −0.391812
\(330\) 0 0
\(331\) −3.81974 −0.209952 −0.104976 0.994475i \(-0.533477\pi\)
−0.104976 + 0.994475i \(0.533477\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.89539 0.540643
\(336\) 0 0
\(337\) −16.5372 −0.900839 −0.450420 0.892817i \(-0.648726\pi\)
−0.450420 + 0.892817i \(0.648726\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.13323 0.115521
\(342\) 0 0
\(343\) −19.5306 −1.05456
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.09779 0.381029 0.190515 0.981684i \(-0.438984\pi\)
0.190515 + 0.981684i \(0.438984\pi\)
\(348\) 0 0
\(349\) −4.64505 −0.248644 −0.124322 0.992242i \(-0.539676\pi\)
−0.124322 + 0.992242i \(0.539676\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.88331 −0.526036 −0.263018 0.964791i \(-0.584718\pi\)
−0.263018 + 0.964791i \(0.584718\pi\)
\(354\) 0 0
\(355\) −3.79410 −0.201370
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.86113 −0.151005 −0.0755023 0.997146i \(-0.524056\pi\)
−0.0755023 + 0.997146i \(0.524056\pi\)
\(360\) 0 0
\(361\) −13.6912 −0.720588
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.9222 0.676380
\(366\) 0 0
\(367\) −15.7173 −0.820435 −0.410217 0.911988i \(-0.634547\pi\)
−0.410217 + 0.911988i \(0.634547\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 30.4313 1.57991
\(372\) 0 0
\(373\) 27.9584 1.44763 0.723816 0.689993i \(-0.242386\pi\)
0.723816 + 0.689993i \(0.242386\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 47.5538 2.44915
\(378\) 0 0
\(379\) −2.61344 −0.134243 −0.0671216 0.997745i \(-0.521382\pi\)
−0.0671216 + 0.997745i \(0.521382\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.9795 1.78737 0.893684 0.448697i \(-0.148112\pi\)
0.893684 + 0.448697i \(0.148112\pi\)
\(384\) 0 0
\(385\) −8.20653 −0.418243
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.83767 0.498790 0.249395 0.968402i \(-0.419768\pi\)
0.249395 + 0.968402i \(0.419768\pi\)
\(390\) 0 0
\(391\) 21.7168 1.09826
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.14883 −0.309381
\(396\) 0 0
\(397\) −4.35522 −0.218582 −0.109291 0.994010i \(-0.534858\pi\)
−0.109291 + 0.994010i \(0.534858\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −34.4785 −1.72177 −0.860887 0.508796i \(-0.830091\pi\)
−0.860887 + 0.508796i \(0.830091\pi\)
\(402\) 0 0
\(403\) 4.01305 0.199904
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.32875 −0.165000
\(408\) 0 0
\(409\) −1.38942 −0.0687022 −0.0343511 0.999410i \(-0.510936\pi\)
−0.0343511 + 0.999410i \(0.510936\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.81160 −0.433590
\(414\) 0 0
\(415\) 7.49686 0.368007
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.8454 1.06722 0.533608 0.845732i \(-0.320836\pi\)
0.533608 + 0.845732i \(0.320836\pi\)
\(420\) 0 0
\(421\) 4.64085 0.226181 0.113091 0.993585i \(-0.463925\pi\)
0.113091 + 0.993585i \(0.463925\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.40669 0.262263
\(426\) 0 0
\(427\) 11.4018 0.551772
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.75754 −0.132826 −0.0664130 0.997792i \(-0.521155\pi\)
−0.0664130 + 0.997792i \(0.521155\pi\)
\(432\) 0 0
\(433\) 38.3587 1.84340 0.921702 0.387899i \(-0.126799\pi\)
0.921702 + 0.387899i \(0.126799\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.25471 −0.442713
\(438\) 0 0
\(439\) −30.2457 −1.44355 −0.721774 0.692129i \(-0.756673\pi\)
−0.721774 + 0.692129i \(0.756673\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.7964 −1.13060 −0.565301 0.824885i \(-0.691240\pi\)
−0.565301 + 0.824885i \(0.691240\pi\)
\(444\) 0 0
\(445\) 3.75519 0.178013
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.1295 −1.70506 −0.852529 0.522680i \(-0.824932\pi\)
−0.852529 + 0.522680i \(0.824932\pi\)
\(450\) 0 0
\(451\) 21.1310 0.995021
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.4382 −0.723754
\(456\) 0 0
\(457\) −34.1955 −1.59960 −0.799799 0.600268i \(-0.795061\pi\)
−0.799799 + 0.600268i \(0.795061\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.51405 0.443113 0.221557 0.975147i \(-0.428886\pi\)
0.221557 + 0.975147i \(0.428886\pi\)
\(462\) 0 0
\(463\) −0.406339 −0.0188842 −0.00944208 0.999955i \(-0.503006\pi\)
−0.00944208 + 0.999955i \(0.503006\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.13769 0.145195 0.0725974 0.997361i \(-0.476871\pi\)
0.0725974 + 0.997361i \(0.476871\pi\)
\(468\) 0 0
\(469\) −24.3956 −1.12648
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −24.8878 −1.14434
\(474\) 0 0
\(475\) −2.30409 −0.105719
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.55657 −0.116813 −0.0584063 0.998293i \(-0.518602\pi\)
−0.0584063 + 0.998293i \(0.518602\pi\)
\(480\) 0 0
\(481\) −6.26208 −0.285526
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.3187 0.604772
\(486\) 0 0
\(487\) −2.50984 −0.113732 −0.0568658 0.998382i \(-0.518111\pi\)
−0.0568658 + 0.998382i \(0.518111\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −42.7681 −1.93010 −0.965049 0.262068i \(-0.915596\pi\)
−0.965049 + 0.262068i \(0.915596\pi\)
\(492\) 0 0
\(493\) 41.0581 1.84916
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.35377 0.419574
\(498\) 0 0
\(499\) −0.835615 −0.0374072 −0.0187036 0.999825i \(-0.505954\pi\)
−0.0187036 + 0.999825i \(0.505954\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 30.5245 1.36102 0.680509 0.732739i \(-0.261759\pi\)
0.680509 + 0.732739i \(0.261759\pi\)
\(504\) 0 0
\(505\) −4.70752 −0.209482
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.20785 −0.186510 −0.0932548 0.995642i \(-0.529727\pi\)
−0.0932548 + 0.995642i \(0.529727\pi\)
\(510\) 0 0
\(511\) −31.8578 −1.40930
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.98888 0.0876407
\(516\) 0 0
\(517\) −9.59574 −0.422020
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.66432 0.335780 0.167890 0.985806i \(-0.446305\pi\)
0.167890 + 0.985806i \(0.446305\pi\)
\(522\) 0 0
\(523\) −32.7827 −1.43349 −0.716743 0.697337i \(-0.754368\pi\)
−0.716743 + 0.697337i \(0.754368\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.46488 0.150932
\(528\) 0 0
\(529\) −6.86653 −0.298545
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 39.7519 1.72185
\(534\) 0 0
\(535\) −7.68085 −0.332072
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.06930 −0.132204
\(540\) 0 0
\(541\) −23.6901 −1.01852 −0.509259 0.860613i \(-0.670080\pi\)
−0.509259 + 0.860613i \(0.670080\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.10020 0.132798
\(546\) 0 0
\(547\) 15.0638 0.644083 0.322042 0.946726i \(-0.395631\pi\)
0.322042 + 0.946726i \(0.395631\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −17.4971 −0.745401
\(552\) 0 0
\(553\) 15.1590 0.644627
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.88410 0.122203 0.0611015 0.998132i \(-0.480539\pi\)
0.0611015 + 0.998132i \(0.480539\pi\)
\(558\) 0 0
\(559\) −46.8192 −1.98024
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0920 0.762487 0.381243 0.924475i \(-0.375496\pi\)
0.381243 + 0.924475i \(0.375496\pi\)
\(564\) 0 0
\(565\) 5.40732 0.227487
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 36.5457 1.53208 0.766038 0.642795i \(-0.222225\pi\)
0.766038 + 0.642795i \(0.222225\pi\)
\(570\) 0 0
\(571\) −12.6639 −0.529967 −0.264984 0.964253i \(-0.585367\pi\)
−0.264984 + 0.964253i \(0.585367\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.01665 0.167506
\(576\) 0 0
\(577\) 10.9415 0.455501 0.227750 0.973720i \(-0.426863\pi\)
0.227750 + 0.973720i \(0.426863\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −18.4824 −0.766778
\(582\) 0 0
\(583\) 41.0888 1.70172
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.9238 0.822343 0.411172 0.911558i \(-0.365120\pi\)
0.411172 + 0.911558i \(0.365120\pi\)
\(588\) 0 0
\(589\) −1.47657 −0.0608412
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.5748 −1.00917 −0.504583 0.863363i \(-0.668354\pi\)
−0.504583 + 0.863363i \(0.668354\pi\)
\(594\) 0 0
\(595\) −13.3294 −0.546451
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.7153 1.54101 0.770503 0.637437i \(-0.220005\pi\)
0.770503 + 0.637437i \(0.220005\pi\)
\(600\) 0 0
\(601\) −7.77495 −0.317147 −0.158573 0.987347i \(-0.550689\pi\)
−0.158573 + 0.987347i \(0.550689\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.0805750 −0.00327584
\(606\) 0 0
\(607\) 20.7491 0.842181 0.421090 0.907019i \(-0.361648\pi\)
0.421090 + 0.907019i \(0.361648\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.0516 −0.730290
\(612\) 0 0
\(613\) −13.7685 −0.556106 −0.278053 0.960566i \(-0.589689\pi\)
−0.278053 + 0.960566i \(0.589689\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.45493 0.139090 0.0695451 0.997579i \(-0.477845\pi\)
0.0695451 + 0.997579i \(0.477845\pi\)
\(618\) 0 0
\(619\) 4.19182 0.168484 0.0842418 0.996445i \(-0.473153\pi\)
0.0842418 + 0.996445i \(0.473153\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.25786 −0.370908
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.40669 −0.215579
\(630\) 0 0
\(631\) 10.6334 0.423311 0.211655 0.977344i \(-0.432115\pi\)
0.211655 + 0.977344i \(0.432115\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.1261 −0.560577
\(636\) 0 0
\(637\) −5.77401 −0.228775
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.9055 1.22069 0.610347 0.792134i \(-0.291030\pi\)
0.610347 + 0.792134i \(0.291030\pi\)
\(642\) 0 0
\(643\) 23.6594 0.933037 0.466519 0.884511i \(-0.345508\pi\)
0.466519 + 0.884511i \(0.345508\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −41.4513 −1.62962 −0.814809 0.579729i \(-0.803158\pi\)
−0.814809 + 0.579729i \(0.803158\pi\)
\(648\) 0 0
\(649\) −11.8976 −0.467020
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.41504 0.290173 0.145086 0.989419i \(-0.453654\pi\)
0.145086 + 0.989419i \(0.453654\pi\)
\(654\) 0 0
\(655\) 21.4191 0.836913
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −23.8408 −0.928704 −0.464352 0.885651i \(-0.653713\pi\)
−0.464352 + 0.885651i \(0.653713\pi\)
\(660\) 0 0
\(661\) −33.3022 −1.29531 −0.647653 0.761935i \(-0.724249\pi\)
−0.647653 + 0.761935i \(0.724249\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.68038 0.220276
\(666\) 0 0
\(667\) 30.5022 1.18105
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15.3949 0.594313
\(672\) 0 0
\(673\) 22.2744 0.858616 0.429308 0.903158i \(-0.358758\pi\)
0.429308 + 0.903158i \(0.358758\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.0143 0.961378 0.480689 0.876891i \(-0.340387\pi\)
0.480689 + 0.876891i \(0.340387\pi\)
\(678\) 0 0
\(679\) −32.8353 −1.26010
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −40.3633 −1.54446 −0.772230 0.635343i \(-0.780859\pi\)
−0.772230 + 0.635343i \(0.780859\pi\)
\(684\) 0 0
\(685\) 13.1297 0.501660
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 77.2967 2.94477
\(690\) 0 0
\(691\) 11.5915 0.440961 0.220480 0.975391i \(-0.429238\pi\)
0.220480 + 0.975391i \(0.429238\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.88005 −0.0713144
\(696\) 0 0
\(697\) 34.3219 1.30003
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.1224 0.684473 0.342237 0.939614i \(-0.388816\pi\)
0.342237 + 0.939614i \(0.388816\pi\)
\(702\) 0 0
\(703\) 2.30409 0.0869003
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11.6057 0.436476
\(708\) 0 0
\(709\) −16.9915 −0.638129 −0.319065 0.947733i \(-0.603369\pi\)
−0.319065 + 0.947733i \(0.603369\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.57407 0.0963997
\(714\) 0 0
\(715\) −20.8449 −0.779555
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.4675 −0.987073 −0.493536 0.869725i \(-0.664296\pi\)
−0.493536 + 0.869725i \(0.664296\pi\)
\(720\) 0 0
\(721\) −4.90329 −0.182608
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.59393 0.282032
\(726\) 0 0
\(727\) −39.0725 −1.44912 −0.724560 0.689212i \(-0.757957\pi\)
−0.724560 + 0.689212i \(0.757957\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −40.4238 −1.49513
\(732\) 0 0
\(733\) −3.50617 −0.129503 −0.0647516 0.997901i \(-0.520626\pi\)
−0.0647516 + 0.997901i \(0.520626\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.9393 −1.21333
\(738\) 0 0
\(739\) −41.6153 −1.53084 −0.765422 0.643529i \(-0.777470\pi\)
−0.765422 + 0.643529i \(0.777470\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.0947006 −0.00347423 −0.00173711 0.999998i \(-0.500553\pi\)
−0.00173711 + 0.999998i \(0.500553\pi\)
\(744\) 0 0
\(745\) −2.36933 −0.0868054
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18.9360 0.691905
\(750\) 0 0
\(751\) 36.1790 1.32019 0.660096 0.751182i \(-0.270516\pi\)
0.660096 + 0.751182i \(0.270516\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.99150 −0.0724780
\(756\) 0 0
\(757\) −1.20080 −0.0436437 −0.0218218 0.999762i \(-0.506947\pi\)
−0.0218218 + 0.999762i \(0.506947\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.5134 0.924861 0.462430 0.886656i \(-0.346977\pi\)
0.462430 + 0.886656i \(0.346977\pi\)
\(762\) 0 0
\(763\) −7.64306 −0.276697
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.3818 −0.808160
\(768\) 0 0
\(769\) −9.98251 −0.359978 −0.179989 0.983669i \(-0.557606\pi\)
−0.179989 + 0.983669i \(0.557606\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.34119 −0.300012 −0.150006 0.988685i \(-0.547929\pi\)
−0.150006 + 0.988685i \(0.547929\pi\)
\(774\) 0 0
\(775\) 0.640850 0.0230200
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.6264 −0.524046
\(780\) 0 0
\(781\) 12.6296 0.451923
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.3405 0.547526
\(786\) 0 0
\(787\) −52.5454 −1.87304 −0.936521 0.350612i \(-0.885974\pi\)
−0.936521 + 0.350612i \(0.885974\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.3309 −0.473993
\(792\) 0 0
\(793\) 28.9610 1.02844
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 36.7571 1.30200 0.651002 0.759076i \(-0.274349\pi\)
0.651002 + 0.759076i \(0.274349\pi\)
\(798\) 0 0
\(799\) −15.5858 −0.551386
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −43.0148 −1.51796
\(804\) 0 0
\(805\) −9.90244 −0.349015
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 50.3613 1.77061 0.885305 0.465011i \(-0.153950\pi\)
0.885305 + 0.465011i \(0.153950\pi\)
\(810\) 0 0
\(811\) 32.8563 1.15374 0.576870 0.816836i \(-0.304274\pi\)
0.576870 + 0.816836i \(0.304274\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.20916 0.0423551
\(816\) 0 0
\(817\) 17.2268 0.602689
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.07615 0.107358 0.0536792 0.998558i \(-0.482905\pi\)
0.0536792 + 0.998558i \(0.482905\pi\)
\(822\) 0 0
\(823\) 6.23896 0.217476 0.108738 0.994070i \(-0.465319\pi\)
0.108738 + 0.994070i \(0.465319\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 57.4407 1.99741 0.998705 0.0508854i \(-0.0162043\pi\)
0.998705 + 0.0508854i \(0.0162043\pi\)
\(828\) 0 0
\(829\) 10.2742 0.356837 0.178418 0.983955i \(-0.442902\pi\)
0.178418 + 0.983955i \(0.442902\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.98529 −0.172730
\(834\) 0 0
\(835\) 8.10370 0.280440
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14.7882 0.510545 0.255272 0.966869i \(-0.417835\pi\)
0.255272 + 0.966869i \(0.417835\pi\)
\(840\) 0 0
\(841\) 28.6678 0.988546
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.2136 −0.901777
\(846\) 0 0
\(847\) 0.198645 0.00682554
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.01665 −0.137689
\(852\) 0 0
\(853\) −13.4822 −0.461620 −0.230810 0.972999i \(-0.574138\pi\)
−0.230810 + 0.972999i \(0.574138\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.3081 −0.693712 −0.346856 0.937918i \(-0.612751\pi\)
−0.346856 + 0.937918i \(0.612751\pi\)
\(858\) 0 0
\(859\) −14.9879 −0.511382 −0.255691 0.966759i \(-0.582303\pi\)
−0.255691 + 0.966759i \(0.582303\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −47.8357 −1.62835 −0.814173 0.580622i \(-0.802810\pi\)
−0.814173 + 0.580622i \(0.802810\pi\)
\(864\) 0 0
\(865\) −7.60291 −0.258507
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.4679 0.694327
\(870\) 0 0
\(871\) −61.9657 −2.09963
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.46535 −0.0833440
\(876\) 0 0
\(877\) −28.9278 −0.976822 −0.488411 0.872614i \(-0.662423\pi\)
−0.488411 + 0.872614i \(0.662423\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.0071 −0.775130 −0.387565 0.921842i \(-0.626684\pi\)
−0.387565 + 0.921842i \(0.626684\pi\)
\(882\) 0 0
\(883\) 1.56358 0.0526188 0.0263094 0.999654i \(-0.491624\pi\)
0.0263094 + 0.999654i \(0.491624\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39.1397 −1.31418 −0.657091 0.753812i \(-0.728213\pi\)
−0.657091 + 0.753812i \(0.728213\pi\)
\(888\) 0 0
\(889\) 34.8258 1.16802
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.64196 0.222265
\(894\) 0 0
\(895\) −7.25358 −0.242460
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.86657 0.162309
\(900\) 0 0
\(901\) 66.7381 2.22337
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.13709 −0.137522
\(906\) 0 0
\(907\) 6.17792 0.205134 0.102567 0.994726i \(-0.467294\pi\)
0.102567 + 0.994726i \(0.467294\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24.4709 0.810757 0.405379 0.914149i \(-0.367140\pi\)
0.405379 + 0.914149i \(0.367140\pi\)
\(912\) 0 0
\(913\) −24.9552 −0.825896
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −52.8055 −1.74379
\(918\) 0 0
\(919\) 0.399655 0.0131834 0.00659170 0.999978i \(-0.497902\pi\)
0.00659170 + 0.999978i \(0.497902\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23.7589 0.782035
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.8369 −0.946107 −0.473053 0.881034i \(-0.656848\pi\)
−0.473053 + 0.881034i \(0.656848\pi\)
\(930\) 0 0
\(931\) 2.12451 0.0696278
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.9975 −0.588582
\(936\) 0 0
\(937\) 51.4159 1.67968 0.839842 0.542831i \(-0.182647\pi\)
0.839842 + 0.542831i \(0.182647\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.7839 1.39472 0.697358 0.716723i \(-0.254359\pi\)
0.697358 + 0.716723i \(0.254359\pi\)
\(942\) 0 0
\(943\) 25.4978 0.830323
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.6500 −0.703530 −0.351765 0.936088i \(-0.614418\pi\)
−0.351765 + 0.936088i \(0.614418\pi\)
\(948\) 0 0
\(949\) −80.9199 −2.62677
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −43.7911 −1.41853 −0.709266 0.704941i \(-0.750974\pi\)
−0.709266 + 0.704941i \(0.750974\pi\)
\(954\) 0 0
\(955\) 4.04049 0.130747
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −32.3693 −1.04526
\(960\) 0 0
\(961\) −30.5893 −0.986752
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.98384 −0.0960533
\(966\) 0 0
\(967\) 39.7337 1.27775 0.638875 0.769310i \(-0.279400\pi\)
0.638875 + 0.769310i \(0.279400\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −54.3362 −1.74373 −0.871865 0.489746i \(-0.837090\pi\)
−0.871865 + 0.489746i \(0.837090\pi\)
\(972\) 0 0
\(973\) 4.63498 0.148591
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −49.7888 −1.59289 −0.796443 0.604713i \(-0.793288\pi\)
−0.796443 + 0.604713i \(0.793288\pi\)
\(978\) 0 0
\(979\) −12.5001 −0.399505
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.1540 −0.323862 −0.161931 0.986802i \(-0.551772\pi\)
−0.161931 + 0.986802i \(0.551772\pi\)
\(984\) 0 0
\(985\) 16.0792 0.512326
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −30.0310 −0.954929
\(990\) 0 0
\(991\) 49.8384 1.58317 0.791584 0.611061i \(-0.209257\pi\)
0.791584 + 0.611061i \(0.209257\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 27.1205 0.859778
\(996\) 0 0
\(997\) 48.7030 1.54244 0.771220 0.636569i \(-0.219647\pi\)
0.771220 + 0.636569i \(0.219647\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6660.2.a.u.1.5 5
3.2 odd 2 6660.2.a.w.1.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6660.2.a.u.1.5 5 1.1 even 1 trivial
6660.2.a.w.1.5 yes 5 3.2 odd 2